
JenNet Stack
User Guide

JN-UG-3041
Revision 2.0

28 September 2010

JenNet Stack
User Guide

2 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
Contents

About this Manual 9
Organisation 9
Conventions 10
Acronyms and Abbreviations 10
Related Documents 11
Feedback Address 11

Part I: Concept and Operational Information

1. Introduction to JenNet 15
1.1 Ideal Applications for JenNet 16
1.2 Radio Frequency Operation 16
1.3 Battery-Powered Components 17
1.4 Easy Installation and Configuration 18
1.5 Reliable Radio Communication 19
1.6 Routing 19
1.7 Network Topologies 20
1.8 Security 21
1.9 Co-existence 21
1.10 Basic Software Architecture 22

2. Operational Features 23
2.1 Node Types and Network Topologies 23

2.1.1 Star Topology 24
2.1.2 Tree Topology 25

2.2 Node Addressing 26
2.3 Network Identification and Isolation 27

2.3.1 Network Identification 27
2.3.2 Network Isolation 28

2.4 Network Formation 29
2.4.1 Starting a Network 29
2.4.2 Joining a Network 29

2.5 Message Routing 30
2.5.1 Message Propagation and Routes 30
2.5.2 Neighbour and Routing Tables 31
2.5.3 Establishing Routes 31
2.5.4 Routing Process on a Node 32
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 3

Contents
2.5.5 Routing Example 32
2.5.6 Message Acknowledgements 33
2.5.7 Sequence Number History 33
2.5.8 Route Repair 34

2.6 Services 35
2.6.1 Service Profile 35
2.6.2 Service Discovery 36

2.7 Binding 37
2.7.1 Types of Binding 37
2.7.2 Example Bindings 39

2.8 Data Transfer 41
2.8.1 Data Transfer Methods 41
2.8.2 Data Polling (End Device Only) 43

2.9 Auto-ping 43

3. JenNet Stack and APIs 45
3.1 JenNet Stack 45
3.2 Jenie API 47

3.2.1 Function Types 47
3.2.2 Functionality 47

3.3 JenNet API 48
3.4 Software Installation 49

4. Application Tasks 51
4.1 Starting the Network (Co-ordinator only) 52
4.2 Starting Other Nodes (Routers and End Devices) 53
4.3 Configuring the Radio Transmitter 55
4.4 Configuring Security 55
4.5 Discovering Services 56

4.5.1 Registering Services 56
4.5.2 Requesting Services 57

4.6 Binding Services 58
4.7 Transferring Data 58

4.7.1 Sending and Receiving Data using Addresses 59
4.7.2 Sending and Receiving Data using Bound Services 59
4.7.3 Receiving Data for an End Device 59

4.8 Obtaining Signal Strength Measurements 61
4.9 Entering and Leaving Sleep Mode (End Devices Only) 62

4.9.1 Sleep Mode with Memory Held 63
4.9.2 Sleep Mode without Memory Held 63
4 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
4.10 Saving and Restoring Context Data 64
4.10.1 Network Context 64
4.10.2 Application Context 65

4.11 Leaving the Network 67

5. Application Structure 69
5.1 JenNet Application Templates 69
5.2 Code Descriptions 70

5.2.1 Co-ordinator Code 71
5.2.2 Router Code 72
5.2.3 End Device Code 73

6. Advanced Issues in Network Operation 75
6.1 Identifying the Network 75
6.2 Sending Messages 76

6.2.1 Timing Issues in Data Sends 76
6.2.2 Re-tries in Data Sends 77
6.2.3 End-to-End Acknowledgements for Data Sends 78

6.3 Routing 79
6.3.1 Neighbour Tables and Routing Tables 79
6.3.2 Stale Route Purging 80
6.3.3 Automatic Route Importation 81

6.4 Losing a Parent Node (Orphaning) 82
6.4.1 Detecting Orphaning 82
6.4.2 Re-joining the Network 83

6.5 Losing a Child Node 83
6.5.1 End Device Children 83
6.5.2 Router Children 85

6.6 Auto-polling (End Device Only) 86
6.7 Beacon Calming 86
6.8 Packet Loss 87

6.8.1 Packet Collisions 87
6.8.2 Minimising Packet Loss 88
6.8.3 Route Updates 90

6.9 Network Self-Healing 90
6.9.1 Automatic Recovery 90
6.9.2 Network Recovery 91

6.10 Key Performance Parameters 92
6.10.1 Broadcast TTL (Time To Live) 92
6.10.2 Automatic Recovery Threshold 92
6.10.3 Ping Period 93
6.10.4 End Device Poll Period 94
6.10.5 End Device Scan Sleep Period 94
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 5

Contents
Part II: Reference Information

7. Jenie API Functions 97
7.1 “Application to Stack” Functions 98

7.1.1 Network Management Functions 98
eJenie_Start 99
eJenie_Leave 100
eJenie_RegisterServices 101
eJenie_RequestServices 102
eJenie_BindService 103
eJenie_UnBindService 104
eJenie_SetPermitJoin 105
bJenie_GetPermitJoin 106
eJenie_SetSecurityKey 107

7.1.2 Data Transfer Functions 108
eJenie_SendData 109
eJenie_SendDataToBoundService 111
eJenie_PollParent 112

7.1.3 System Functions 113
vJPDM_SaveContext 114
eJPDM_RestoreContext 115
vJPDM_EraseAllContext 116
eJenie_SetSleepPeriod 117
eJenie_Sleep 118
eJenie_RadioPower 120
u32Jenie_GetVersion 122

7.1.4 Statistics Functions 123
u16Jenie_GetRoutingTableSize 124
eJenie_GetRoutingTableEntry 125
u8Jenie_GetNeighbourTableSize 126
eJenie_GetNeighbourTableEntry 127
eJenie_ResetNeighbourStats 128

7.2 “Stack to Application” Functions 129
vJenie_CbConfigureNetwork 130
vJenie_CbInit 131
vJenie_CbMain 132
vJenie_CbStackMgmtEvent 133
vJenie_CbStackDataEvent 134
vJenie_CbHwEvent 135
6 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
8. JenNet API Functions 137
eApi_SendDataToExtNwk 138
vNwk_DeleteChild 139
vApi_SetScanSleep 140
vApi_SetBcastTTL 141
vApi_SetPurgeRoute 142
vApi_SetPurgeInterval 143
vNwk_SetBeaconCalming 144
vApi_SetUserBeaconBits 145
u16Api_GetUserBeaconBits 146
u8Api_GetLastPktLqi 147
u16Api_GetDepth 148
u8Api_GetStackState 149
u32Api_GetVersion 150
vApi_RegBeaconNotifyCallback 151
vApi_RegLocalAuthoriseCallback 152
vApi_RegNwkAuthoriseCallback 153
vApi_RegScanSortCallback 154

9. Global Network Parameters 155
9.1 Jenie Parameters 156
9.2 JenNet Parameters 159

10.Enumerations and Data Types 163
10.1 Enumerations and Defines 163

10.1.1 teJenieStatusCode (Return Status) 163
10.1.2 teJenieDeviceType (Node Type) 163
10.1.3 teJenieComponent (Component) 163
10.1.4 teJenieRadioPower (Radio Transceiver) 164
10.1.5 teJeniePollStatus (Poll Status) 164
10.1.6 TXOPTION #defines 164

10.2 Data Types 165
10.2.1 tsJenieSecKey (Security Key) 165
10.2.2 tsJenie_RoutingEntry (Routing Table Entry) 165
10.2.3 tsJenie_NeighbourEntry (Neighbour Table Entry) 165
10.2.4 tsScanElement (Scan Results) 166
10.2.5 MAC_Addr_s 166
10.2.6 MAC_ExtAddr_s 167
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 7

Contents
11.Stack Events 169
11.1 Management Events and Structures 169

11.1.1 tsSvcReqRsp 170
11.1.2 tsPollCmplt 170
11.1.3 tsChildJoined 170
11.1.4 tsChildLeave 171
11.1.5 tsChildRejected 171
11.1.6 tsNwkStartUp 171

11.2 Data Events and Structures 172
11.2.1 tsData 172
11.2.2 tsDataToService 173
11.2.3 tsDataAck 173
11.2.4 tsDataToServiceAck 173

Part III: Appendices

A. Hardware and Memory Use 177
A.1 Hardware Resources 177
A.2 Memory Resources (JenNet Only) 177
A.3 Memory Resources (JenNet and Jenie API) 178

B. Frames 180
B.1 Frame Header 180
B.2 Frame Body 182

C. Beacons 191
D. Glossary 192
8 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
About this Manual
This manual provides a single point of reference for information relating to the JenNet
wireless network protocol which can be implemented on the JN5148 and JN5139
devices. Little or no previous knowledge of wireless networks is assumed - all relevant
concepts are covered by this manual. Guidance is provided on use of the Application
Programming Interfaces (APIs) for JenNet and the API resources (functions, network
parameters, enumerations, data types, events, etc) are fully detailed. The manual
should be used as a reference resource throughout JenNet application development.

Organisation
The manual is divided into three parts:

Part I: Concept and Operational Information comprises 6 chapters:
Chapter 1 introduces the wireless network concepts and features relating
to the JenNet protocol.
Chapter 2 further details the operational features of JenNet.
Chapter 3 introduces the JenNet software, including the Jenie API which is
used by the application to interact with JenNet.
Chapter 4 describes how to use the API functions to perform commonly
required tasks in setting up and operating a JenNet wireless network.
Chapter 5 outlines the structure of a JenNet application.
Chapter 6 addresses a number of advanced issues relating to JenNet
application design - this chapter therefore supplements Chapter 4.

Part II: Reference Information comprises 5 chapters:
Chapter 7 details the C functions of the Jenie API.
Chapter 8 details a number of supplementary JenNet functions for
advanced users.
Chapter 9 details the Jenie and JenNet global network parameters.
Chapter 10 lists the enumerated types and data types.
Chapter 11 lists the stack events.

Part III: Appendices comprises 4 appendices that provide various ancillary
information, including the JN5148/JN5139 hardware and memory requirements
of JenNet, and a glossary of the main terms used in JenNet wireless networks.

Note: This manual incorporates the former Jenie API
User Guide (JN-UG-3042) and Jenie API Reference
Manual (JN-RM-2035).
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 9

About this Manual
Conventions
Files, folders, functions and parameter types are represented in bold type.

Function parameters are represented in italics type.

Code fragments are represented in the Courier New typeface.

Acronyms and Abbreviations
AES Advanced Encryption Standard

API Application Programming Interface

CA Collision Avoidance

CSMA Carrier Sense, Multiple Access

JenNet Jennic Network

LQI Link Quality Indication

MAC Media Access Control

PAN Personal Area Network

QPSK Quadrature Phase-Shift Keying

RF Radio Frequency

This is a Tip. It indicates useful or practical information.

This is a Note. It highlights important additional
information.

This is a Caution. It warns of situations that may result
in equipment malfunction or damage.
10 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
Related Documents
JN-AN-1059 Wireless Network Deployment Guidelines

JN-AN-1061 JenNet Application Templates Application Note

JN-AN-1085 JenNet Tutorial Application Note

JN-UG-3024 IEEE 802.15.4 Wireless Networks User Guide

Feedback Address
If you wish to comment on this manual, please provide your feedback by writing to us
(quoting the manual reference number and version) at the following postal address or
e-mail address:

Applications
NXP Laboratories UK Ltd
Furnival Street
Sheffield S1 4QT
United Kingdom

doc@jennic.com
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 11

About this Manual
12 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
Part I:
Concept and Operational

Information
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 13

14 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
1. Introduction to JenNet
The JenNet wireless network protocol has been developed to provide low-power,
wireless connectivity for a wide range of applications that perform monitoring or
control functions. It provides a simpler alternative to the ZigBee PRO protocol. JenNet
simplifies and streamlines application development, therefore reducing development
costs and time-to-market.

JenNet overcomes the traditional limitations of low-power, wireless network solutions
- short range and restricted coverage, as well as vulnerability to node and radio link
failures. It achieves this by building on the established IEEE 802.15.4 standard for
packet-based, wireless transport. JenNet enhances the functionality of IEEE 802.15.4
with integrated set-up intelligence, facilitating easy installation, as well as routing
intelligence and self-healing. JenNet incorporates listen-before-talk and can co-exist
with other wireless technologies (such as Bluetooth and Wi-Fi) in the same operating
environment.

Wireless connectivity means that a JenNet network can be installed easily and
cheaply, and JenNet’s built-in intelligence and flexibility allow networks to be easily
adapted to changing needs by adding, removing or moving network devices. The
protocol is designed to allow devices to appear and disappear from the network, so
devices can be put into a power-saving mode when not active. This means that many
devices in a JenNet network can be battery-powered, making them self-contained
and, again, reducing installation costs.

Figure 1: Example JenNet Network (Home Heating and Air-conditioning)

Air-conditioning thermostat
(Router)

Heating thermostat
(Router)

Fan control
(End Device)

Heater control
(End Device)

Heater control
(End Device)

Compressor control
(End Device)

Master switch
(End Device)

Controller/Timer
(Co-ordinator)
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 15

Chapter 1
Introduction to JenNet

1.1 Ideal Applications for JenNet
JenNet is suitable for a wide range of applications, covering both commercial and
domestic use, which include:

Point-to-point cable replacement (e.g. wireless mouse, remote controls, toys)
Security systems (e.g. fire and intruder)
Environmental control (e.g. heating and air-conditioning)
Lighting control
Home automation (e.g. home entertainment, doors, gates, curtains and blinds)
Automated meter reading (AMR)
Industrial automation (e.g. plant monitoring and control)

JenNet's wireless communications also enable some applications to be developed
that currently cannot be implemented with cabled systems. Examples are applications
that involve mobility, which must be free of cabling (e.g. asset tracking in warehouses).
Existing applications (such as lighting control and industrial plant monitoring) that
currently rely on cable-based systems can be implemented more cheaply, as JenNet
reduces or removes cable installation costs. It can also be beneficial in environments
where cable-based solutions can be difficult and expensive to install - for example, in
home security systems, sensors need to be easy to install (no cables or power supply
wiring), small and self-contained (battery-powered).

1.2 Radio Frequency Operation
JenNet provides wireless, radio-based network connectivity operating in the 2400-
MHz radio frequency (RF) band. This band is available for unlicensed use in most
geographical areas (check your local radio communication regulations). The basic
characteristics of this RF band are as follows:

Thus, JenNet offers a high data-rate and a large selection of channels. It also offers
the possibility of automatically selecting the best frequency channel at initialisation
(the channel with least detected activity) - this is achieved by setting the desired
channel number to 0.

The range of a radio transmission is dependent on the operating environment - for
example, inside a building or outside. With a standard module (around 0 dBm output
power), a range of over 200 metres can typically be achieved in an open area (ranges
in excess of 450 metres have been measured), but inside a building this can be
reduced due to absorption, reflection, diffraction and standing wave effects caused by
walls and other solid objects. High-power modules (greater than 15 dBm output

Frequency Range 2405 to 2480 MHz

Channel Numbers 11-26 (16 channels)

Data Rate 250 kbps
16 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
power) can achieve a factor of five greater than this. In addition, the range between
devices can be extended in a JenNet network, since the Tree topology (see Section
2.1.2) can use intermediate nodes (Routers) as stepping stones when passing data to
destinations.

1.3 Battery-Powered Components
There are many wireless applications that are battery-powered, e.g. light-switches,
active tags and security detectors. The JenNet and IEEE 802.15.4 protocols are
specifically designed for battery-powered applications. From a user perspective,
battery power has certain advantages:

Easy and low-cost installation of devices: No need to connect to separate
power supply
Flexible location of devices: Can be installed in difficult places where there is
no power supply, and can even be used as mobile devices
Easily modified network: Devices can easily be added or removed, on a
temporary or permanent basis

Since these devices are generally small, they use low-capacity batteries and therefore
battery use must be optimised. This is achieved by restricting the amount of time for
which energy is required by the device - since the major power drain in the system is
when the radio transceiver is operating, data may be sent infrequently (perhaps once
per hour or even per week) which results in a low duty cycle (transmission time as
proportion of time interval between transmissions). When data is not being sent, the
device reverts to a low-power sleep mode to minimise power consumption.

A network device can also potentially use "energy harvesting" to absorb and store
energy from its surroundings - for example, the use of a solar cell panel on a device in
a well-lit environment.

Tip: For guidance on the deployment of radio devices,
refer to the Application Note “Wireless Network
Deployment Guidelines” (JN-AN-1059).

Note: In practice, not all devices in a network can be
battery-powered, particularly those that need to be
switched on all the time (and cannot sleep), such as
Routers and Co-ordinators. Such devices can often be
installed in a mains-powered appliance that is
permanently connected to the mains supply (even if not
switched on) - for example, a ceiling lamp or an electric
radiator. This avoids the need to install a dedicated
mains power connection for the network device.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 17

Chapter 1
Introduction to JenNet

1.4 Easy Installation and Configuration
One of the great advantages of a JenNet network is the ease with which it can be
installed and configured.

As already mentioned, the installation is simplified and streamlined by the use of
certain battery-powered devices with no need for power cabling. In addition, since the
whole system is radio-based, there is no need for control wiring to any of the network
devices. Therefore, JenNet avoids much of the wiring and associated construction
work required when installing cable-based networks.

The configuration of the network depends on how the installed system has been
developed. There are three system possibilities - pre-configured, self-configuring and
custom:

Pre-configured system: A system in which all parameters are configured by
the manufacturer. The system is used as delivered and cannot readily be
modified or extended. Example: vending machine.
Self-configuring system: A system that is installed and configured by the
end-user. The network is initially configured by sending "discovery" messages
between devices. Some initial user intervention is required to set up the
devices - for example, by setting switches on the devices. Once installed, the
system can be easily modified or extended without any re-configuration by the
user - the system detects when a device has been added, removed or simply
moved, and automatically adjusts the system settings. Examples: A DIY home
security or home lighting system in which extra devices can be added at a later
date.
Custom system: A system that is tailored for a specific application/location. It
is designed and installed by a system integrator using custom network devices.
18 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
1.5 Reliable Radio Communication
JenNet employs a range of techniques to ensure reliable communications - that is, to
ensure communications reach their destinations uncorrupted. Corruption could result,
for example, from radio interference or poor transmission/reception conditions. These
techniques are provided by the underlying IEEE 802.15.4 protocol and are as follows:

Coding: JenNet applies a coding mechanism to radio transmissions. The
coding method employed in the 2400-MHz band uses QPSK (Quadrature
Phase-Shift Keying) modulation with conversion of 4-bit data symbols to 32-bit
chip sequences. Due to this coding, there is a high probability that a message
will get through to its destination intact, even if there are conflicting
transmissions (more than one device transmitting in the same frequency
channel at the same time).
Listen before send: The transmission scheme also avoids transmitting data
when there is activity on its chosen channel - this is known as Carrier Sense,
Multiple Access with Collision Avoidance (CSMA-CA). This means that before
beginning a transmission, a node will listen on the channel to check whether it
is clear. If activity is detected on the channel, the node delays the transmission
for a random amount of time and listens again. If the channel is now clear, the
transmission can begin, otherwise the ‘delay and listen’ cycle is repeated.
Acknowledgements: Message acknowledgements are used to ensure that
messages reach their destinations. When a message arrives at its destination,
the receiving device sends an acknowledgement to indicate that the message
has been received. If the sending device does not receive an
acknowledgement within a certain time interval, it re-sends the original
message (it can re-send the message several times until the message has
been acknowledged).

The above reliability measures allow a JenNet network to operate in an insular,
protected environment, even when there are other networks nearby operating in the
same frequency band. Therefore, adjacent JenNet networks will not interfere with
each other. In addition, JenNet networks can operate in the neighbourhood of
networks based on other standards, such as Wi-Fi and Bluetooth, without any
interference.

1.6 Routing
The basic operation in a network is to transfer data from one node to another. The data
is sourced from an input (possibly a switch or a sensor) on the originating node. This
data is communicated to another node which can interpret and use the data in a
meaningful way.

In the simplest form of this communication, the data is transmitted directly from the
source node to the destination node. However, if the two nodes are far apart or in a
difficult environment, direct communication may not be possible. In this case, it may
be possible to send the data to another node within range, which then passes it on to
another node, and so on until the desired destination node is reached - that is, to use
one or more intermediate nodes as stepping stones.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 19

Chapter 1
Introduction to JenNet

The process of receiving data destined for another node and passing it on is known
as routing. The application running on the routing node is not aware that the data is
being routed, as the process is completely automatic and transparent to the
application.

The use of routing enables more nodes to communicate and greater distances to be
covered via intermediate nodes, whilst also maintaining the low-power operation of
individual nodes. Routing is described further in Section 2.5.

1.7 Network Topologies
A JenNet network can adopt either of the two topologies illustrated below: Star or Tree.

The way that a message is routed from one node to another depends on the topology:

Star: The network has a central node, which is linked to all other nodes in the
network. All messages travel via the central node.
Tree: The network has a top node with a branch/leaf structure below. To reach
its destination, a message travels up the tree (as far as necessary) and then
down the tree.

There is always one node that takes a co-ordinating role in a network - the central
node in a Star topology, the top node in a Tree topology. There must also be nodes
with the role of relaying messages from one neighbouring node to another. JenNet
node types and network topologies are described in more detail in Section 2.1.

Figure 2: Routing between Network Nodes

Figure 3: JenNet Network Topologies

Node 1

Node 2 Node 3

Node 4Desired route

Actual route

Star Tree
20 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
1.8 Security
JenNet incorporates security measures to prevent intrusion from potentially hostile
agents and from neighbouring networks:

Encryption: To prevent external agents from interpreting JenNet data
messages, the data is encrypted at the source and decrypted at the destination
using the same key - only devices with the correct key can decrypt the
encrypted data. This feature is based on the AES (Advanced Encryption
Standard) CCM* algorithm, which is a very high-security encryption system
implemented at the IEEE 802.15.4 level (and built into the JN5148/JN5139
device as a hardware function).
Integrity: This service adds a 128-bit Message Integrity Code (MIC) to a
message, which allows the detection of any message tampering by devices
without the correct encryption/decryption key.
Replay Attack Prevention: A nonce is used to protect against replay attacks
in which old messages are later re-sent to a device. An example of a replay
attack is someone recording the open command for a garage door opener and
then replaying it to gain unauthorised entry into the garage.

1.9 Co-existence
The JenNet standard ensures “co-existence” - that is, network devices built to the
JenNet standard (possibly from different manufacturers) can exist in the same network
without interfering with each others’ operation.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 21

Chapter 1
Introduction to JenNet

1.10 Basic Software Architecture
The software that runs on each node of a wireless network is organised into three
basic levels forming the software stack illustrated and described below.

These basic levels are described below (from top to bottom):

Application level: Contains the user-developed application that runs on the
node. This software gives the device its functionality - the application is mainly
concerned with converting input into digital data and/or digital data into output.
Network Protocol level: Provides the network functionality, as well as the glue
between the application and the Physical/Data Link level (below). It consists of
stack layers concerned with network structure, routing and security. This level
is provided by JenNet.
Physical/Data Link level: This level consists of two separate layers - the
Physical layer and the Data Link layer:

The Data Link layer is responsible for assembling, delivering and
decomposing messages.
The Physical layer is concerned with the interface to the physical
transmission medium (radio, in this case).

In the JenNet software stack, this level is provided by the IEEE 802.15.4
standard.

The above software architecture is described in more detail in Section 3.1.

Figure 4: Basic Software Architecture

Physical/Data Link level

Network Protocol level (JenNet)

Application level
22 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
2. Operational Features
This chapter details some of the important operational features of JenNet:

Node types and network topologies - see Section 2.1
Node addresses - see Section 2.2
Network identifiers - see Section 2.3
Network formation process - see Section 2.4
Message routing - see Section 2.5
Services - see Section 2.6
Binding (of services) - see Section 2.7
Data transfer - see Section 2.8
Auto-ping - see Section 2.9

2.1 Node Types and Network Topologies
A wireless network can be made up from nodes of three types, introduced in Table 1.

Note that every wireless network must have a Co-ordinator.

Note: Incorporating these features in your application
code by means of API functions is covered in Chapter ?.

Node Type Role

Co-ordinator The Co-ordinator is an essential node and plays a fundamental role at system ini-
tialisation, during which its tasks are:
• Selects the radio channel to be used by the network
• Starts the network
• Allows other nodes to connect to it (that is, to join the network)
In addition to running applications, the Co-ordinator may provide message routing,
security management and other services.

Router In addition to running applications, the main tasks of a Router are:
• Relays messages from one node to another (routing)
• Allows other nodes to connect to it (that is, to join the network)
A Router must remain active and therefore cannot sleep.

End Device The main tasks of an End Device at the network level are sending and receiving
messages. An End Device cannot have children. It can often be battery-powered
and, when not transmitting or receiving, can sleep in order to conserve power.

Table 1: Node Types and Their Roles
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 23

Chapter 2
Operational Features

The application on each node configures the host node as a Co-ordinator, Router or
End Device. The application on the Co-ordinator can also pre-configure the desired
radio channel for the network (or enable an automated search for the best channel).

A wireless network that uses JenNet can have either of two topologies, which
determine how the nodes are linked and how messages propagate through the
network. These topologies are Star and Tree, and are presented in the sub-sections
below (in fact, the Star topology is a special case of the Tree topology).

2.1.1 Star Topology
This is the simplest and most limited of the possible topologies.

A Star topology consists of a Co-ordinator and a set of End Devices. Each End Device
can communicate only with the Co-ordinator. Therefore, to send a message from one
End Device to another, the message must be sent via the Co-ordinator, which relays
the message to the destination.

The Star topology is illustrated in the figure below.

Note: A Router can be used in place of an End Device
in a Star network, but the message relay functionality of
the Router will not be used - only its application will be
relevant.

Figure 5: Star Topology

End Device

Co-ordinator

End Device

End Device

End Device

End Device

End Device

End Device
24 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
A disadvantage of this topology is that there is no alternative route if the RF link fails
between the Co-ordinator and the source or target device. In addition, the Co-
ordinator can be a bottleneck and cause congestion.

2.1.2 Tree Topology
A Tree topology consists of a Co-ordinator, Routers and End Devices.

The Co-ordinator is linked to a set of Routers and End Devices - its children. A Router
may then be linked to more Routers and End Devices - its children. This can continue
to a number of levels.

This hierarchy can be visualised as a tree structure with the Co-ordinator at the top,
as illustrated in the figure below.

Note that:

The Co-ordinator and Routers can have children, and can therefore be parents
(they may each have up to 16 children).
End Devices cannot have children, and therefore cannot be parents.

Note: A Router can be used in place of an End Device
in a Tree network, but the message relay functionality of
the Router will not be used.

Figure 6: Tree Topology

End Device

Co-ordinator

RouterRouter

Router

End Device

End Device

End Device

End Device

End Device
End Device

End Device
End Device
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 25

Chapter 2
Operational Features

The communication rules in a Tree topology are:

A node can only directly communicate with its parent and its children (if any).
In sending a message from one node to another, the message must travel from
the source node up the tree to the nearest common ancestor and then down
the tree to the destination node.

A disadvantage of this topology is that there is no alternative route if a necessary link
fails. However, the JenNet protocol provides the facility to automatically repair failed
routes.

In a JenNet network, there is a maximum permissible number of children that a Router
or the Co-ordinator can have. The default maximum is 10 but this limit can be reduced
on individual nodes. These children may be End Devices or Routers, and the
maximum number of End Device children can also be configured, leaving the
remaining child places reserved for Routers.

2.2 Node Addressing
The basic way of referring to a node in a network is by means of a numeric address.
In JenNet, the 64-bit IEEE or MAC address is used. This is a unique 64-bit value
assigned to a device at the time of manufacture and is fixed for the lifetime of the
device. It therefore provides a unique ID for the device. It is also sometimes called the
extended address. JenNet uses it as the network address of the node.

Note: It is important when designing and deploying a
Tree network that all nodes are within range of Routers,
so that reliable communication can occur.
26 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
2.3 Network Identification and Isolation
This section describes how a JenNet wireless network can be uniquely identified and
isolated from other wireless networks operating in the same space, thus allowing
networks to function without interfering with each other.

2.3.1 Network Identification
Wireless networks must be uniquely identified so that there is no confusion between
neighbouring networks. JenNet networks are individually identified using two values:

Network Application ID: This is a 32-bit value which is pre-determined by the
system developer. It is the value used throughout the application to identify the
network. It may correspond to a particular product from a manufacturer, such
as an intruder alarm system. Therefore, the Network Application ID is common
to all networks based on the same product and, in this sense, is not truly
unique.
PAN (Personal Area Network) ID: This is a 16-bit value which must be unique
to the network. It is pre-set by the system developer, but the Co-ordinator
“listens” for the PAN IDs of any neighbouring networks to check that the
specified PAN ID is unique. If it is not unique, the Co-ordinator automatically
increments the PAN ID until a unique value is found. Once set, the PAN ID is
used at a low level in network messages, but is not used in the application.

The detailed implementation of these identifiers is described in Section 6.1.
Information on operating multiple networks with duplicate identifiers is provided below.

Duplicate Network Application IDs
The Network Application ID provides the only fixed way of identifying your JenNet
network in your application. It should be assigned a random value. However, there is
no mechanism to ensure that the Network Application ID is unique. While it is
improbable that two independent JenNet networks deployed in the same space will
have the same Network Application ID, this remains a possibility, particularly if the
networks are based on the same product (e.g. intruder alarms from the same
manufacturer) - see Section 6.1 for more information.

For a large commissioned system, it may be possible to set the Network Application
ID manually during deployment, to avoid the Network Application IDs of other JenNet
networks operating in the neighbourhood, where these IDs are obtained using a site
survey tool.

Networks with duplicate Network Application IDs operating in the same space should
not be a problem, provided that their PAN IDs are unique (see below) or the networks
are adequately isolated (see Section 2.3.2).
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 27

Chapter 2
Operational Features

Duplicate PAN IDs
The default PAN ID that is pre-set by the system developer cannot be guaranteed to
uniquely identify a network and may be dynamically changed by the Co-ordinator at
start-up in order to avoid the PAN IDs of other networks. Even with this dynamic
setting, it is still possible to obtain separate networks with the same PAN ID operating
in the same radio space, particularly if the networks run the same application (in which
case, the networks will have the same default PAN ID and Network Application ID).
This may occur in the following circumstances:

The Co-ordinators of these networks were powered up simultaneously and
selected the same PAN ID.
Branches of separate networks with the same PAN ID (initially operating in
different radio spaces) grow and eventually meet.

If this occurs, the radio traffic in one network may be received and propagated through
the other network sharing the PAN ID, resulting in network instability.

A useful way of avoiding PAN ID clashes between networks based on the same
product (running the same application) is to generate the default PAN ID using part of
the Co-ordinator's MAC address (see Section 2.2). Since MAC addresses are globally
unique, this reduces the likelihood of conflicting PAN IDs.

Networks with duplicate PAN IDs operating in the same space should not be a
problem if the networks are adequately isolated, as described in Section 2.3.2.

2.3.2 Network Isolation
It is normally practicable for a JenNet wireless network to be uniquely identified within
its operating environment using its Network Application ID and PAN ID (described in
Section 2.3.1). However, it is possible to operate networks with the same Network
Application ID and PAN ID in the same neighbourhood without conflict. This is
achieved by carefully managing radio channels and/or using encryption, as described
below.

Radio Channels
Networks can be operated in separate radio channels to avoid contention. However,
using this method to isolate networks means that moving channels to avoid a busy,
congested channel may prove more difficult.

Encryption
For systems that extend over large areas (for example, street lighting), the use of
encryption can be used to ensure that a network is isolated from third party networks.
With this security feature enabled, nodes without the correct key will be unable to join
a network, even if configured with a matching Network Application ID.
28 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
2.4 Network Formation
This section outlines the processes of starting a network through the Co-ordinator and
then growing the network by allowing other devices to join it.

2.4.1 Starting a Network
The Co-ordinator is responsible for starting a network according to the following
process:

1. Radio Channel Selected: The Co-ordinator selects a specified radio channel
or searches for a suitable channel (usually the one which has least activity).
This search can be limited to those channels known to be usable - for
example, avoiding frequencies where it is known a wireless LAN is operating.

2. PAN ID Allocated: The Co-ordinator assigns a unique 16-bit PAN ID to the
network. A PAN ID is pre-set by the system developer, but the Co-ordinator
“listens” for the PAN IDs of any neighbouring networks to check that the
specified PAN ID is unique - if it is not, the Co-ordinator increments the PAN ID
until a unique value is found.

3. Network Application ID Obtained: The Co-ordinator obtains the 32-bit
Network Application ID from the local application.

4. Network Ready for Joining: The Co-ordinator now ‘listens’ for requests from
other nodes (Routers and End Devices) to join the network.

2.4.2 Joining a Network
Routers and End Devices can join an existing network already created by a Co-
ordinator. Both Routers and the Co-ordinator have the capability to allow other nodes
to join the network, but this feature of the node can be enabled or disabled (the node
also has a maximum child capacity - see Section 2.1.2). The join process is as follows:

1. Required Network Found: A node (Router or End Device) wishing to join the
network first scans the available channels to find operating networks. To
identify which network it should join, the node uses the Network Application ID
specified in its application.

2. Best Parent Selected: Initially, the Co-ordinator will be the only potential
parent of a new node. However, once the network has partially formed, the
device may be able to 'see' the Co-ordinator and one or more Routers from
the network. In this case, it uses the following criteria, in the given order of
precedence, to choose its parent:

Note: A JenNet network uses the Network Application
ID (see Section 2.3) to bring nodes together to form the
network. Therefore, the user applications of all nodes of
the network must be programmed with the same
Network Application ID.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 29

Chapter 2
Operational Features

a) Depth in tree (preference given to parent highest up the tree)
b) Number of children (preference given to parent with fewest children)
c) Signal strength (preference given to parent with strongest signal)

3. Join Request Sent: The node then sends a message to the selected parent
(Co-ordinator or Router), asking to join the network. The selected parent
determines whether it is can allow the device to join. If this is the case, it
accepts the join request. If no parent is found, the joining node searches again
(although an End Device will sleep before restarting the search).

The handshaking between parent and child when a new node joins the network is
known as association. Typically, associations will be enabled by the application for a
limited duration by pressing a button on the potential parent node.

2.5 Message Routing
Communication between network nodes is implemented as messages, where a
message is organised as a “frame” comprising a set of fields. A frame may contain
payload data. A number of frame types are available, the required type depending on
the purpose of the communication - frame types are detailed in Appendix B.

2.5.1 Message Propagation and Routes
The way that a message propagates through a JenNet network depends on the
network topology. However, in all topologies, the message usually needs to pass
through one or more intermediate nodes before reaching its final destination. The
message therefore contains two destination addresses (as well as the source
address):

Address of the final destination (this must be specified at the application level)
Address of the node which is the next "hop" (this is automatically inserted by
the JenNet stack)

Both are IEEE/MAC addresses.

The way these addresses are used in message propagation depends on the network
topology, as follows:

Star topology: Both addresses are needed and the "next hop" address is that
of the Co-ordinator.
Tree topology: Both addresses are needed and the "next hop" address is that
of the parent of the sending node. The parent node then re-sends the message
to the next relevant node - if this is the target node itself, the "final destination"

Note: A Router or Co-ordinator can be configured to
have a time-period during which joins are allowed. The
join period may be initiated by a user action, such as
pressing a button. An infinite join period can be set, so
that child nodes can join the parent node at any time.
30 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
address is used. The last step is then repeated and message propagation
continues in this way until the target node is reached.

2.5.2 Neighbour and Routing Tables
The routing mechanism requires routing information to be stored in the Routers and
Co-ordinator. This information includes node addresses and is stored on the node in
two tables:

Neighbour table: Contains entries for all immediate children and the node’s
parent.
Routing table: Contains entries for all descendant nodes (lower in the tree)
that are not immediate children.

Together, these tables give a Router knowledge of all descendant nodes in the tree
and give the Co-ordinator knowledge of all nodes in the network. These tables are
assembled automatically by the stack as the network is initialised and formed.

2.5.3 Establishing Routes
Routes are established when a new node joins the network and also when a node
moves to a new parent. This involves updating the Routing tables of certain Routers
and the Co-ordinator, to make them aware of the new node. The process is outlined
below:

1. An "Establish Route" message is sent from the new node to the Co-ordinator,
at the top of the tree.
As the message progresses up the branch to the top of the tree, each node
through which it passes adds the address of the new node to its Routing table,
along with the address of the next-hop neighbour which has just passed the
packet upwards.

2. When the message reaches the Co-ordinator, the latter sends:
a response back to the new node to confirm that the new route has been
established.
a response to the parent of the new node to indicate whether the new node
has been accepted or rejected by the Co-ordinator.

3. Once a route is established, a 'Network Up' notification is generated locally to
indicate to the application on the device that it has fully joined the network.
The event also provides the address of the parent node to the application.

Note: Application programs in intermediate nodes are
not aware of the relayed message or its contents - the
relaying mechanism is handled by the JenNet stack.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 31

Chapter 2
Operational Features

2.5.4 Routing Process on a Node
On receiving a message, a Router node implements the following routing process:

1. The Router first checks the final destination address to determine whether the
message was intended for itself and, if this is the case, processes the
contents of the message.

2. If the above check failed, the Router checks its Neighbour table to determine
whether the message is destined for one of its immediate children and, if this
is the case, passes the message to the relevant child node.

3. If the previous check failed, the Router checks its Routing table to determine
whether the message is destined for one its other descendants and, if this is
the case, passes the message to the relevant intermediate child (Router).

4. If the previous check failed, the Router passes the message up the tree to its
parent for further routing.

For the Co-ordinator, the routing mechanism is similar except the message cannot be
passed up the tree.

2.5.5 Routing Example
This section describes the routing involved in sending a message from an End Device
to another node in the network by means of a "Data-to-Peer" frame (see Appendix
B.2.2) or a "Data-to-Service" frame (see Appendix B.2.4).

1. The message is first passed from the End Device to its Router parent, after
which it is treated identically to a message generated by the Router itself.

2. The Router checks its Neighbour table to determine whether the destination
node is one of its own children.
If this is the case, it relays the message to the relevant child.
If this is not the case, the Router consults its Routing table to check whether
the destination node is listed as a descendant.

If it is listed, the next-hop address is retrieved and the message is
forwarded via the corresponding intermediate child node.
Otherwise, the message is passed up the branch to the Router's parent.
Eventually, the branch may join another branch down which the
destination node is located (in which case, the Router at the intersection of
the two branches has the destination node listed in its Neighbour or
Routing table). Otherwise, the message eventually reaches the Co-
ordinator, which has a Neighbour or Routing table entry for every node in
the network.

A broadcast message can be sent to all nodes in the network using a "Data-to-
Network" frame (see Appendix B.2.3). This message is sent to all nodes within radio
range, which then re-broadcast the message. The frame has an in-built 'Time To Live'
parameter that determines how many times it can be re-broadcast - by default, this is
set to 5 broadcasts.
32 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
2.5.6 Message Acknowledgements
When a message is sent from one node to another node, the destination node can be
requested to send an acknowledgement back to the source node to indicate that the
message has been successfully received. Thus, if no acknowledgement is received,
the source node can assume that the original message did not reach its destination
and can attempt to re-send the message.

These end-to-end acknowledgements are implemented at the application level and
can be enabled or disabled for an individual message transmission. In addition, the
IEEE 802.15.4 level implements acknowledgements for each hop of a message to its
final destination, but these are transparent to the application and cannot be disabled.

2.5.7 Sequence Number History
Each message is given a sequence number (the first byte of the frame) by the sending
node, which allows the order in which messages were sent from the node to be
determined.

Nodes maintain a history of sequence numbers of the last messages received. In this
history, the sequence number of a message is stored with the address of the
originating node.

On End Devices, the sequence number of only the last received message is
stored until the next message is received. This is possible since an End Device
only ever communicates directly with its parent.
The Co-ordinator and Routers maintain a sequence number history for the last
ten messages received. If a message is received and its sequence number/
source address combination is found to be already in the sequence number
history, the message is silently discarded. This avoids passing messages to the
application that have been received multiple times.

The oldest item in the sequence number history is over-written by the sequence
number of the latest message received.

Note: These acknowledgements are end-to-end,
meaning that they are sent by the final destination node
to the source node and not by intermediate nodes along
the route.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 33

Chapter 2
Operational Features

2.5.8 Route Repair
‘Route repair’ involves removing a previously established route and establishing a new
route to replace it. This occurs when a node concludes that its parent or child is no
longer able to receive or reply to messages sent to it. There are two ways in which this
conclusion may be reached:

The first is the absence of IEEE 802.15.4 MAC acknowledgements, either for
outgoing messages or for poll requests to a parent. When communication is
lost with a parent, the local application is informed with a "stack reset"
notification. The node then attempts to re-join the network.
The second involves a node receiving an "Unknown-Node" message from its
parent or a child. This occurs in either of the following situations:

A child has re-joined the network through another parent. The "Unknown-
Node" message will be received by the former parent when it attempts to
communicate with the child. This parent will then delete the child from its
Neighbour table.
A parent has dis-owned a child, because it considers the child to be
unreachable. The "Unknown-Node" message will be received by the child
when it attempts to communicate with the parent. Upon receipt of this
message, the child will reset its stack and re-join the network, possibly
through a new parent.

The network joining process is described in Section 2.4.2.
34 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
2.6 Services
“Service” is a term used in Jenie to refer to a node property that can provide and/or
receive data - it can correspond to a feature, function or capability of the node.
Examples of services are:

Temperature sensor
Light level sensor
Keypad data entry
LCD output

An individual node can support up to 32 separate services. Each service available in
a network is identified by an ID number, between 1 and 32 (inclusive). The Service IDs
are represented by bit positions in the network’s Service Profile - see Section 2.6.1.

Two services must be compatible in order to communicate with each other - that is,
one service must provide meaningful data for the other service to interpret. For
example:

A temperature sensor and a heating controller are compatible services
A temperature sensor and a garage door controller are not compatible services

The concept of compatible services is illustrated in the lighting control example in
Figure 7 on page 40. Here, a number of services provide data to a “lighting controller”
service, which is connected to a lamp. These services are:

A “light on/off” service on a light switch node
A “light on/off” service on a dimmer switch node
A “light level” service on the same dimmer switch node

2.6.1 Service Profile
A network has a Service Profile which summarises all the services available in the
network. This is a 32-bit value that is pre-determined by the system developer.

The Service Profile incorporates a list of all the available services in the system and
their corresponding Service IDs. It is a 32-bit number in which each bit position
corresponds to a specific service, where ‘1’ signifies supported and ‘0’ signifies
unsupported. The bit positions correspond to the Service IDs as follows: bit 0
represents Service 1, bit 1 represents Service 2..... bit 31 represents Service 32.

The concept of the Service Profile is illustrated in Figure 7 on page 40, where the
Service Profile is expressed as the hexadecimal value 0x00000007.

Note: It is the responsibility of the user application to
determine whether services are compatible.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 35

Chapter 2
Operational Features

2.6.2 Service Discovery
Services allow a node to determine with which other nodes it could possibly
communicate. For example, a heating control node may be interested in nodes with a
temperature sensor (one service) or a switch (another service).

The application on a node can specify to JenNet which services it supports. An
application can also request all nodes that support a particular service. JenNet will
then reply with the address of each appropriate node, without additional effort by the
application. This process is called “service discovery” and is described in more detail
in Section 4.5.

Note: Service discovery is an essential step as the only
way for a node to obtain the addresses of the remote
nodes that provide the services it requires.

Figure 7: Example Lighting Control System

Supported Services: 0x00000006

Supported Services: 0x00000001Supported Services: 0x00000002

Lighting
Control Node

Light Switch
Node

Dimmer Switch
Node

Service 3

Light Level

Service 2

Light On/Off

Service 2

Light On/Off

Service 1

Lighting Controller

Service Profile: 0x00000007

Bit 0: Lighting Controller
Bit 1: Light On/Off
Bit 2: Light Level
36 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
2.7 Binding
As described in Section 2.6, a "service" on one node may need to communicate with
a particular service on another node. For example, a heating controller may need to
take its temperature input from a temperature sensor on a remote node.

Normally for each communication, the address of the target node must be specified.
Alternatively, service "binding" can be used which, once set up, allows communication
between two services to be performed without the need to specify an address.

Binding associates a service on one node with a service on another node. It is
analogous to wiring a cable between a sensor and an input on a control unit. Thus,
sending data from a service on the local node will automatically route the message to
the associated service on the remote node (see example of data transfer using binding
in Section 2.8).

The binding of services is illustrated in the lighting control system of Figure 7 on page
40.

JenNet maintains a table of bindings on each node, containing the following
information:

Source service: The service from which data is sent on the local node
Destination service: The service to receive the data on the remote node
Destination node: The address of the remote node

This information is held in a Binding table on the source node for the binding.

2.7.1 Types of Binding
It is possible to have complex bindings for an individual node/service - the possible
binding types are one-to-one, one-to-many and many-to-one:

One-to-one: A binding in which a node/service is bound to one (and only one)
other node/service
One-to-many: A binding in which a source node/service is bound to more than
one destination node/service
Many-to-one: A binding in which more than one source node/service is bound
to a single destination node/service

These are illustrated in Figure 8 below.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 37

Chapter 2
Operational Features

As an example of these bindings, consider a lighting control system:

In the one-to-one case, a single switch controls a single light
In the one-to-many case, a single switch controls several lights, perhaps in the
same room
In the many-to-one case, several switches control a single light, such as a light
on a staircase, where there are switches at the top and bottom of the stairs,
either of which can be used to turn on the light

It is also possible to envisage many-to-many bindings where in the last scenario there
are several lights on the staircase, all of which are controlled by either switch.

Figure 8: Binding Types

One-to-one binding

One-to-many binding

...

...

Many-to-one binding
38 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
2.7.2 Example Bindings
As a further example, consider the case of an intruder alarm consisting of four nodes
- a control unit, two motion sensors and an alarm box (featuring a siren and light).
Seven services are defined in this example system, as described in the table below.

The particular services on each node are shown in Figure 9 below, which also shows
the bindings between services on different nodes.

Service Name Description

1 Zone 1 Trigger This service receives indications of sensors being triggered in Zone 1 and acts on
this to sound the alarm, after a delay (Zone 1 being the entry/exit zone, so requir-
ing a delay to allow the user to disable the alarm before it sounds)

2 Zone 2 Trigger This service receives indications of sensors being triggered in Zone 2 and acts on
this to sound the alarm immediately.

3 Tamper Trigger This service receives indications of the tamper indication being triggered on any
connected node, and notifies the user.

4 Alarm Control This service is used to control the alarm box, starting or stopping the siren and
light.

5 Tamper Output This service sends an indication if the node has been tampered with.

6 Trigger Output This service sends an indication if the sensor detects an intruder.

7 Alarm Control This service receives commands and uses them to control the siren and light.

Table 2: Services in Example Intruder Alarm System
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 39

Chapter 2
Operational Features

The bindings in the above system are summarised in the table below.

Figure 9: Bindings in Example System

Source
Node

Source
Service

Destination
Node

Destination
Service

1 4 4 7

2 5 1 3

2 6 1 2

3 5 1 3

3 6 1 1

4 5 1 3

Table 3: Binding Relationships in Example System

Node 1
(Control unit)

Service 1 (Zone 1)

Service 2 (Zone 2)

Service 3 (Tamper)

Node 2
(Motion sensor)

Service 5 (Tamper)

Service 6 (Trigger)

Node 4
(Alarm box)

Service 5 (Tamper)

Service 7 (Alarm control)

Service 4 (Alarm control)

Node 3
(Motion sensor)

Service 5 (Tamper)

Service 6 (Trigger)
40 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
2.8 Data Transfer
During the normal operation of a node, it will need to send data to one or more remote
nodes, and/or receive data from remote nodes by means of messages.

2.8.1 Data Transfer Methods
JenNet supports the following methods for transferring data from one node to another:

Using Addresses: Data is sent to the destination node using the address of
that node (the address obtained from the discovery stage - see Section 2.6.2).
Using Binding: Data is sent from a service on the local node to one or more
bound services on remote nodes. The destinations are determined by the
previously defined binding - no addresses are needed (except when setting up
the binding). For example, if Service 2 on the local node is bound to Service 4
on a remote node and Service 5 on another remote node, specifying Service 2
as the source service will automatically assume destination Services 4 and 5
on the relevant nodes - see Figure 10 below.
The available services are summarised in the network’s Service Profile - refer to
Section 1.8. For information on binding, refer to Section 2.7.

Note: It is also possible to perform a data broadcast to
all nodes in the network, or perform a multi-cast to
selected nodes (using their addresses).
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 41

Chapter 2
Operational Features

Figure 10: Data Transfer using Binding

Service 4

Node A

Service 2

Node B

Service 4

Node C

Service 5

Node A

Service 2

Node B

Service 4

Service 2 on Node A
is bound to Service 4 on Node B

Node A

Service 2

Node C

Service 5

Service 2 on Node A
is bound to Service 5 on Node C

Data is transferred from Service 2 on Node A
to its bound services on remote nodes
42 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
2.8.2 Data Polling (End Device Only)
An End Device can sleep for a good proportion of the time in order to conserve power.
Therefore, when data arrives for the End Device from another node, it may not be
possible to deliver the data immediately since the target node may be in sleep mode.
In this case, the parent of the target node buffers the data until the End Device is out
of sleep mode and ready to receive data. It is the responsibility of the End Device to
poll its parent to check whether there is data waiting to be delivered.

2.9 Auto-ping
A node may lose its parent and be unaware of this loss, particularly if data exchanges
with its parent are infrequent. In JenNet, an auto-ping mechanism (enabled by default)
is employed to periodically verify that the parent node is still present. On each ping,
the node sends a message to its parent:

If the parent is still present and accepts the node as its child, it sends a
response.
Otherwise, one of two error situations may exist:

If the parent is not present, no response is sent. If a certain number (five,
by default - see Section 6.4.1) of consecutive pings are unacknowledged
in this way, the child considers its parent to be lost and attempts to re-join
the network.
If the parent is present but has dis-owned the child, an "Unknown-Node"
message is sent back. In this case, the child will attempt to re-join the
network.

Figure 11: End Device Polling

Caution: Pending data is buffered in the parent for a
maximum of 7 seconds and then, if uncollected, is
discarded. Failure by an End Device to poll for pending
data within this time limit can lead to orphaning
(rejection by its parent).

Message arrives Message buffered
by parent

End Device
requests message

End Device
receives messages
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 43

Chapter 2
Operational Features

An End Device has additional auto-ping requirements, described below.

End Device Pinging
An End Device can sleep, which must be taken into account when it pings its parent.
A ping can be sent from the End Device to the parent just before the End Device enters
sleep (for more details of this timing, see Communication Timeout in Section 6.5.1).
The response to this ping will be buffered by the parent for later collection by the End
Device (as described in Section 2.8.2). Therefore, to ensure that the auto-ping feature
works correctly, an End Device must operate as follows:

1. The End Device wakes from sleep and then performs any processing that is
necessary before it can return to sleep. If no data packets are transmitted to
its parent during this time, an auto-ping packet may be generated just before
the device re-enters sleep mode (depending on the ping interval - again, see
Section 6.5.1).

2. In order to obtain the response to a ping, the End Device must wake again
and then poll its parent for any pending data within 7 seconds of sending the
ping (see Section 2.8.2). Failure to poll the parent within this time will cause
the ping response to be discarded and may lead to the eventual orphaning of
the End Device (depending on the presence of other traffic between the two
devices).

Note: In a busy network, pinging is not essential since
the loss of a parent will be noticed through failed data
communications. To avoid unnecessary traffic in such
networks, when data is received from the parent node,
the countdown to the next ping is cancelled.
44 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
3. JenNet Stack and APIs
This chapter describes the JenNet software, which comprises:

JenNet stack software
Application Programming Interfaces (APIs):

Jenie API: This is the main function library used by an application to
interact with the JenNet stack
JenNet API: This is a secondary function library for advanced users who
require low-level functions to interact with the JenNet stack software

The above software is provided as part of the JN5148 and JN5139 Software
Developer’s Kits (SDKs).

3.1 JenNet Stack
The JenNet software stack is illustrated in Figure 12 below (this provides a more
detailed picture than the diagram in Section 1.10).

Figure 12: Detailed JenNet Software Architecture

IEEE 802.15.4 MAC layer

JenNet

IEEE 802.15.4 PHY layer

Jenie API

User Application

Service X Service Y Service Z

Application
level

Network
Protocol
level

Physical/
Data Link
level
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 45

Chapter 3
JenNet Stack and APIs

Figure 12 shows (from top to bottom):

Application Level
This includes the user application that makes use of services provided by the node.

The user-defined application interacts with the network principally through the Jenie
API. For more information on the Jenie API, refer to Section 3.2.

Network Protocol Level
This is the JenNet network layer that handles network addressing and routing by
invoking actions in the IEEE 802.15.4 MAC layer (see below). Its tasks include:

Starting the network
Adding devices to and removing them from the network
Routing messages to their intended destinations
Applying security to outgoing messages

Physical/Data Link Level
This is provided by the IEEE 802.15.4 standard and consists of two separate layers -
the Physical layer and the Data Link layer:

Data Link layer: This is provided by the IEEE 802.15.4 MAC (Media Access
Control) layer. It is responsible for message delivery, as well as for assembling
data frames to be transmitted and for decomposing received frames (all are
MAC frames).
Physical layer: This is provided by the IEEE 802.15.4 PHY layer. It is
concerned with the interface to the physical transmission medium, exchanging
data bits with this medium, as well as exchanging data bits with the layer above
(the Data Link layer).

Tip: In order to develop JenNet wireless network
applications, no knowledge of IEEE 802.15.4 is
required. However, if you do require more information
on this standard, refer to the IEEE 802.15.4 Wireless
Network User Guide (JN-UG-3024).
46 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
3.2 Jenie API
The Jenie API provides the principal mechanism by which the user application
interacts with the JenNet software stack. The API comprises C functions and
associated resources (data types, enumerations, etc), providing a simple, easy-to-use
interface designed to streamline application development for wireless networks.

3.2.1 Function Types
The Jenie API includes two types of function:

‘Application to stack’ functions: These functions are called in the application
to interact with the JenNet software stack. They are defined in the Jenie API.
‘Stack to application’ or ‘Callback’ functions: These functions are called by
the JenNet software stack to interact with the application. Their prototypes are
included in the Jenie API but they are user-defined, so you must define their
content in your application code.

3.2.2 Functionality
The Jenie API provides functionality (through the ‘application to stack’ functions) for
implementing network management, data transfer and system tasks, as follows.

Network Management Tasks
The network management functionality is largely concerned with starting and forming
the wireless network. These management tasks include:

configure and initialise the network
start a device as a Co-ordinator, Router or End Device
determine whether a Router or Co-ordinator is accepting join requests
advertise local node services and seek remote node services
establish bindings between local and remote node services
handle stack management events

Data Transfer Tasks
The data transfer functionality is concerned with sending and receiving data. These
tasks include:

send data to a remote node or broadcast data to all Router nodes
send data to a bound service on a remote node
handle stack data events
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 47

Chapter 3
JenNet Stack and APIs

System Tasks
The system functionality is largely concerned with implementing sleep mode,
controlling the radio transmitter and dealing with hardware events. These tasks
include:

configure and start sleep mode
configure, start and stop the radio transmitter
handle hardware events

Note that JN5148/JN5139 ‘Doze mode’ is not supported by the Jenie API.

3.3 JenNet API
The JenNet API may be used in conjunction with the Jenie API to access features of
the underlying JenNet stack layer. The JenNet API comprises C functions that provide
additional control over how nodes join a network, inter-network communication and
the operation of the JenNet stack.

Note: The JenNet API is intended for advanced users
who require more control over the network than is
available through the Jenie API. The JenNet API is not
normally needed in a JenNet wireless network
application.
48 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
3.4 Software Installation
JenNet is provided as part of the JN5148 and JN5139 Software Developer’s Kits
(SDKs), available from the Support area of the Jennic web site (www.jennic.com/
support).

The SDK Libraries installer (JN-SW-4040 for JN5148, JN-SW-4030 for JN5139)
includes the following software components:

Jenie API and JenNet API
JenNet protocol software
IEEE 802.15.4 protocol software
Integrated Peripherals API
Board API

In addition, a set of development tools is provided in the SDK Toolchain installer
(JN-SW-4041 for JN5148, JN-SW-4031 for JN5139), which includes:

Cygwin CLI
Eclipse IDE (JN-SW-4041 only) or Code::Blocks IDE (JN-SW-4031 only)
JN51xx compiler
JN51xx Flash programmer

You will need the JN51xx compiler and JN51xx Flash programmer, and either the
Cygwin CLI or the relevant IDE (Integrated Development Environment), depending on
your chosen development environment.

Caution: You must install the SDK Toolchain before
installing the SDK Libraries. Full installation instructions
for the SDK are provided in the relevant SDK Installation
Guide (JN-UG-3064 for the JN5148 SDK, JN-UG-3035
for the JN5139 SDK).

Note: It is possible to install the SDKs for the JN5148
and JN5139 devices on the same PC
(JN-SW-4040 and JN-SW-4041 for JN5148,
JN-SW-4030 and JN-SW-4031 for JN5139).
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 49

Chapter 3
JenNet Stack and APIs

50 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
4. Application Tasks
This chapter describes the main tasks that you may perform using the Jenie API in
your applications.

You must create a separate application for each node type in your wireless network:
Co-ordinator, Router, End Device. The tasks required depend on the node type.

The tasks that you must program are presented here in approximately the order they
are likely to occur in the application code, and are as follows (where a task is specific
to a particular node type, this is indicated in the task description in this chapter):

Starting the network (by creating a Co-ordinator)
Starting other nodes and allowing devices to join the network
Configuring the radio transmitter on a node
Configuring security for data transfer
Registering and requesting services (service discovery)
Binding services
Sending and receiving data
Entering and leaving sleep mode (for an End Device)
Saving and restoring context data
Leaving the network

Throughout the task descriptions, references are made to the relevant functions from
the Jenie API. Full details of the Jenie API functions are provided in Chapter 7 of this
manual.

The Jenie API functions are divided into “application to stack” functions and “stack to
application” (or “callback”) functions. For further information, refer to Section 3.2.1.

Note: Low-level tasks for a particular node type are
handled automatically by the network level software
(JenNet). Therefore, once you have specified the type of
node in the application code, you need not be
concerned with the detailed tasks for that node.

Tip: Further guidance to application development using
the Jenie API is provided in the Application Note JenNet
Tutorial (JN-AN-1085). An application template is also
available in the Application Note JenNet Application
Template (JN-AN-1061), which provides a useful
starting point for your application development.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 51

Chapter 4
Application Tasks

4.1 Starting the Network (Co-ordinator only)
The first step in creating a wireless network is to start and initialise the device that is
to act as the network Co-ordinator. Thus, this task is only performed in the application
that runs on the device which has been chosen as the Co-ordinator.

The network is first configured using the vJenie_CbConfigureNetwork() callback
function, which acts as the entry point for the application code. This function allows
network parameters to be set, including those listed in the table below (for full network
parameter definitions, refer to Chapter 9).

Parameter settings that are not relevant to the Co-ordinator will be ignored.

Network Parameter Description

gJenie_PanID PAN ID: 16-bit value used to identify network - should not
not clash with PAN IDs of neighbouring networks, but will be
modified by the Co-ordinator if it does.

gJenie_NetworkApplicationID Network Application ID: 32-bit value used to identify network.

gJenie_Channel Channel: 2.4-GHz radio channel to use, or auto-channel
selection (default: auto-channel selection).

gJenie_ScanChannels Scan Channels: Bitmap of set of 2.4-GHz channels to scan
(bit x represents channel x), if auto-channel selection enabled
(default: all channels).

gJenie_MaxChildren Maximum Children: Maximum number of children that the Co-
ordinator can have (default: 10).

gJenie_MaxSleepingChildren Maximum Sleeping Children: Maximum number of children that
can be End Devices (default: 8). The remaining child slots are
then reserved exclusively for Routers, although any number of
child slots can be used for Routers.

gJenie_RoutingEnabled Routing Capability: Must be used to enable the routing
capability of the Co-ordinator.

gJenie_RoutingTableSize Routing Table Size: Maximum number of entries in Routing table
on Co-ordinator.

gJenie_RoutingTableSpace Routing Table: Pointer to Routing table.

gJenie_RouterPingPeriod Router Ping Period: Period for auto-pings generated by any
Router children (default: 5 seconds).

gJenie_EndDeviceChildActivity
Timeout

End Device Child Activity Timeout: Timeout for
communications (data polling excluded) from End Device child,
used to determine whether child has been lost..

gJenie_RecoverFromJpdm Recover Network Context: Option to recover network context
data from external non-volatile memory during a cold start
following power loss to on-chip memory (data previously saved).

gJenie_RecoverChildren
FromJpdm

Recover Child/Neighbour Table: Option to recover Child/
Neighbour table when context data is recovered from non-volatile
memory (see gJenie_RecoverFromJpdm).
52 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
Further guidance on using some of the global parameters is provided in Chapter 6.

The Co-ordinator, and therefore the network, is then started by calling the function
eJenie_Start(). Within this function, you must specify that the device to be started is
the Co-ordinator.

Once the Co-ordinator has been started as described above, it is ready to accept join
requests from other devices (see Section 4.2) and the network will then grow.

4.2 Starting Other Nodes (Routers and End Devices)
Once the network has been started through the Co-ordinator, as described in Section
4.1, other devices can join the network. The tasks described in this section can be
performed in applications to be run on Routers and End Devices.

The device (Router or End Device) is first configured using the callback function
vJenie_CbConfigureNetwork(), which acts as the entry point for the application
code. This function allows network parameters to be set, including those listed in the
table below (for full network parameter definitions, refer to Chapter 9).

Note: The function eJenie_Start() is normally called
within the callback function vJenie_CbInit(), which must
be defined in your application code.

Note: The Co-ordinator is configured, by default, to
permit other nodes to join it. If at any time you wish to
disable joinings, use the eJenie_SetPermitJoin()
function.

Network Parameter Description

gJenie_NetworkApplicationID Network Application ID: Identifies the network to join.

gJenie_ScanChannels Scan Channels: Bitmap of set of 2.4-GHz channels to scan
when searching for a parent (bit x represents channel x).

gJenie_MaxChildren Maximum Children: Maximum number of children that a Router
can have (default: 10).

gJenie_MaxSleepingChildren Maximum Sleeping Children: Maximum number of children
that can be End Devices (default: 8). The remaining child slots
are then reserved exclusively for Routers, although any number
of child slots can be used for Routers.

gJenie_MaxFailedPkts Failed Communications: Number of failed communications
before node considers its parent or child to be lost (default: 5).

gJenie_RoutingEnabled Routing Capability: Used to enable the routing capability of a
Router (must be disabled for an End Device).
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 53

Chapter 4
Application Tasks

Parameter settings that are not relevant to Routers or End Devices will be ignored.

Further guidance on using some of the global parameters is provided in Chapter 6.
The device is then started by calling the function eJenie_Start(). Within this function,
you must specify that the device is to be started as a Router or an End Device.

Once the device has been started, it will transmit beacon requests to search for a
parent in the network with a particular Network Application ID. All potential parent
nodes (Routers and the Co-ordinator), which are in range, receive this request and
respond with beacons describing their ability to accept children. Given two or more
responses from different potential parents, a joining device will select the parent
according to the set of criteria described in Section 2.4.2. If the device fails to find a
parent, it will search again. After nine failed attempts, it will generate a stack reset
event (E_JENIE_STACK_RESET) before repeating the scan process once again (this
event provides the application with an opportunity to undertake any outstanding
actions). Also note that after each failed attempt to find a parent, an End Device will
sleep (for the period gJenie_EndDeviceScanSleep) before the next attempt.

gJenie_RoutingTableSize Routing Table Size: Maximum number of entries in Routing
table on Router.

gJenie_RoutingTableSpace Routing Table: Pointer to Routing table for Router.

gJenie_RouterPingPeriod Router Ping Period: Period for auto-pings generated by a
Router (default: 5 seconds).

gJenie_EndDevicePingInterval End Device Ping Interval: Number of sleep cycles between
auto-pings of an End Device to its parent (default: 1).

gJenie_EndDeviceScanSleep End Device Scan Sleep: Amount of time following a failed scan
that an End Device waits (sleeps) before starting another scan
(default: 10 seconds). Avoid settings less than 1 second for large
networks.

gJenie_EndDevicePollPeriod End Device Poll Period: Time between auto-poll data requests
sent from an End Device (while awake) to its parent
(default: 5 seconds).

gJenie_EndDeviceChildActivity
Timeout

End Device Child Activity Timeout: Timeout for
communications (data polling excluded) from End Device child,
used by Router to determine whether child has been lost.

gJenie_RecoverFromJpdm Recover Network Context: Option to recover network context
data from external non-volatile memory during a cold start
following power loss to on-chip memory (data previously saved).

gJenie_RecoverChidren
FromJpdm

Recover Child/Neighbour Table: Option on a Router to recover
Child/Neighbour table when context data is recovered from non-
volatile memory (see gJenie_RecoverFromJpdm).

Note: The function eJenie_Start() is normally called
within the callback function vJenie_CbInit(), which must
be defined in your application code.

Network Parameter Description
54 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
4.3 Configuring the Radio Transmitter
The radio transmission power of the JN5148/JN5139 device can be set using the
function eJenie_RadioPower(). The power levels for JN5148/JN5139-based
modules can be set in the following ranges:

A standard module has a transmission power range of:
-30 to +1.5 dBm if JN5139-based
-32 to +2.5 dBm if JN5148-based

A high-power module has a transmission power range of:
-7 to +17.5 dBm if JN5139-based
-16.5 to +18 dBm if JN5148-based

The function allows you to set the power to one of six (JN5139) or four (JN5148)
possible levels in the power range - for details of these levels, refer to the function
description in Section 7.1.3.

eJenie_RadioPower() can also be used to switch the radio transmitter off and on.

4.4 Configuring Security
Data sent between network nodes can be optionally encrypted and decrypted for
secure communications using the AES (Advanced Encryption Standard) CCM*
algorithm. This encryption/decryption is based on a security key (a value) that can be
defined by the user. Thus, when data is sent from one node to another, it is encrypted
by the originating node using a security key and the destination node decrypts the data
using this same key. The security measures also include data integrity using a MIC
(Message Integrity Code) and replay attack prevention using a nonce. For more
information on security, refer to Section 1.8.

Note: A Router is configured, by default, to permit other
nodes to join it. If at any time you wish to disable
joinings, use the eJenie_SetPermitJoin() function.

Note 1: The power level can be set in the above ranges
but should normally be left at the default value.

Note 2: ‘Boost mode’ of the JN5139 device is not
supported by JenNet.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 55

Chapter 4
Application Tasks

Security is enabled and the security key is specified using the function
eJenie_SetSecurityKey(). This function is called separately for each destination
node - on each call, the security key and 64-bit IEEE/MAC address of the remote node
are specified.

Security in communications with a particular node can also be disabled using the
function eJenie_SetSecurityKey().

4.5 Discovering Services
A node of a JenNet network can support up to 32 services, where a service is a
feature, function or capability of the node (for example, the support of keypad input).
In setting up a JenNet network, “service discovery” must be implemented to find the
services available and which nodes provide them. Service discovery is implemented
in two stages:

1. Each node must make the rest of the network aware of the services that it has
to offer by “registering” these services.

2. Each node must find out which other nodes provide services that are
compatible with its own (services that can communicate, such as temperature
sensor and heating control) - it does this by “requesting” services.

The above two stages are described in more detail below.

4.5.1 Registering Services
Each node must first register its services with the network - that is, advertise the
services it has to offer.

The services of an individual node are defined in a 32-bit value based on the Service
Profile of the network (see Section 2.6.1). Each bit position represents a specific
service, ‘1’ indicating that the service is supported and ‘0’ indicating that it is not
supported by the node. This 32-bit value is defined in the header of the application.

Registering the services of a node makes them available to other nodes. In the case
of a Router and the Co-ordinator, this list of registered services is held locally.

Note: In the current software release, the same security
key is used for communication with all nodes. It is not
possible to use different keys for different node pairs.
Therefore, eJenie_SetSecurityKey() only needs to be
called once for communication with the whole network.

Note: Service discovery is a useful technique in
allowing the discovery of node addresses as well as
node capabilities.
56 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
However, for an End Device, the list is registered with its parent node. Thus, a Router
or the Co-ordinator holds lists of services supported by all its child nodes.

Services are registered using the function eJenie_RegisterServices(). The
behaviour following this call is dependent on the node type:

Co-ordinator or Router: In this case, the services are registered locally and
the function call is able to return immediately with success or failure.
End Device: In this case, the services must be registered with the parent node
and the function call returns with deferred status, since this takes time. Once
the services have been registered with the parent, this is indicated by means of
an E_JENIE_REG_SVC_RSP response (management stack event) received
using the callback function vJenie_CbStackMgmtEvent().

4.5.2 Requesting Services
A node must determine with which other nodes it can potentially communicate - to
allow communication, the remote node must provide one or more services compatible
with the service(s) of the local node.

To determine the compatible nodes, the local node sends out a service request
containing a list of those services which are of interest. This is done using the Jenie
API function eJenie_RequestServices(). The requested services are specified
through a 32-bit value (based on the network’s Service Profile) in which the 1s indicate
the required services. This function call returns immediately and the results from
individual nodes are returned later as E_JENIE_SVC_REQ_RSP responses
(management stack events), received via the callback function
vJenie_CbStackMgmtEvent().
These responses contain the 64-bit IEEE/MAC address of the relevant remote node
and a 32-bit value detailing the services supported by the node (where 1s indicate the
supported services). The application can then determine with which node(s) it should
communicate.

When an End Device is added to the network, it will take time to register the new
node’s services with its parent, following a call to eJenie_RegisterServices(). If a
remote node requests services using eJenie_RequestServices() before this
registration has completed, no results will be returned for the services of the new End
Device. Therefore, if the remote node is particularly interested in the services of this
End Device, it may be necessary to re-request services until an
E_JENIE_SVC_REQ_RSP response is received containing the relevant IEEE/MAC
address. One approach is to implement a timeout on the requesting node from the
moment that eJenie_RequestServices() was called - if no response from the relevant
End Device has been received within the timeout period then
eJenie_RequestServices() should be called again.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 57

Chapter 4
Application Tasks

4.6 Binding Services
In JenNet applications, communication between nodes can be simplified by binding
services. Thus, a service on one node can be bound to a compatible service on
another node to facilitate easy communication - for bound services, all future
communications between the services will not need to specify node addresses.

The function eJenie_BindService() is used to bind a service to another service on a
remote node. The following information must be specified:

local service
remote node’s address
remote service

The last two items could have been obtained from an E_JENIE_SVC_REQ_RSP
event received as the result of a service request (see Section 4.5.2). Once a service
binding has been created, messages can be sent from the local service to the remote
service as described in Section 4.7.2.

You can bind a service to multiple remote services - this requires separate calls to
eJenie_BindService().
If you later wish to unbind two services, use the function eJenie_UnBindService().

4.7 Transferring Data
Once the network has been set up, messages can be exchanged between nodes.
Data should be sent between two nodes only if the application on the destination node
is capable of interpreting the received data (for example, for temperature data, the
target node contains a heating controller).

There are two ways of sending data from one node to another - the basic method uses
node addresses and the alternative method uses bound services, as described in the
sub-sections below.

In all cases, data sent to an End Device will be buffered on its parent node until the
End Device polls its parent for data - for more details, refer to Section 4.7.3. Also note

Note: Service binding is not a requirement for nodes to
communicate. You can implement communication
between nodes without service binding, in which case
you will need to use node addresses.

Note: “Service discovery” (described in Section 4.5) can
be used to establish which nodes are capable of
communicating with each other. Service discovery will
also give you the node addresses.
58 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
that when an End Device wakes from sleep without memory held, data must not be
transmitted by the End Device until the node is back in the network - see Section 4.9.2.

4.7.1 Sending and Receiving Data using Addresses
Data can be sent to a remote node using the function eJenie_SendData(). This
method requires you to specify the 64-bit IEEE/MAC address of the target node.

The sent data arrives at the target node through an E_JENIE_DATA event, received
via the callback function vJenie_CbStackDataEvent().

4.7.2 Sending and Receiving Data using Bound Services
Data can be sent from a service to one or more bound services using the function
eJenie_SendDataToBoundService(). This method assumes the source and
destination services have been bound as described in Section 4.6. It is not necessary
to use the target node address. The local service (from which the data originates) is
specified and the destination is then the remote service(s) to which the local service
has been previously bound.

The sent data arrives at the target node through an E_JENIE_DATA_TO_SERVICE
event, received via the callback function vJenie_CbStackDataEvent().

4.7.3 Receiving Data for an End Device
Data sent to an End Device is buffered on its parent, in case the End Device is
sleeping when the data arrives. It is the responsibility of the End Device to collect any
pending data from its parent. It should do this regularly and always on waking from
sleep when data is expected, since a build-up of unclaimed data for the End Device
on its parent will eventually cause the End Device to be orphaned by its parent (see
Section 6.5).

Polling of the parent can be conducted manually or automatically, as described below.

Tip: A node can send data to the Co-ordinator by
specifying a target address of zero.

Tip: It is also possible to implement data broadcasts to
all Router nodes using eJenie_SendData().

Caution: Pending data is buffered on the parent for up
to 7 seconds before the data is discarded. Therefore,
polling should be performed at least once every
7 seconds, otherwise data may be lost and the End
Device may eventually be orphaned.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 59

Chapter 4
Application Tasks

Manual Polling
The End Device can manually poll its parent for data using eJenie_PollParent()
(in which case, auto-polling should be disabled - see Auto-Polling below). Following
this function call, an E_JENIE_POLL_CMPLT event is generated on the End Device.

If there is pending data for the End Device, this event contains a status value of
E_JENIE_POLL_DATA_READY and is followed by an E_JENIE_DATA event
containing the data. However, this data event will only contain one data message. If
there are multiple pending data messages for the End Device, they must be collected
by repeated calls to eJenie_PollParent() (see Caution below) until there is no further
pending data, indicated when the event E_JENIE_POLL_CMPLT contains a status
value of E_JENIE_POLL_NO_DATA.

Auto-Polling
By default, an End Device is configured to automatically poll its parent on a periodic
basis. The default polling period is 5 seconds, but this can be changed on the End
Device through the global parameter gJenie_EndDevicePollPeriod, which can also be
used to disable auto-polling (by setting a polling period of 0).

Note that with auto-polling enabled, an End Device will automatically poll its parent on
waking from sleep, irrespective of the polling period set.

If there is pending data for the End Device, data will be received by the End Device
immediately following the auto-poll - the response from the parent will result in an
E_JENIE_POLL_DATA_READY event on the End Device, followed by an
E_JENIE_DATA event containing the data. However, only one data message will be
delivered on each auto-poll. In order to collect any other pending data messages
(particularly before going to sleep), the application could then perform repeated
manual polls using the eJenie_PollParent() function until there is no more pending
data (see Manual Polling above).

Auto-polling and gJenie_EndDevicePollPeriod are also described in Section 6.6.

Tip: In your End Device code, you should call
eJenie_PollParent() repeatedly until the
E_JENIE_POLL_NO_DATA status is obtained,
indicating that there is no more data for the End Device.

Note: The E_JENIE_POLL_CMPLT event is also
generated if no response is received from the parent. In
this case, the event also contains a status value of
E_JENIE_POLL_NO_DATA.

Caution: Do not call eJenie_PollParent() repeatedly
with an interval of less than 100 ms between calls,
otherwise the stack may freeze.
60 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
4.8 Obtaining Signal Strength Measurements
The apparent radio signal strength of a received data packet is measured by the
receiving node and this information can be accessed by the application. The signal
strength is measured in terms of a Link Quality Indication (LQI) value, which is an
integer in the range 0-255 where 255 represents the strongest signal.

This information can be obtained from the stack in one of two ways:

From Neighbour tables: Details of every direct descendant of a routing node
(Router or Co-ordinator) are stored in the Neighbour table on the node. These
details include the strength (LQI value) of the last received packet from the
neighbour. Jenie API functions are provided to access the contents of a
Neighbour table on the local node:

u8Jenie_GetNeighbourTableSize() can first be used to obtain the
number of entries in the Neighbour table.
eJenie_GetNeighbourTableEntry() can then be used to obtain the
information from an individual table entry - this information is placed in a
structure of type tsJenie_NeighbourEntry, which includes an element
u8LinkQuality containing an LQI value.

From last packet received: You can use the JenNet API function
u8Api_GetLastPktLqi() to obtain the LQI value of the last packet received by
the local node. A description of this function is provided in Chapter 8.

The relationships between the LQI value and the detected power, P, in dBm for the
JN5139 and JN5148 devices are approximately given by the formulae below.

For the JN5139 device:
P = (LQI - 305)/3

For the JN5148 device:
P = (7 x LQI - 1970)/20

The above formulae are valid for 0 ≤ LQI ≤ 255.

Caution: The relationships saturate at the LQI values of
0 and 255, and so power measurements obtained from
these extreme LQI values are not reliable (an LQI value
of 255 indicates that the power is at or above the
maximum detectable level and an LQI value of 0
indicates that the power is at or below the minimum
detectable level).
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 61

Chapter 4
Application Tasks

4.9 Entering and Leaving Sleep Mode (End Devices Only)
When using battery-powered nodes (or nodes with other autonomous power sources,
such as solar power), it is desirable to conserve power as much as possible. This
maximises battery life and consequently reduces maintenance work involving battery
replacement. One way of doing this is to put the node into a low-power sleep mode
during periods when the node does not need to be active (for example, between data
transmissions). Since Routers and the Co-ordinator need to be constantly active for
routing and joining purposes, only End Devices can be put into sleep mode.

JenNet provides the functionality to put an End Device into sleep mode and bring it out
again. Sleep mode is entered using the function eJenie_Sleep(). There may be a
delay between calling this function and the start of the sleep period, since the node
must first finish performing any tasks that remain to be completed. The device can be
put to sleep for a fixed time-period which is pre-configured using the function
eJenie_SetSleepPeriod() - this function only needs to be called once, since the
configured period applies to all subsequent calls to eJenie_Sleep(). As an example,
if the End Device is expected to transmit data every 30 seconds, the sleep duration
should be set to a value less than 30 seconds. This method uses a wake timer to wake
the device from sleep and requires the on-chip 32-kHz oscillator to be running during
sleep - this is configured through the call to eJenie_Sleep(). Alternatively, the device
can be woken by a hardware event originating from the on-chip comparators or DIOs,
and this method does not require the oscillator to be running.

Sleep mode can be entered with or without preserving the contents of on-chip RAM
(maintaining this volatile memory during sleep will consume more power). Again, the
required option is configured through the function eJenie_Sleep(). The cases of sleep
with memory held and sleep without memory held are described in the sub-sections
below.

Caution: If you set a sleep duration greater than
7 seconds using eJenie_SetSleepPeriod(), avoid
sending data to this End Device while it is asleep (while
it is not polling its parent for data). This will prevent the
End Device from being orphaned by its parent.

Note 1: The function eJenie_Sleep() must only be
called from within the main application task, represented
by the callback function vJenie_CbMain(). It must not
be called from any other callback function.

Note 2: The function eJenie_Sleep() should not be
called while the node is attempting to join a network, as
the stack controls sleep during this time - that is,
between starting/resetting the stack and the event
E_JENIE_NETWORK_UP.
62 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
4.9.1 Sleep Mode with Memory Held
Sleep mode with memory held is specified when the function eJenie_Sleep() is called
to enter sleep mode. On-chip RAM will remain powered during sleep and therefore
context data will be preserved. This allows the node to easily resume network
operation when it exits sleep mode.

When the node wakes from sleep with memory held, the stack calls the user-defined
callback function vJenie_CbInit() which should initiate a ‘warm restart’. The device
does not re-join the network immediately but remains in the idle state until
eJenie_Start() is called. The device then restarts as a network node using the context
data held in on-chip RAM.

4.9.2 Sleep Mode without Memory Held
Sleep mode without memory held is specified when the function eJenie_Sleep() is
called to enter sleep mode. In this case, on-chip RAM is powered down during sleep
and context data held in this volatile memory must be saved to external non-volatile
memory (e.g. Flash) before calling eJenie_Sleep(). This data can be saved using the
function vJPDM_SaveContext().
When the node wakes from sleep without memory held, the stack calls the user-
defined callback function vJenie_CbInit() which should initiate a ‘cold restart’. This
callback function must call the function eJPDM_RestoreContext() to retrieve the
application context data stored in non-volatile memory before entering sleep. The
network context data will be retrieved automatically, provided the global parameter
gJenie_RecoverFromJpdm has been set. The device does not re-join the network
immediately but remains in the idle state until eJenie_Start() is called. The device
then restarts as a network node using the context data that has been re-loaded into
on-chip RAM.

Note: Before using vJPDM_SaveContext() and
eJPDM_RestoreContext(), you should refer to Section
4.10 on saving and restoring context data.

Caution: After waking from sleep without memory held,
you must wait for the E_JENIE_NETWORK_UP event
before attempting to transmit data. Failure to do this will
result in the ‘send data’ function returning the error code
E_JENIE_ERR_STACK_BUSY.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 63

Chapter 4
Application Tasks

4.10 Saving and Restoring Context Data
Context data, which describes the current state of the network and application, is held
in on-chip memory. If the chip enters a period when its memory is not powered (such
as a power failure or sleep mode without memory held), this data will be lost and the
node must re-start from scratch when power is resumed. However, JenNet provides
the facility to save a copy of this context data to external non-volatile memory (e.g.
Flash) so that after power loss, node operation can resume from where it left off. This
section describes the steps to take in your code in order to use this feature.

Two Jenie API functions are provided for this purpose:

vJPDM_SaveContext(): This function saves both network and application
context to non-volatile memory. It must only be called in the main loop callback
function, vJenie_CbMain(), and must not be called in event handling callback
functions.
eJPDM_RestoreContext(): This function is used to recover application context
from non-volatile memory (network context can be recovered automatically).
The first time this function is called (after a cold start), it is used to set up a
memory buffer in which application context data will subsequently be stored.

The cases of saving/restoring network and application context data are dealt with
separately in the sub-sections below.

In addition, the function vJPDM_EraseAllContext() is provided, which erases all
context data stored in non-volatile memory. This function is used in reverting back to
the default context data. You should immediately follow this function call with a
software reset, by calling vJPI_SwReset(), to ensure that the current context data is
lost (and not re-saved) and the default context data is restored to non-volatile memory.

4.10.1 Network Context
In order to save network context data to external non-volatile memory, it is first
necessary to set the global parameter gJenie_RecoverFromJpdm to TRUE when the
callback function vJenie_CbConfigureNetwork() is called. The network context can
then be saved at any time using the function vJPDM_SaveContext() in the main loop
callback function, vJenie_CbMain() (but not in event handling callback functions).

Subsequently, whenever the application starts the stack using the function
eJenie_Start(), the saved network context will automatically be copied back into
memory and the stack will be returned to its state from when vJPDM_SaveContext()
was last called.

Note: If this feature is not enabled using the parameter
gJenie_RecoverFromJpdm, the stack will always re-
start from scratch. In this case, the application must
then re-establish any service bindings that existed.
However, you will still be able to save and restore
application context, as described in Section 4.10.2.
64 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
In addition to gJenie_RecoverFromJpdm, the following global parameters are used in
conjunction with this feature and can be set from vJenie_CbConfigureNetwork():

gJpdmSector: Sector of Flash memory to use (default: Sector 3)
gJpdmSectorSize: Size of sector to use (default: 32 Kbytes)
gJpdmFlashType: Type of Flash memory used (default: auto-detect)
gJpdmFlashFuncTable: Pointer to function table for custom Flash device
(default: NULL)

The last two parameters above allow you to use a range of Flash devices as external
non-volatile memory.

A further global parameter, gJenie_RecoverChildrenFromJpdm, can be used to
enable/disable the recovery of a Router’s or Co-ordinator’s Child/Neighbour table
among its context data (this option is enabled by default).

If enabled, the parent node will be able to remember its child nodes and quickly
resume its role in the network following a power loss. However, problems will
occur if any of its children have in the meantime re-joined the network via other
parent nodes.
If disabled, the parent will lose all knowledge of its previous children and will
dis-own them when it re-joins the network. Therefore, the children will all need
to re-join the network and it does not matter if some of them have already re-
joined via new parents during the power loss.

4.10.2 Application Context
In order to save application context to external non-volatile memory, you must include
a call to the function eJPDM_RestoreContext() within the initialisation callback
function vJenie_CbInit():

The first time that the application is run, there is no saved application data to
restore and the eJPDM_RestoreContext() function registers a buffer in on-
chip memory in which to store application data. The buffer is set up using the
macro JPDM_DECLARE_BUFFER_DESCRIPTION.
When the application is subsequently re-started, eJPDM_RestoreContext()
will recover application context data from external non-volatile memory,
previously stored using the function vJPDM_SaveContext(). The recovered
data is stored in the buffer that was set up using the macro
JPDM_DECLARE_BUFFER_DESCRIPTION.

The function eJPDM_RestoreContext() must always be called for a cold start. The
use of this function is illustrated in the code fragment below.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 65

Chapter 4
Application Tasks

struct sMyAppData

{

 //... data here
};

PRIVATE sMyAppData sData;

PRIVATE tsJPDM_BufferDescription sMyBufferDescriptor =

JPDM_DECLARE_BUFFER_DESCRIPTION("MyAppData", &sData, sizeof(sData));

PUBLIC void vJenie_CbInit(bool_t bWarmStart)

{

 //...

 if(!bWarmStart)

 {
 eJPDM_RestoreContext(&sMyBufferDescriptor);

 }

 //...

}

Note: You can save/restore application context
irrespective of whether you save/restore network
context (described in Section 4.10.1). If both save/
restore operations are enabled, a single call to the
function vJPDM_SaveContext() will save both network
and application context to external non-volatile memory.
66 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
4.11 Leaving the Network
A node may leave the network under the control of the application (e.g. when an End
Device is temporarily removed to replace its batteries) or under the control of the stack
(e.g. when the parent suffers a power interruption). This section describes leaving the
network from the points-of-view of the leaving node and its parent.

On the Leaving Node
A node can leave the network by calling the function eJenie_Leave() in its application
code (this function call could, for example, be linked to a button press on the node).
This dis-associates the node from its parent and stops the stack on the node. The
node will then remain out of the network until the function eJenie_Start() is called,
when the stack will be re-started and the node will attempt to find another parent.

Alternatively, a node may leave the network automatically under the control of the
stack (normally in situations where the node considers its parent to be lost). In this
case, the node will automatically try to re-join the network without calling
eJenie_Start(). This case is linked to the global parameters described in Section 6.4
- refer to this section for more information.

In either of the above cases, when a node leaves the network, the event
E_JENIE_STACK_RESET is generated on the node.

On the Parent Node
The way a parent node detects the loss of a child node depends on whether the child
is an End Device or a Router, and is linked to the global parameters described in
Section 6.5 - refer to this section for more information.

When a child node leaves the network, the event E_JENIE_CHILD_LEAVE is
generated on the parent node.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 67

Chapter 4
Application Tasks

68 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
5. Application Structure
This chapter outlines the code structure of a JenNet application. The code described
corresponds to the application template which is provided and detailed in the
Application Note JenNet Application Template (JN-AN-1061).

5.1 JenNet Application Templates
The Application Note JenNet Application Template (JN-AN-1061) provides a good
starting point for developing your own JenNet applications. Separate skeleton code is
provided for each node type: Co-ordinator, Router, End Device. You can modify the
supplied code to adapt it to your own application needs.

The supplied application templates assume the following:

The network topology will be a Tree.
You have one device which will act as the Co-ordinator.
You have at least one other device (each to act as a Router or an End Device).
You will use pre-determined values for the PAN ID and Network Application ID.

Caution: The Jenie API functions must not be called
from interrupt context (for example, from within a user-
defined callback function). Instead, the application
should set a flag to indicate that the call should be made
later, outside of interrupt context.

Tip: You will also find the Application Note Jenie Tutorial
(JN-AN-1085) very useful. This takes a step-by-step
approach to developing a wireless network application
using the Jenie API and JenNet networking protocol.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 69

Chapter 5
Application Structure

5.2 Code Descriptions
This section describes JenNet application source code at the function level - this is for
a cold start. The code includes two types of function (introduced in Section 3.2.1):

‘Application to stack’ functions are called in the application to interact with the
software stack.
‘Stack to application’ or ‘callback’ functions are called by the software stack to
interact with the application.

The general structure of the application code is illustrated in Figure 13. The sub-
sections which follow describe the code for the Co-ordinator, Router and End Device.

Figure 13: Application Code Overview

User Application Jenie
(to/from stack)

vJenie_CbConfigureNetwork()

Return

vJenie_CbInit()

eJenie_Start()

Return from eJenie_Start()

Initialises stack
parameters

Further initialisation

Start-up Tasks

Main Task
vJenie_CbMain()

Return
Processing

loop

Event Handling

vJenie_CbStackMgmtEvent()

Return

vJenie_CbStackDataEvent()

Return

vJenie_CbHwEvent()

Return

Deals with stack
management events

Deals with stack
data events

Deals with
hardware events

Return from vJenie_CbInit()
70 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
5.2.1 Co-ordinator Code
The Co-ordinator application is structured as illustrated in Figure 13 and described
below:

1. The entry point from JenNet into the Co-ordinator application is the callback
function vJenie_CbConfigureNetwork(), which is used for a cold start (at
system start-up or reset). This function can be used to initialise stack
parameters, including:

PAN ID (16-bit value)
Network Application ID (32-bit value)
Radio frequency channel for network
Maximum number of children (for the Co-ordinator)
Routing functionality (enable for Co-ordinator)
Routing table size
Array for Routing table

2. JenNet then calls the callback function vJenie_CbInit(), specifying a cold
start. This function performs any further initialisation and then calls the
function eJenie_Start(), which starts the Co-ordinator (and therefore the
network).

3. Once the Co-ordinator has been initialised and started, JenNet calls the
callback function vJenie_CbMain(), which is the main application task. This
function must define any processing that is to be performed by the application.
vJenie_CbMain() is called repeatedly by JenNet, but between calls JenNet
may generate events which are sent to the application. The application must
define callback functions that can be invoked by JenNet to deal with these
events:

vJenie_CbStackMgmtEvent() - this function deals with stack
management events (for example, a service request response received
from a remote node).
vJenie_CbStackDataEvent() - this function deals with stack data events
(for example, a message containing data received from a remote node or a
response to one of the local node’s own messages).
vJenie_CbHwEvent() - this function deals with hardware events from the
JN5148/JN5139 device or carrier board.

Once the appropriate function has dealt with the event, control is returned to
JenNet which continues to call vJenie_CbMain().

Note: The code for a warm start is similar to the above
code (for a cold start) except the network configuration
callback function vJenie_CbConfigureNetwork() is not
called.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 71

Chapter 5
Application Structure

5.2.2 Router Code
The Router application is structured as illustrated in Figure 13 and described below
(the overall structure is very similar to that of the Co-ordinator code).

1. The entry point from JenNet into the Router application is the callback function
vJenie_CbConfigureNetwork(), which is used for a cold start (at system
start-up or reset). This function can be used to initialise stack parameters,
including:

Network Application ID of network to join
Maximum number of children (for the Router)
Routing functionality (enable for Router)
Routing table size
Array for Routing table

2. JenNet then calls the callback function vJenie_CbInit(), specifying a cold
start. This function performs any further initialisation and then calls the
function eJenie_Start(), which starts the Router (which will then attempt to
join the network).

3. Once the Router has been initialised and started, JenNet calls the callback
function vJenie_CbMain(), which is the main application task. This function
must define any processing that is to be performed by the application.
vJenie_CbMain() is called repeatedly by JenNet, but between calls JenNet
may generate events which are sent to the application. The application must
define callback functions that can be invoked by JenNet to deal with these
events:

vJenie_CbStackMgmtEvent() - this function deals with stack
management events (for example, a service request response received
from a remote node).
vJenie_CbStackDataEvent() - this function deals with stack data events
(for example, a message containing data received from a remote node or a
response to one of the local node’s own messages).
vJenie_CbHwEvent() - this function deals with hardware events from the
JN5148/JN5139 device or carrier board.

Once the appropriate function has dealt with the event, control is returned to
JenNet which continues to call vJenie_CbMain().
72 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
5.2.3 End Device Code
The End Device application is structured as illustrated in Figure 13 and described
below (the overall structure is very similar to that of the Co-ordinator and Router code):

1. The entry point from JenNet into the End Device application is the callback
function vJenie_CbConfigureNetwork(), which is used for a cold start (at
system start-up or reset). This function can be used to initialise stack
parameters, including:

Network Application ID of the network to join
Routing functionality (disable for End Device)

2. JenNet then calls the callback function vJenie_CbInit(), specifying a cold
start. This function performs any further initialisation and then calls the
function eJenie_Start(), which starts the End Device (which will then attempt
to join the network).
While attempting to join the network, an End Device may sleep between scans
and therefore go through a number of warm re-starts following the sleep
periods.

3. Once the End Device has been initialised and started, JenNet calls the
callback function vJenie_CbMain(), which is the main application task. This
function must define any processing that is to be performed by the application.
This includes putting the node into sleep mode, if required, using the function
eJenie_Sleep().
vJenie_CbMain() is called repeatedly by JenNet, but between calls JenNet
may generate events which are sent to the application. The application must
define callback functions that can be invoked by JenNet to deal with these
events:

vJenie_CbStackMgmtEvent() - this function deals with stack
management events.
vJenie_CbStackDataEvent() - this function deals with stack data events
(for example, a message containing data received from a remote node or a
response to one of the local node’s own messages).
vJenie_CbHwEvent() - this function deals with hardware events from the
JN5148/JN5139 device or carrier board.

Once the appropriate function has dealt with the event, control is returned to
JenNet which continues to call vJenie_CbMain().
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 73

Chapter 5
Application Structure

74 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
6. Advanced Issues in Network Operation
This chapter deals with a range of JenNet network features and issues that are not
covered in the descriptions of application tasks in Chapter 4. These areas include:

Identifying the network (Section 6.1)
Sending messages (Section 6.2)
Routing (Section 6.3)
Losing a parent node (Section 6.4)
Losing a child node (Section 6.5)
Auto-polling (Section 6.6)

Many of these descriptions refer to the use of global parameters. These global
parameters can be set in the function vJenie_CbConfigureNetwork(), and are fully
listed and described in Chapter 9.

6.1 Identifying the Network
As described in Section 2.3, JenNet uses two identifiers to distinguish a network from
other JenNet networks operating in the same space - the Network Application ID and
PAN ID. Two global parameters must be set to initialise these identifiers:

gJenie_NetworkApplicationID represents the Network Application ID. This is a
32-bit fixed value used throughout the application to identify the network. It will
usually be set at the time of manufacture and take the same value in all
networks based on a particular product. However, it should be unique within a
given operating environment - that is, it should not clash with the Network
Application IDs of neighbouring networks. Such a clash is unlikely if the
Network Application ID assigned during design/manufacture is a random
value. However, this may become an issue when using multiple networks
based on the same product (see Section 2.3 and Joining Networks with
Duplicate Network Application IDs below).
gJenie_PanID represents the PAN ID of the network. This is a 16-bit value
which is used by the lower stack levels to identify the network and must be
unique within the operating environment - that is, it must not clash with the PAN
IDs of neighbouring networks. To this effect, the network Co-ordinator will
determine the uniqueness of the specified PAN ID at system start-up by
‘listening’ to neighbouring networks - if the specified PAN ID is found
elsewhere, the value of this global parameter will be automatically adjusted
until a unique value is obtained. In this respect, it does not matter which value
you assign to this global parameter (except 0xFFFF, which is forbidden), as it
may be changed by the system. However, the chances of the PAN ID being
changed in this way can be minimised by deriving the value of this global
parameter from part of the Co-ordinator’s MAC address (which is globally
unique).
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 75

Chapter 6
Advanced Issues in Network Operation

Joining Networks with Duplicate Network Application IDs
It is theoretically possible for two or more JenNet networks with the same Network
Application ID to operate concurrently, even in the same frequency channel, since at
the network level the PAN ID is used to differentiate between the networks and the
PAN ID is always unique. In practice, problems may occur when forming one of these
networks. When a Router or End Device attempts to join the network, it will only be
able to identify the required network through the Network Application ID, since this
value is hard-coded in the application which runs on the joining node. This node does
not know the PAN ID of the desired network, since this value may have been re-
configured dynamically by the Co-ordinator (and will not be known by the joining node
until it has successfully joined the network). Therefore, it is possible that the joining
node will join another network with the same Network Application ID, i.e. the wrong
network. You may, however, be able to prevent a node from joining the wrong network
by using the function eJenie_SetPermitJoin() to control the ‘permit joining’ status of
potential parents. This is a useful feature to build into a wireless network product,
particularly if you expect multiple networks based on the product to be deployed in the
same operating space.

6.2 Sending Messages

6.2.1 Timing Issues in Data Sends
There are two timing phenomena to take into consideration when sending data
messages - simultaneous packets and hetrodyning, which may lead to packet loss.
These effects are described below.

Simultaneous Packets
If several child nodes all send packets at exactly the same time to a parent then
packets may be lost - for example, if the children respond at the same time to a
broadcast requesting data. The solution is to stagger the responses to the broadcast
request in the application by using a short random delay, perhaps seeded from the
MAC address of the sending node.

The effect of simultaneous sends can also be observed if all Routers send periodic
data to the Co-ordinator. If the Routers are started simultaneously (for example,

Tip: For more information on handling neighbouring
networks with the same Network Application ID, refer to
the Application Note Jenie Controlled Network
Membership (JN-AN-1116).

Caution: Packet loss can have serious consequences
and may lead to network disruption such as the loss of a
parent or child node - see Section 6.4 and Section 6.5.
76 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
following a power outage), their timers will be approximately synchronised and they
will perform their periodic sends at roughly the same time. This may result in packet
loss at the Co-ordinator. A better approach is to start a node's timer when it joins to
the network, allowing the Router timers and therefore periodic sends to be staggered.
However, even in this case, you may also see the effect of heterodyning (see below).

A further technique to reduce packet collisions is to add a small random delay before
sending each packet (see below).

Hetrodyning
If several child nodes send packets to a parent asynchronously (say, every 500 ms),
over time the transmissions may slowly drift into and out of synchronisation. This is
because the crystals used to time the transmissions on the child nodes have slightly
different frequencies. The effect is called heterodyning and is similar to beat
frequencies in sound.

Thus, the children may start by sending data at different times but, over a long period
of time, the transmissions will become synchronised, packet collisions will occur and
packets may be lost. Therefore, the system will initially run well but, after a period of
time, there will be an increase in the rate at which packets are lost, followed by a
decrease in this rate (as the transmissions move out of synchronisation again).

To reduce this effect, add a small random delay to the time between data
transmissions. For example, use rand() seeded with the MAC address of the sending
node to ensure that nodes are not using the same pseudo-random numbers.

6.2.2 Re-tries in Data Sends
When a message is sent using the function eJenie_SendData() or
eJenie_SendDataToBoundService() with the u8TxFlags option
TXOPTION_SILENT cleared, JenNet submits the packet to the IEEE 802.15.4 MAC
layer of the protocol stack and returns E_JENIE_DEFERRED. If a buffer is free, the
MAC layer will attempt to send the packet. If the send fails, three further attempts will
be made, making four tries in total.

Depending on the outcome of the send, JenNet will (eventually) generate one of the
following stack events:

E_JENIE_PACKET_SENT: A MAC acknowledgement has been received from
the next hop node, confirming the send
E_JENIE_PACKET_FAILED: There was no MAC layer buffer free for the send
or no MAC acknowledgement has been received to confirm the send

Note: In eJenie_SendData(), if the u8TxFlags option
TXOPTION_SILENT is enabled, the above stack events
will not be generated.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 77

Chapter 6
Advanced Issues in Network Operation

6.2.3 End-to-End Acknowledgements for Data Sends
When sending data using the function eJenie_SendData() or
eJenie_SendDataToBoundService(), an end-to-end acknowledgement can be
requested by enabling the u8TxFlags option TXOPTION_ACKREQ. In this case, the
final destination node should return an acknowledgement to the source node, once the
data has been received (note that these acknowledgements are different from the
IEEE 802.15.4 MAC acknowledgements mentioned in Section 6.2.2, which simply
indicate that a data packet has reached the next hop towards its destination).

It should be noted that the use of end-to-end acknowledgements will double the
packet overhead of the network. Therefore, you should only request an end-to-end
acknowledgement when it is essential that a packet reaches its destination. The
following guidelines should be useful:

Do request acknowledgements when sending commands that will change the
operation of the network.
Do not request acknowledgements when sending regular sensor readings.

Also be aware that all of the original packet data is returned in an end-to end
acknowledgement. Therefore, if you are sending large data packets, this will impact
heavily on network performance.
78 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
6.3 Routing
The Co-ordinator and Routers of a network can each play a routing role, but their
routing capability must be explicity enabled in the application using the global
parameter gJenie_RoutingEnabled (when a Router is to act as an End Device, this
variable must be used to disable routing for the node).

6.3.1 Neighbour Tables and Routing Tables
A routing node contains both a Neighbour table and a Routing table (see Section
2.5.2). The Neighbour table is small, since a node can have an absolute maximum of
only 16 children. The Routing table, however, can potentially accommodate entries for
a very large number of descendant nodes and therefore take up significant memory
space. For this reason, the application is allowed some control over the Routing table,
in order to limit the amount of memory space occupied by the table.

The Routing table is represented in memory as an array of structures, where each
structure is of the type tsJenieRoutingTable and contains the routing information for
one descendant node (these structures are automatically filled in by the stack when
the network is formed and are not the concern of the application). This array must be
declared in the application and configured using two global parameters:

gJenie_RoutingTableSize determines the size of the array and therefore the
maximum number of descendant nodes (excluding immediate children). This
value should be set realistically to the maximum expected number of
descendants, so not to reserve more memory space than needed for the
Routing table.
gJenie_RoutingTableSpace is a pointer to the Routing table in memory - thus,
the array will start at this point in memory.

Note that for the Co-ordinator, the value of gJenie_RoutingTableSize will determine
(but will not be equal to) the maximum permissible number of nodes in the network.

Note: If a node attempts to join a network and this
requires a new entry in a Routing or Neighbour table
which is already full, the join request will be rejected and
the joining node’s potential parent will receive a
notification event of type E_JENIE_CHILD_REJECTED.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 79

Chapter 6
Advanced Issues in Network Operation

6.3.2 Stale Route Purging
Routing tables can retain stale routes as nodes join and leave the network. Stale
routes will normally be removed by traffic exercising the Routing tables, but some stale
entries may persist in quiet networks. An automatic ‘route purge’ mechanism can be
run in the background, which checks the validity of every entry in the Routing table.

If the application is continuously generating traffic from all nodes then the Routing
tables will be kept up-to-date by the application's traffic. Therefore, in this case,
automatic purging is not required. However, if the application sends data infrequently
then the tables could be out-of-date following a recovery activity and the automatic
purging becomes essential.

In very long thin networks, the purging can add excessive traffic following a network
recovery (e.g. following a power outage), with all the nodes issuing 'purge route'
packets at the same time. The excessive traffic can result in collisions and possible
packet loss.

It is recommended that for very large networks, which may be long and thin with
regular traffic, purging is disabled on Router nodes and enabled on the Co-ordinator
with the purging interval increased from the default value of 1 second (per entry) - a
function for setting this interval is outlined below. The ideal level is dependent upon
the level of application network traffic and the number of nodes on the network - the
value can be increased until the number of route purge messages are not significantly
contributing to packet losses caused by network contention.

Two JenNet API functions are provided for route purging:

vApi_SetPurgeRoute(): Allows route purging to be enabled/disabled.
vApi_SetPurgeInterval(): Allows interval between route purging activities (one
entry per activity) to be set in units of 100 ms (the default interval is 1 s).

The above functions need to be called after the 'network up' event
(E_JENIE_NETWORK_UP), when the default network operation is fully established.
80 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
6.3.3 Automatic Route Importation
JenNet provides a mechanism which allows a whole network branch to move within
the network - this speeds up network recovery (e.g. following a power outage). This
route importation feature is used when a Router node has moved in the network and
has descendant children. Initially, the Routing tables of all ascendant nodes, up to and
including the Co-ordinator, will contain either no routing or stale routing for this branch
of the tree.

If we rely solely on the ‘purge route’ mechanism (which has the primary purpose of
removing fragments of stale routing on all Routers) to clean up the Routing tables (see
Section 6.3.2), it is highly likely that many packets will be lost due to traffic flowing
down the old stale routes. This is because the purge route mechanism is a very slow
process and does not repair a route but simply deletes stale fragments.

Another alternative is to rely on demand-driven route repair, which would be used for
every packet mis-routed. This is quite a heavy process, as each route repair would
result in a 'find node' broadcast followed by an 'establish route' message being sent
from every node involved.

The route importation process tries to minimise traffic by performing a route repair
between the newly joined Router and the Co-ordinator, rather than from leaf nodes all
the way up to the Co-ordinator (as would be the case if a 'find node' message were
generated).

A Boolean network parameter, gRouteImport, is provided in JenNet to enable/disable
route importation (it is enabled by default). Thus, to disable route importation, the
following line of code is required:

gRouteImport=FALSE; // to disable the route import mechanism

The feature can be disabled at any time, including prior to starting the stack.

Note: The ‘route importation’ and ‘purge route’
mechanisms can both be disabled, leaving only the
demand-driven repair process, if this suits the
application or network layout.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 81

Chapter 6
Advanced Issues in Network Operation

6.4 Losing a Parent Node (Orphaning)
A node must be able to determine if it has lost its parent and become an orphan. Once
orphaned, the node may then need to re-join the network.

6.4.1 Detecting Orphaning
There are three ways a child node can determine whether it has been orphaned:

Lost packets
Lost pings
‘Unknown Node’ message

Lost Packets
A node may decide that it has lost its parent when a certain number of consecutively
sent packets have been lost (including unacknowledged poll packets - see Section
6.6). This number is determined by the global parameter gJenie_MaxFailedPkts. Due
to the retries (see Section 6.2.2), when this happens the total number of lost packets
will be 4 x gJenie_MaxFailedPkts. Since the node has now lost its parent, it will
attempt to re-join the network (see Section 6.4.2).

Lost Pings
In a quiet network with little traffic, Routers and End Devices generate pings to avoid
the loss of a parent (auto-pings are described in Section 2.9). If there is no other traffic
on the link:

A Router will periodically ping its parent at an interval determined by the global
parameter gJenie_RouterPingPeriod (in units of 100 ms).
An End Device will periodically ping its parent at an interval determined by the
global parameter gJenie_EndDevicePingInterval (expressed in terms of sleep
cycles). For example, if this interval is set to 4 and the sleep period is
2 seconds, the node will ping its parent every 8 seconds.

Given no other network traffic, the number of failed pings before the node decides that
it has lost its parent is determined by the global parameter gJenie_MaxFailedPkts
(which is set to 5, by default). In this case, the node will attempt to re-join the network
(see Section 6.4.2) after a time given by gJenie_MaxFailedPkts multiplied by the ping
interval.

Note that the chance of a failed (ping) packet increases as the ping-rate increases.
You are therefore advised to keep the ping period as long as possible but short
enough to detect a failed link within reasonable time.

Note: Following a failed ping, the ping will be re-sent
after a random back-off time - this helps multiple nodes
to avoid becoming synchronised in their ping attempts to
their parent.
82 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
Unknown Node
A node can detect that it has been orphaned if it receives a JenNet
UNKNOWN_NODE message in response to a message previously sent to its parent.
This may occur if the parent has lost the child from its Neighbour table because the
parent has been reset without context saving of neighbour information (that is, the
global parameter gJenie_RecoverChildrenFromJpdm has been set to zero). On
receiving this response, a stack reset will automatically be generated on the child and
the node will attempt to re-join the network (see Section 6.4.2).

6.4.2 Re-joining the Network
When a node considers its parent to be lost (see Section 6.4), JenNet initiates a stack
reset and begins a search for a new parent. The application is notified with
E_JENIE_STACK_RESET.

The recovery method depends on the node type, as follows:

An orphaned Router will continuously scan for a new parent until a network is
joined. JenNet then sends an E_JENIE_NETWORK_UP event to the
application.
An orphaned End Device will scan for a new parent. If the device is successful
in re-joining the network, JenNet sends an E_JENIE_NETWORK_UP event to
the application. Otherwise, the device goes to sleep for a period determined by
the global parameter gJenie_EndDeviceScanSleep, then scans again,
repeating the scan/sleep cycle until the network has been successfully re-
joined.

6.5 Losing a Child Node
A parent node must be able to determine whether its children are still active. The
detection methods for the loss of a child node are different for End Device and Router
children.

6.5.1 End Device Children
Two mechanisms are employed by a parent to determine whether an End Device child
has become inactive and should therefore be removed from its set of children:

A timeout on communications coming from the End Device
Restrictions on the locally buffered messages destined for the End Device

These are described in the sub-sections below.

Caution: In order to avoid being removed from the
network, an active End Device must ensure that both
the communication timeout and the buffered message
restrictions are not violated.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 83

Chapter 6
Advanced Issues in Network Operation

Communication Timeout
For an End Device child, the parent implements a timeout period on communications
from the child. This timeout period is determined by the value of the global parameter
gJenie_EndDeviceChildActivityTimeout.

If the parent does not receive a communication from the End Device child
within this timeout period, it considers the child to be lost and removes it from
the Neighbour table (this change will also be propagated up the tree to the
Routing tables of ascendant nodes).
If the parent does receive a communication from the End Device child within
this timeout period, the timeout is reset and starts again.

Note that data polling from the child does not count as communication for this purpose.

Automatic pings from an End Device to its parent can be used to prevent this timeout
mechanism from deducing that the child is lost when it is simply sending data
infrequently. A ping is generated just before going to sleep, with a ping interval defined
in terms of a number of sleep cycles configured using the global parameter
gJenie_EndDevicePingInterval (therefore the ping is not necessarily sent before every
sleep period). For this mechanism to work, the End Device child must sleep/wake
regularly enough for the time between pings not to exceed the value of
gJenie_EndDeviceChildActivityTimeout, otherwise the parent will assume that the
child is lost.

Buffered Message Restrictions
Data messages sent to an End Device are buffered by the node’s parent and collected
by the End Device through data polling using the function eJenie_PollParent(). This
allows messages that arrive while the End Device is asleep to be retained and later
collected when the End Device is awake.

A total of 12 message buffers in the parent are used for this purpose - 4 of these are
802.15.4 MAC buffers and 8 are JenNet buffers. The MAC buffers are filled first and
when these become full, the JenNet buffers are used, forming a FIFO queue which
feeds into the MAC buffers. An End Device child collects its messages from the MAC
buffers, but the parent will not indefinitely store a message in one of these buffers -
once a message has been in a MAC buffer for 8 seconds, the message is discarded
and considered to be a failed communication by the parent.

When the number of failed messages reaches the value of the global parameter
gJenie_MaxFailedPkts, the parent considers the End Device to be a lost child and will
remove this child from its Neighbour table (this change will also be propagated up the
tree to the Routing tables of ascendant nodes).

This mechanism has implications for End Devices that sleep for long periods and
which therefore cannot often poll for data. Such an End Device can cause routing
congestion in its parent and could be mistakenly removed from the network, because

Note: An End Device that must stay awake for long
periods may need to regularly send data to its parent, to
avoid being considered lost by the parent.
84 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
its parent has buffered a sufficient number of ‘failed messages’ for the End Device
while it has been sleeping.

To prevent these situations, follow the recommendations below:

Avoid sending messages to an End Device that is known to be sleeping,
particularly if the sleep duration is long (more than 7 seconds).
Avoid sending messages to many End Devices at the same time.
If an End Device periodically requests data from other nodes, ensure that it
frequently polls its parent for the responses (to clear the MAC buffers as quickly
as possible).

In addition, an End Device with a sleep duration of longer than 7 seconds should not
use auto-pinging of its parent, since the ping responses will not be retrieved from the
parent quickly enough and therefore count as failed packets. Instead, while awake, the
End Device should:

1. Send a message to its parent - if there is no data to send, it should send an
empty message

2. Poll its parent to clear any pending messages

6.5.2 Router Children
For a Router child, the parent counts the consecutive failed communications with the
child (unreturned 802.15.4 MAC acknowledgements) and considers the child to be lost
when this count exceeds the value of the global parameter gJenie_MaxFailedPkts. In
this case, the child is removed from the parent’s Neighbour table and all descendant
of the Router child are removed from the parent’s Routing table (these changes will
also be propagated up the tree to the Routing tables of ascendant nodes).

Automatic pings from a Router to its parent can be used to prevent the parent from
assuming the child is lost when it is simply sending data infrequently. Regular pings
will be generated by the Router child with a ping period configured through the global
parameter gJenie_RouterPingPeriod (on parent and child). The parent will consider
the Router child to be lost if it does not receive a ping or data from the child within the
period defined by the product:

gJenie_MaxFailedPkts x gJenie_RouterPingPeriod x 100 ms

Note: The global parameter gJenie_RouterPingPeriod
must be set to the same value on the parent and child
Routers. It must also be set to this same value on the
Co-ordinator, which uses this parameter setting for
detecting the loss of Router children (but does not need
it for generating pings itself).
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 85

Chapter 6
Advanced Issues in Network Operation

6.6 Auto-polling (End Device Only)
An End Device has the potential to sleep and may therefore not always be in a position
to receive data sent to it. For this reason, messages destined for an End Device are
buffered by its parent and the End Device must poll the parent for these messages.

In Jenie, auto-polling is enabled on an End Device by default. Auto-polling is the
periodic polling of the parent, where the poll period is set using the global parameter
gJenie_EndDevicePollPeriod. By default, this is set to 5 seconds.

Provided that auto-polling has not been disabled, an End Device will automatically poll
its parent on waking from sleep, irrespective of the poll period set. This means that if
you set the sleep period using eJenie_SetSleepPeriod() to be shorter than the polling
period defined in gJenie_EndDevicePollPeriod, the End Device will poll the parent
more often than configured through this global parameter.

Note that any lost (unacknowledged) poll packets will count as failed packets and will
therefore contribute to causing a stack reset if this count reaches the value of the
global parameter gJenie_MaxFailedPkts (lost packets are described in Section 6.4).
Decreasing the polling period set through gJenie_EndDevicePollPeriod has the effect
of increasing the chances of a failed packet and a stack reset. You are therefore
advised not to poll more often than is necessary.

Receiving End Device data using auto-polling is described in Section 4.7.3.

6.7 Beacon Calming
If other networks are scanning the operating channel of your network, this can affect
your network’s performance, since all the nodes in your network may be responding
to the beacon requests (by sending beacons). A mechanism is available to manage
repeated beacon request activity and reduce the beacon activity over air. This ‘beacon
calming’ feature executes an algorithm that limits the sending of beacons in relation to
the level of beacon activity and the number of available children.

For large dense networks, you should enable the beacon calming feature using the
JenNet API function Nwk_SetBeaconCalming(). This function sets a time-window
during which a node will respond to beacon requests:

1. A node with no children will always respond.
2. As a node acquires children, the time window is reduced.
3. A node that has reached the maximum number of children will not respond at

all.
This feature is disabled by default.

Note: Auto-polling can also be disabled through
gJenie_EndDevicePollPeriod (by setting it to zero). If
auto-polling is disabled, the End Device can explicitly
poll the parent using the function eJenie_PollParent().
86 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
6.8 Packet Loss
Various circumstances in which packets may be lost, and the possible consequences,
have already been mentioned in the preceding sections of this chapter. This section
summarises these scenarios, and provides information and advice on packet loss.

Lost packets may include unacknowledged data packets, pings and polling requests.
The loss of packets can be monitored from the viewpoints of an End Device and a
parent as follows:

End Device: By default in JenNet, consecutive lost packets are counted on an
End Device and this count is used to assess whether the link to the parent node
has failed. If this count exceeds the value of the global parameter
gJenie_MaxFailedPkts (or 4 x gJenie_MaxFailedPkts, if re-tries are included)
then the End Device will reset its stack and try to find another parent.
Parent: A parent node (Router or Co-ordinator) can also monitor packet loss in
the application. Counters for successful and failed transmission attempts to
each of the node's children and to its own parent (if relevant) are maintained in
the Neighbour table on the node, which can be accessed using the function
eJenie_GetNeighbourTableEntry(). These counters can be used by the
application to monitor the level of packet loss and if excessive packet loss is
occurring for a particular child, the parent can remove the child from the
network using the JenNet API function vNwk_DeleteChild().

Therefore, excessive packet loss can lead to network self-healing and a changing
network shape. Under normal circumstances, this works well to find the best radio path
to a parent, but high traffic rates can also result in lost packets and subsequent re-
forming of the network.

6.8.1 Packet Collisions
Packet collisions can occur in areas of traffic congestion in the network. The following
scenarios may lead to packet loss in this way:

Simultaneous Packets
Packet loss can occur when packets are sent simultaneously from multiple child nodes
to a common parent. This scenario is described in Section 6.2.1.

Heterodyning
When multiple nodes transmit periodically with approximately the same transmission
interval, the transmissions may drift into and out of synchronisation, causing packet
loss during the synchronised phases. This phenemenon of heterodyning is described
in more detail in Section 6.2.1.

Unsolicited Packets
A large number of unsolicited packets travelling up the network (towards the Co-
ordinator) can lead to collisions and lost packets - for example, periodic data packets
containing sensor readings. The solution is to ‘pull’ the packets up the network, as
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 87

Chapter 6
Advanced Issues in Network Operation

described in Section 6.8.2, allowing over-air transmissions of data packets to be
scheduled.

Clashes of Periodic Data and Ping Transmissions
Collisions can occur between a Router’s periodic data packets to the Co-ordinator
(e.g. containing sensor readings) and the Router’s ping packets to its own parent.

This effect depends on the selected timings. For example, if a Router passes data to
the Co-ordinator every 20 seconds and the ping-rate is 10 seconds then data packets
and ping packets may be sent at the same time, with data packets colliding with ping
responses coming back from the parent. However, this is not likely to be a problem if
the data slightly precedes the scheduled ping, since there will be no need for the ping
and it will be postponed by the stack.

You should configure your timings to avoid such clashes. For example, if your Routers
send data every 20 seconds then a ping period of 13 seconds would be a sensible
choice. However, the best way of avoiding these clashes is to add a degree of
randomisation to the timings of the data transmissions - that is, offset each
transmission by a random number of milliseconds from its scheduled time.

Increased Collisions with Network Depth
If packets are passing down the network at the same time as other packets are
passing up the network, this contributes to the risk of packet collisions and associated
packet losses. This problem becomes more acute in deeper networks. It is therefore
advisable to use high values of gJenie_MaxFailedPkts for deep networks or control
the packet direction using a pull system from the Co-ordinator.

6.8.2 Minimising Packet Loss
You can take steps in your application and your network design to make processing
time available for handling packets and therefore minimise packet loss. These
measures are described below.

Application Deployment
If the application makes intensive use of interrupts and dominates use of the
processor in the main loop, giving very little processing resource to the stack, then the
outcome will be that buffers will fill and packets will be lost. Therefore, you should not
deploy such applications on nodes that need to process a high throughput of packets.

No End Device Children for Co-ordinator
If possible, do not allow End Devices to directly join the Co-ordinator node. This can
be done by setting the global parameter gMaxSleepingChildren to 0 on the Co-
ordinator. Adopting this strategy will increase the efficiency of the Co-ordinator for
processing network traffic.
88 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
Start-up Delays
Substantial traffic is generated when a network starts up and nodes begin to join. This
can cause congestion, collisions and lost packets, particularly at the Co-ordinator. The
problem can be overcome by staggering the network join requests submitted by
potential nodes. This effect can be achieved by introducing different start delays
before calling eJenie_Start() in the joining nodes.

‘Node-up’ Messages
The Co-ordinator can create a list of all the nodes that have joined the network. This
list can be assembled by the Co-ordinator from application-level ‘node-up’ messages
that can be sent by the nodes as they join the network. However, these packets do not
form a reliable basis for creating a node list, as they may be lost in the sudden,
instense activity of a network recovery. The most reliable approach is to contruct the
node list from the regular data packets received from the nodes. However, nodes that
do not often send data packets to the Co-ordinator should send regular ‘node-up’
messages to indicate their presence. All of these packets can also be used to detect
the loss of nodes from the network - a node may be considered to be lost if a number
of expected packets from the node have failed to arrive.

Pushing Packets vs Pulling Packets
Sending packets up the network (for example, to the Co-ordinator) is referred to as
‘pushing’ packets. This can be undesirable, as it may lead to congestion, collisions
and lost packets if many nodes send packets up the network at the same time. If a
‘push’ approach to sending data is to be adopted, it is advisable to introduce some
degree of randomisation (delays) and/or beaconing to control the traffic flow. A
synchronisation message can be broadcast from the Co-ordinator to all the nodes,
prompting them to restart their timers. Each node can then transmit in its own
timeslots, reducing the amount of simultaneous network traffic.

An alternative method of transferring packets up the network, which avoids the
congestion problems of pushing packets, is to ‘pull’ the packets up the network. In this
case, the destination node requests the packets from the source nodes by sending
messages using the function eJenie_SendData() - for example, the Co-ordinator may
request sensor readings from various nodes. This allows a node which is high in the
tree, such as the Co-ordinator, to control the flow of packets up the network.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 89

Chapter 6
Advanced Issues in Network Operation

6.8.3 Route Updates
If a Router node and all of its children are moved within a network, the Routing tables
for this branch of the network must be updated as quickly as possible, since packets
may be lost as they are passed down stale routes. JenNet provides an automatic
‘route importation’ mechanism to handle these updates - this feature is described in
Section 6.3.3.

6.9 Network Self-Healing

6.9.1 Automatic Recovery
The ‘automatic recovery’ mechanism of JenNet can be summarised as the following
collection of features (previously mentioned in this chapter):

Auto-polling feature, which prevents the accumulation of packets for an End
Device in the buffers of its parent and therefore prevents the End Device from
being orphaned
End Device Child Activity Timeout feature, which detects when an End Device
child is no longer active in the network (and should therefore be orphaned)
Auto-ping feature, which allows an End Device or Router to check that its
parent is still active in the network
Maximum Failed Packets feature, which detects when a node has lost its
parent

Automatic recovery can be disabled by disabling all of these features in addition to
route purging, which can be disabled using the JenNet API function
vApi_SetPurgeRoute(). It is then the responsibility of the application to detect
whether communications have been lost and to take the appropriate action by calling
eJenie_Leave() - this call first forces the local node to leave the network (if
connected), then invokes a stack reset and finally forces the node to re-join the
network.

To disable the automatic recovery mechanism, set the following global parameters to
zero:

gJenie_EndDevicePollPeriod (End Devices only)
gEndDeviceChildActivityTimeout (Routers and Co-ordinator only)
gJenie_RouterPingPeriod (Routers only)
gJenie_MaxFailedPkts
90 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
6.9.2 Network Recovery
If the whole or part of a network suffers from a failure, such as a power outage on one
or more routing nodes, the network will attempt to recover from this situation.

Normal Recovery
The most extreme case is when only the Co-ordinator is reset and the rest of the
network tries to continue to function without it. When the Co-ordinator restarts, it will
detect that the default PAN ID is in use by the old network and will select a new PAN
ID - in this way, the Co-ordinator loses contact with its old network. In this situation, all
the Co-ordinator's previous child nodes will hold all of the tree below them as a
functioning network, until the maximum number of failed packets is reached for
communications to the parent Co-ordinator. The child node should then attempt to re-
join the Co-ordinator with the new PAN ID. So the whole network will slowly disconnect
down the tree - the Co-ordinator must wait for the previous network to collapse and
then re-build the whole network (with the new PAN ID). This process is slow, so it will
take some time for the network to fully recover.

Recovery with Context Data
Network recovery can be speeded up by using context saving on the Co-ordinator
(see Section 4.10). This requires the Co-ordinator to save context data (including the
PAN ID) during normal operation. On a Co-ordinator reset, the saved data is retrieved,
allowing the Co-ordinator to restart with the existing PAN ID and with the Co-
ordinator’s children able to just re-connect to it (thus, the normal network disassembly/
reassembly process is by-passed and the network is instantly re-started).

If a node goes through a reset, it may be desirable for the application to be restored
to the state that it was in before the reset - for example, in the case of a streetlight
node, if the lamp was illuminated before the reset then the node should be restarted
with the lamp illuminated (and not in a default ‘off’ state). Again, this can be achieved
by storing key variables through context saving:

If the application changes state infrequently, the state could be stored in non-
volatile memory using the save context data feature.
If the application changes state on a very regular basis then saving to non-
volatile memory should be avoided, as the memory's maximum write limit may
be exceeded.

The wake timer register can be used to store small quantities of data.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 91

Chapter 6
Advanced Issues in Network Operation

6.10 Key Performance Parameters
This section describes how certain key network parameters affect the performance of
the network. The full set of network parameters are listed and described in Chapter 9.

6.10.1 Broadcast TTL (Time To Live)

gJenie_MaxBcastTTL
The broadcast TTL (Time To Live) is represented by the global parameter
gJenie_MaxBcastTTL and defines the maximum number of hops for which a
broadcast message will stay alive in the network. Each time the broadcast message
is re-transmitted, the TTL counter of the message is decremented. When this counter
reaches zero, the broadcast packet is discarded.

If a network is likely to be very long and thin, the TTL value needs to reflect the depth
of the network - for example, if the network is 20 nodes deep then the TTL value
should be much greater than 20 (twice the depth is a good guide, giving 40).

If you need to adjust the size of the TTL value for different broadcast packets (i.e. to
vary the network penetration of the packets), you can use the JenNet API function
vApi_SetBcastTTL() to set the required value before you send the broadcast using
eJenie_SendData().
The TTL count is the 'last resort' mechanism to stop circulating broadcast packets.
The normal mechanism is a small history buffer of packet sequence numbers. If the
sequence number has been seen before (broadcast sequence numbers are not
modified by the network) then the packet is quietly discarded. Therefore, the TTL
mechanism is not used under normal circumstances.

6.10.2 Automatic Recovery Threshold

gJenie_MaxFailedPkts
The automatic recovery threshold is represented by the global parameter
gJenie_MaxFailedPkts and defines the maximum number of consecutive failed
packets before the node will consider its connection with the network to be lost. The
node will then reset the stack (and leave the network).

Caution: Setting a very large TTL value to fit all
possible networks is fine provided that the network is
quiet. Otherwise, the high traffic level will erase the
broadcast from the sequence history buffer and the
packet will keep travelling through the network until the
TTL count has expired. This can add to the traffic load
for a short period of time.
92 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
For large networks that are either very deep or have high traffic levels, this value
should be set to 10 or higher, so that the network can tolerate intermittent packet loss
or interferers.

If this value is too low then your network will occasionally change shape for no
apparent reason.

Setting the value to 0 disables the failed packet detection and automatic recovery
mechanisms, i.e. stops the node stack from resetting in order to leave the network and
find a new parent.

6.10.3 Ping Period

gJenie_RouterPingPeriod
Jenie_EndDevicePingInterval

The ping mechanism is used by a node to test the link to its parent when there is no
other application traffic. If there is regular network traffic, this traffic will allow the loss
of the link to be detected and the ping mechanism can remain inactive. In a quiet
network, the ping mechanism should be active and the ping period should be made as
long as possible to stop unnecessary ping traffic from blocking up the network.

For a Router, the interval between consecutive pings is set through the global
parameter gJenie_RouterPingPeriod, which must be set to the same value on child
and parent Routers (including the Co-ordinator). If there is no other network traffic, the
time for a Router to detect the loss of its parent or a parent to detect the loss of a
Router child is given by:

gJenie_MaxFailedPkts x gJenie_RouterPingPeriod x 100 ms

The value of gJenie_RouterPingPeriod needs to be large enough not to flood the
network with ping packets, but small enough to provide a reasonable detection period.

For an End Device, the global parameter gJenie_EndDevicePingInterval sets the
interval between pings in terms of a number of sleep-wake cycles. If there is no other
network traffic, the time for an End Device to detect the loss of its parent is given by:

gJenie_MaxFailedPkts x gJenie_EndDevicePingInterval x sleep-wake period

Since the parent has no knowledge of the sleep-wake periods of its End Device
children, it applies a fixed timeout to pings from its children, where this timeout is set
through the global parameter gJenie_EndDeviceChildActivityTimeout.

Setting gJenie_EndDevicePingInterval to 0 disables the automatic recovery
mechanism when there is no other traffic, i.e. stops the End Device stack from
resetting in order to leave the network and find a new parent. Therefore, in this case,
the application will be responsible for detecting the node loss.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 93

Chapter 6
Advanced Issues in Network Operation

6.10.4 End Device Poll Period

gJenie_EndDevicePollPeriod
The rate at which an End Device polls its parent for any buffered packets is set in
terms of a poll period via the global parameter gJenie_EndDevicePollPeriod.

Very frequent polling (a short poll period) may impact the performance of the parent
Router and should be avoided. In the Router buffers, there is an 8-second packet
persistence time of queued messages, so the poll period should be less than 8
seconds. The optimum poll period depends on the expected rate at which messages
for the End Device will be received by the parent - you should poll frequently enough
not to allow too many messages to accumulate in the Router buffers.

The End Device will automatically poll its parent when it wakes from sleep (provided
that polling is not disabled - see below). Therefore, the poll period set through
gJenie_EndDevicePollPeriod is only important when the node is awake for long
periods (otherwise, polling on waking will suffice).

Automatic polling can be disabled by setting gJenie_EndDevicePollPeriod to 0. The
application must then poll manually using eJenie_PollParent().

6.10.5 End Device Scan Sleep Period

Jenie_EndDeviceScanSleepPeriod
If an End Device is not connected to a network, it will sleep between scans for a
parent. The sleep period between scans is set via the global parameter
Jenie_EndDeviceScanSleepPeriod. If a network has a large number of End Devices,
this setting affects the speed of network recovery - a very long sleep period between
scans means that the network will take longer to start up, but reduces the amount of
beacon traffic and preserves battery life. Therefore, longer periods are recommended
if there is a high density of End Devices in the same radio sphere.

Following a failed scan, if a different sleep period (than the period set through
Jenie_EndDeviceScanSleepPeriod) is required before starting another scan, the
joining functionality of the stack must first be aborted. This is achieved by calling the
function eJenie_Leave() after the E_JENIE_STACK_RESET event which follows the
failed scan. The application can then force the device to sleep for the desired duration
by calling eJenie_SetSleepPeriod() to set the sleep duration followed by
eJenie_Sleep() to put the device into sleep mode. This approach allows the sleep
period to be altered between scan attempts - for example, to introduce extended sleep
periods in order to conserve battery life while the device is failing to join a network.

Note: The ‘sleep between scans’ period can also be set
at run-time using the JenNet API function
vApi_SetScanSleep(). This setting over-rides the
Jenie_EndDeviceScanSleepPeriod global parameter
setting but does not replace it.
94 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
Part II:
Reference Information
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 95

96 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
7. Jenie API Functions
This chapter details the core functions of the Jenie API. These functions are divided
into two categories, according to how they are called:

“Application to Stack” functions, described in Section 7.1.
“Stack to Application” functions, described in Section 7.2.

For a full introduction to the Jenie API, refer to Chapter 3.

Note: In addition to the functions of the Jenie API,
functions of the JenNet API are also available and are
described in Chapter 8. The JenNet API functions are
intended for advanced users who require more control
over the network than is available using the Jenie API.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 97

Chapter 7
Jenie API Functions

7.1 “Application to Stack” Functions
This section details the “Application to Stack” functions of the Jenie API. These
functions are called in the application to invoke tasks in the underlying stack. They are
pre-defined in the header file Jenie.h.

The function descriptions are divided by sub-section into functions that deal with
management tasks, data transfer tasks and operating system tasks.

7.1.1 Network Management Functions
The network management functions are largely concerned with tasks to start and form
the wireless network. These tasks include:

Configure and initialise network
Start a device as a Co-ordinator, Router or End Device
Determine whether a Router or Co-ordinator is accepting join requests
Advertise local node services and seek remote node services
Establish bindings between local and remote node services
Configure security used for message encryption/decryption

The functions are listed below, along with their page references:

Function Page
eJenie_Start 99
eJenie_Leave 100
eJenie_RegisterServices 101
eJenie_RequestServices 102
eJenie_BindService 103
eJenie_UnBindService 104
eJenie_SetPermitJoin 105
bJenie_GetPermitJoin 106
eJenie_SetSecurityKey 107

Caution: The “Application to Stack” functions described
in this section must not be called from interrupt context
(for example, from within a user-defined callback
function). Instead, the application should set a flag to
indicate that the call should be made later, outside of
interrupt context.
98 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
eJenie_Start

Description
This function is normally (but not always) called from eJenie_CbInit() and starts the
stack on the device.

On the Co-ordinator, this will start a network.
On an End Device or Router, starting the stack causes the node to find and join a
network.
On a sleeping End Device, once the device has woken from sleep with memory
contents held, this function will cause the stack to resume without the device needing to
re-associate with its parent.

The appropriate behaviour of this function for a given node type requires the
application to be linked with the relevant library file - Jenie_TreeCRLib.a for the Co-
ordinator or a Router, Jenie_TreeEDLib.a for an End Device.

Parameters
eDevType Indicates the role of the device in the network - one of Co-

ordinator, Router, End Device:
E_JENIE_COORDINATOR
E_JENIE_ROUTER
E_JENIE_END_DEVICE

Returns
One of:

E_JENIE_SUCCESS
E_JENIE_ERR_INVLD_PARAM

For explanations, refer to Chapter 10.

teJenieStatusCode eJenie_Start(
teJenieDeviceType eDevType);
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 99

Chapter 7
Jenie API Functions

eJenie_Leave

Description
This function disassociates the node from its parent and therefore causes the device
to leave the network.

On leaving the network, the device enters the idle state in which vJenie_CbMain()
is called regularly, but the device does not necessarily attempt to establish or join a
network. The device will remain in the idle state until eJenie_Start() is called.

Parameters
None

Returns
One of:

E_JENIE_SUCCESS
E_JENIE_ERR_UNKNOWN
E_JENIE_ERR_STACK_BUSY

For explanations, refer to Chapter 10.

teJenieStatusCode eJenie_Leave(void);
100 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
eJenie_RegisterServices

Description
This function is used to register the services available on the local node.

To do this, a list of supported services is submitted to the network as a 32-bit value
based on the network’s Service Profile, in which each bit position corresponds to a
particular service in the network. Here, a bit value of ‘1’ indicates the corresponding
service is supported, while ‘0’ indicates the service is not supported.

If the local node is the Co-ordinator or a Router, the registered services are held locally
and this function can return immediately with status code success or failure.
If the local node is an End Device, the registered services are submitted to its parent
and the status code is deferred - it is eventually received as the stack management
event E_JENIE_REG_SVC_RSP via a call to the callback function
vJenie_CbStackMgmtEvent().

This function will not successfully return until the network is up and running. Until the
network is up, the function will return the error code E_JENIE_ERR_STACK_BUSY.

Parameters
u32Services 32-bit value detailing the services to be registered (see above)

Returns
One of:

E_JENIE_SUCCESS
E_JENIE_DEFERRED
E_JENIE_ERR_UNKNOWN
E_JENIE_ERR_STACK_BUSY

For explanations, refer to Chapter 10.

teJenieStatusCode eJenie_RegisterServices(
uint32 u32Services);
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 101

Chapter 7
Jenie API Functions

eJenie_RequestServices

Description
This function is used to find remote nodes that have the specified services. The
remote nodes will respond individually.

The requested services are specified as a 32-bit value based on the network’s
Service Profile, in which each bit position corresponds to a particular service in the
network. Here, a bit value of ‘1’ indicates the corresponding service is requested,
while ‘0’ indicates the service is not requested.

You must also specify whether all of the requested services or at least one of the
requested services must be present on the remote node for the latter to generate a
response.

The function returns almost immediately but will not be successful until the network
is up and running. Until the network is up, the function will return the error code
E_JENIE_ERR_STACK_BUSY.

Responses from the remote nodes will be received as a series of
E_JENIE_SVC_REQ_RSP stack events via the callback function
vJenie_CbStackMgmtEvent().

Parameters
u32Services 32-bit value detailing the requested services (see above)
bMatchAll Indicates whether ALL or ANY of the requested services

should be present on the remote node to warrant a response:
TRUE: All the requested services should be present
FALSE: Any of the requested services should be present

Returns
One of:

E_JENIE_ERR_INVLD_PARAM
E_JENIE_DEFERRED
E_JENIE_ERR_UNKNOWN
E_JENIE_ERR_STACK_BUSY

For explanations, refer to Chapter 10.

teJenieStatusCode eJenie_RequestServices(
uint32 u32Services
bool_t bMatchAll);
102 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
eJenie_BindService

Description
This function is used to bind a local service to the specified service on the specified
remote node. Among the parameters of this function, you must specify the address
of the remote node (u64DestAddr) and the remote service (u8DestService). These
two pieces of information will have been obtained from the event
E_JENIE_SVC_REQ_RSP received as the result of a service request submitted
using the function eJenie_RequestServices().
Once a service binding has been created, messages can be sent to the remote
service(s) using the function eJenie_SendDataToBoundService().
If you wish to subsequently unbind two services, use the eJenie_UnBindService()
function.

Parameters
u8SrcService Service ID of local service to be bound
u64DestAddr Address of the remote node which contains the bound service
u8DestService Service ID of the service to be bound to on the remote node

Returns
One of:

E_JENIE_SUCCESS
E_JENIE_ERR_INVLD_PARAM
E_JENIE_ERR_STACK_RSRC

For explanations, refer to Chapter 10.

teJenieStatusCode eJenie_BindService(
uint8 u8SrcService,
uint64 u64DestAddr,
uint8 u8DestService);

Note: You can call eJenie_BindService() more than once to
bind a local source service to several destination services.
However, if using the Jenie API v1.4 or lower, you are advised
not to bind to more than four destination services.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 103

Chapter 7
Jenie API Functions

eJenie_UnBindService

Description
This function is used to unbind a local service from the specified service on the
specified remote node. The services must have been previously bound using the
function eJenie_BindService(). Among the parameters, you must specify the local
service (u8SrcService), the address of the remote node (u64DestAddr) and the
remote service (u8DestService) to be unbound. These parameters can be used as
described in the table below to remove one or more bindings in one function call:

Once the services have been unbound, messages can no longer be sent to the
remote service(s) using the function eJenie_SendDataToBoundService().

Parameters
u8SrcService Service ID of local service to be unbound
u64DestAddr Address of the remote node which contains the bound service
u8DestService Service ID of the service to be unbound on the remote node

Returns
One of:

E_JENIE_SUCCESS
E_JENIE_ERR_INVLD_PARAM
E_JENIE_ERR_STACK_RSRC

For explanations, refer to Chapter 10.

teJenieStatusCode eJenie_UnBindService(
uint8 u8SrcService,
uint64 u64DestAddr,
uint8 u8DestService);

Source
Service ID

Remote Node
Address

Remote
Service ID Action

1-32 Valid address 1-32 Remove the specific entry
described by the three parame-
ters

0xFF Not used 1-32 Remove all bindings where the
destination service matches the
parameter passed

1-32 Valid address 0xFF Remove all bindings where the
source service matches the
parameter passed

0xFF Not used 0xFF Remove all bindings
104 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
eJenie_SetPermitJoin

Description
This function is used to enable or disable "permit joining" on the Co-ordinator or a
Router - that is, it configures the device to allow or forbid other devices (End Devices
or Routers) to associate with it, and therefore to join the network.

Parameters
bAssociate “Permit joining” status to set:

TRUE - allow joinings
FALSE - forbid joinings

Returns
E_JENIE_SUCCESS

teJenieStatusCode eJenie_SetPermitJoin(
bool_t bAssociate);
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 105

Chapter 7
Jenie API Functions

bJenie_GetPermitJoin

Description
This function is used to obtain the current "permit joining" state of the Co-ordinator or
Router - that is, whether the device is currently allowing other devices (End Devices
or Routers) to associate with it, and therefore to join the network.

Parameters
None

Returns
One of:

TRUE - joinings allowed
FALSE - joinings forbidden

bool_t bJenie_GetPermitJoin(void);
106 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
eJenie_SetSecurityKey

Description
This function is used to enable security and set a key value for encrypting/decrypting
data during communications between the local node and the specified remote node
- that is, the local node will encode the data with the specified key and the remote will
decode the data with the same key. Note that this function must therefore also be
called on the remote node to set the same key value.

The function should be called from within the callback function vJenie_CbInit() and
should not be called from within vJenie_CbConfigureNetwork().
When security is enabled, the data that is encrypted is the payload of the
IEEE 802.15.4 MAC frame.

This function can also be used to disable security in communications with the
specified remote node by specifying a NULL security key pointer.

Parameters
*pKey Pointer to a security key. A NULL pointer disables security.
u64Addr Address of remote node associated with specified key -

ignored in current release (see Caution above).

Returns
One of:

E_JENIE_SUCCESS
E_JENIE_ERR_INVLD_PARAM

For explanations, refer to Chapter 10.

teJenieStatusCode eJenie_SetSecurityKey(
tsJenieSecKey *pKey,
uint64 u64Addr);

Caution: In the current software release, the specified
security key is used for communication with all nodes (the
specified address is ignored). All nodes must use the same
key. Therefore, this function only needs to be called once for
communication with the whole network.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 107

Chapter 7
Jenie API Functions

7.1.2 Data Transfer Functions
The data transfer functions are concerned with sending and receiving data. These
tasks include:

Send data to a remote node or broadcast data to all Router nodes
Send data to a bound service on a remote node

The functions are listed below, along with their page references:

Function Page
eJenie_SendData 109
eJenie_SendDataToBoundService 111
eJenie_PollParent 112
108 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
eJenie_SendData

Description
This function is used to send data to the specified remote node. This type of send
requires the address of the destination node - this is the 64-bit IEEE/MAC address of
the device. This address will have been previously obtained as the result of a Service
Discovery implemented using eJenie_RequestServices().
A data broadcast to all Router nodes can also be performed using this function - in
this case, the destination address must be set to zero and TXOPTION_BDCAST must
be selected in the transmission options (u8TxFlags).

The maximum payload data size depends on the type of transmission (and therefore
the JenNet frame type) and whether security has been enabled (using the function
eJenie_SetSecurityKey()), as follows:

This function will not successfully return until the network is up and running. Until the
network is up, the function will return the error code E_JENIE_ERR_STACK_BUSY.

A call to this function will (eventually) result in an E_JENIE_PACKET_SENT or
E_JENIE_PACKET_FAILED event to indicate the success or failure of the sent
message reaching the first hop to the destination, unless the transmission option
TXOPTION_SILENT or TXOPTION_BDCAST has been set in which case these
events are not generated.

Parameters
u64DestAddr Address of the destination node. For a broadcast or to send

data to the Co-ordinator, this parameter must be set to zero
(for a broadcast, u8TxFlags must also be set appropriately)

*pu8Payload Pointer to the data to be sent
u16Length Length of data to be sent, in bytes (for limits, see above)
u8TxFlags Sets the transmission options. These options are detailed in

Table 6 on page 164. The values can be logical ORed to
simultaneously specify more than one option

teJenieStatusCode eJenie_SendData(uint64 u64DestAddr,
uint8 *pu8Payload,
uint16 u16Length,
uint8 u8TxFlags);

Type of Transmission Security Disabled Security Enabled

Broadcast to all nodes 89 bytes 68 bytes

Unicast to Co-ordinator 90 bytes 69 bytes

Unicast to any other node 82 bytes 61 bytes
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 109

Chapter 7
Jenie API Functions

Returns
One of:

E_JENIE_ERR_INVLD_PARAM
E_JENIE_DEFERRED
E_JENIE_ERR_UNKNOWN
E_JENIE_ERR_STACK_BUSY

For explanations, refer to Chapter 10.
110 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
eJenie_SendDataToBoundService

Description
This function is used to send data from a local service to a remote service, where
these services have previously been bound using eJenie_BindService(). Only the
local service needs to be specified.

The maximum payload data size depends on whether security has been enabled
(using the function eJenie_SetSecurityKey()), as follows:

If security is disabled, the maximum data size is 74 bytes.
If security is enabled, the maximum data size is 53 bytes.

This function will not successfully return until the network is up and running. Until the
network is up, the function will return the error code E_JENIE_ERR_STACK_BUSY.

A call to this function will (eventually) result in an E_JENIE_PACKET_SENT or
E_JENIE_PACKET_FAILED event to indicate the success or failure of the sent
message reaching the first hop to the destination.

Parameters
u8Service Service ID of local service from which data is to be sent
*pu8Payload Pointer to the data to be sent
u16Length Length of data to be sent, in bytes (for limits, see above)
u8TxFlags Sets the transmission options. These options are detailed in

Table 6 on page 164. The values can be logical ORed to
simultaneously specify more than one option

Returns
One of:

E_JENIE_ERR_INVLD_PARAM
E_JENIE_DEFERRED
E_JENIE_ERR_UNKNOWN
E_JENIE_ERR_STACK_BUSY

For explanations, refer to Chapter 10.

teJenieStatusCode eJenie_SendDataToBoundService(
uint8 u8Service,
uint8 *pu8Payload,
uint16 u16Length,
uint8 u8TxFlags);
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 111

Chapter 7
Jenie API Functions

eJenie_PollParent

Description
This function is used by an End Device to check if its parent is holding pending data
for it. If data is pending, a data event will be received after a short delay via the
callback function vJenie_CbStackDataEvent(). The function eJenie_PollParent()
can, for example, be called after the End Device has come out of sleep mode.

The function will not successfully return until the network is up and running. Until the
network is up, the function will return the error code E_JENIE_ERR_STACK_BUSY.
Therefore, the function should not be called until an E_JENIE_NETWORK_UP event
has been generated (and must not be called immediately after a
E_JENIE_STACK_RESET event).

If a call to this function is successful (i.e. it returns a status of E_JENIE_DEFERRED)
then an E_JENIE_POLL_CMPLT event will be generated. If this event contains a
status value of E_JENIE_POLL_DATA_READY, this indicates that data is available
which will follow immediately in a E_JENIE_DATA event. However, this data event
may not deliver all the pending data for the node. You are therefore advised to call
eJenie_PollParent() repeatedly until there is no further pending data, indicated
when the event E_JENIE_POLL_CMPLT contains a status value of
E_JENIE_POLL_NO_DATA.

The E_JENIE_POLL_CMPLT event will also be generated (and the status
E_JENIE_DEFERRED returned) if no response is received from the parent. In this
case, the event also contains a status value of E_JENIE_POLL_NO_DATA.

Parameters
None

Returns
One of:

E_JENIE_DEFERRED
E_JENIE_ERR_UNKNOWN
E_JENIE_ERR_STACK_BUSY

For explanations, refer to Chapter 10.

teJenieStatusCode eJenie_PollParent(void);

Caution 1: Call this function regularly if auto-polling is
disabled (through the global parameter
gJenie_EndDevicePollPeriod), since a build-up of unclaimed
data for the End Device on its parent will eventually cause the
End Device to be orphaned by its parent.

Caution 2: Do not call this function repeatedly with an interval
of less than 100 ms between calls, otherwise the stack may
freeze.
112 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
7.1.3 System Functions
The system functions are largely concerned with implementing sleep mode and
controlling the radio transmitter. These tasks include:

Save and restore context data
Configure and start sleep mode
Configure, start and stop the radio transmitter
Obtain the version number of a component on the node

The functions are listed below, along with their page references:

Function Page
vJPDM_SaveContext 114
eJPDM_RestoreContext 115
vJPDM_EraseAllContext 116
eJenie_SetSleepPeriod 117
eJenie_Sleep 118
eJenie_RadioPower 120
u32Jenie_GetVersion 122
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 113

Chapter 7
Jenie API Functions

vJPDM_SaveContext

Description
This function is used to save both network and application context data to external
non-volatile memory. This allows the data to be recovered and the node to resume
normal operation following power loss to the on-chip memory (e.g. power failure or
sleep without memory held). Network and application context save/restore can be
individually enabled but if both are enabled, a single call to this function will save both
sets of context data.

To enable save/restore of network context, the global parameter
gJenie_RecoverFromJpdm must be set to TRUE within the callback function
vJenie_CbConfigureNetwork(). The saved data will then be automatically
recovered when the stack is re-started using eJenie_Start().
To enable save/restore of application context, the eJPDM_RestoreContext()
function must be called within the callback function vJenie_CbInit().
Note that for a Router, Child/Neighbour tables and Routing tables will not be saved.

Parameters
None

Returns
None

void vJPDM_SaveContext(void);

Caution: The function vJPDM_SaveContext() must only be
called in the main loop callback function, vJenie_CbMain().
It must not be called in event handling callback functions.
114 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
eJPDM_RestoreContext

Description
This function is used to retrieve application context data stored in external non-
volatile memory, where this data was previously saved using the function
vJPDM_SaveContext(). This allows application data to be recovered so that the
node can resume normal operation following power loss to the on-chip memory (e.g.
power failure or sleep without memory held).

The eJPDM_RestoreContext() function must be included in the callback function
vJenie_CbInit() for a cold start:

The first time the application is run, the function registers a buffer in on-chip memory
where the application context data will be stored - this buffer is set up using the macro
JPDM_DECLARE_BUFFER_DESCRIPTION (see below).
When the application is subsequently re-started, the function will recover saved
application context data from external non-volatile memory. The recovered data is
stored in the buffer set up using JPDM_DECLARE_BUFFER_DESCRIPTION.

The above macro is defined as follows:

JPDM_DECLARE_BUFFER_DESCRIPTION(name, ptr, size)
where:

name is a label for the buffer as an ASCII string in quotes

ptr is a pointer to the start of the buffer in on-chip memory

size is the number of bytes in the buffer

Parameters
*psDescription Pointer to descriptor of on-chip memory buffer in which

application context data will be stored.

Returns
One of:

E_JENIE_SUCCESS
E_JENIE_ERR_INVLD_PARAM

For explanations, refer to Chapter 10.

The invalid parameter code is returned, for example, if the specified memory buffer
size is too large (it must not be greater than the external memory sector size
determined by the global variable gJpdmSectorSize).

teJenieStatusCode eJPDM_RestoreContext(
tsJPDM_BufferDescription *psDescription);
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 115

Chapter 7
Jenie API Functions

vJPDM_EraseAllContext

Description
This function can be used to erase all context data (application and network) in
non-volatile memory, previously stored using the function
vJPDM_SaveContext(void).
You are likely to want to do this in order to revert back to the default context data. To
prevent the current context data from automatically being re-saved in non-volatile
memory, you should immediately follow this function call with a software reset, by
calling vJPI_SwReset(). This will ensure that the current context data is lost and the
default context data is restored to RAM.

Parameters
None

Returns
None

void vJPDM_EraseAllContext(void);
116 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
eJenie_SetSleepPeriod

Description
This function can be used on an End Device to set the duration for which the device
will sleep when put into sleep mode using the function eJenie_Sleep().
This wake method uses an on-chip wake timer, for which the 32-kHz oscillator must
be running during sleep. Therefore, a sleep mode with oscillator running must be
specified through eJenie_Sleep().

Parameters
u32SleepPeriodMs Sleep duration, in milliseconds (at least 100)

Returns
E_JENIE_SUCCESS

teJenieStatusCode eJenie_SetSleepPeriod(
uint32 u32SleepPeriodMs);

Note: The sleep duration must be set to at least 100 ms. The
stack imposes a 100-ms minimum sleep period since a
shorter period could result in a wake timer firing before the
pre-sleep housekeeping tasks have been completed.

Caution: If you set a long sleep duration, greater than 7 s
(7000 ms), avoid sending data to this End Device while it is
asleep (while it is not polling its parent for data). This will
prevent the End Device from being orphaned by its parent.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 117

Chapter 7
Jenie API Functions

eJenie_Sleep

Description
This function can be used to put an End Device into sleep mode. The function informs
the stack that the application will be ready to sleep once it has performed any tasks
that remain to be completed. It must be called from vJenie_CbMain() only (and from
no other callback function).

The following sleep options can be specified:

with or without the 32-kHz on-chip oscillator running
with or without preserving the contents of on-chip RAM (memory held)

Note that ‘doze mode’ of the JN5148/JN5139 device is not supported by JenNet.

The device can be pre-configured to sleep for a fixed duration, set using the function
eJenie_SetSleepPeriod(). This wake method uses the on-chip wake timers, for
which the 32-kHz oscillator must be running during sleep. The device can
alternatively be woken from sleep by an event deriving from the on-chip comparators
or DIOs - this method does not require the oscillator to be running during sleep.

Holding memory during sleep enables the device to retain context data which will
allow the device to quickly resume its network operation on waking. However, “sleep
with memory held” consumes more power than “sleep without memory held”. If you
have selected “sleep without memory held”, you can save context data (externally)
before sleeping using the function vJPDM_SaveContext().
On waking from sleep, the network stack calls the function vJenie_CbInit(), and the
device remains in the idle state and does not rejoin the network until this function
calls eJenie_Start(). While in the idle state, vJenie_CbMain() is regularly called by
the network stack, so that other necessary tasks can be performed. If you have
selected “sleep without memory held”, you will need to perform a cold restart and
retrieve the stored application context data by calling the function
eJPDM_RestoreContext() before calling eJenie_Start() in vJenie_CbInit().
Note that if an on-chip wake timer is used to wake the device from “sleep with
memory held”, no event is generated via the vJenie_CbHwEvent() function or the
registered system controller callback function (although a wake-up initiated by a DIO
or comparator will generate a hardware event).

In ‘deep sleep’ mode, all switchable power domains are powered off and the 32-kHz
oscillator is stopped. This mode can only be exited by power cycling (switching off
then on) or resetting the chip (a DIO event can be used to trigger a reset).

teJenieStatusCode eJenie_Sleep(
teJenNetSleepMode eSleepMode);
118 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
Parameters
eSleepMode Specifies the required sleep mode, one of:

E_JENIE_SLEEP_OSCON_RAMON
E_JENIE_SLEEP_OSCON_RAMOFF
E_JENIE_SLEEP_OSCOFF_RAMON
E_JENIE_SLEEP_OSCOFF_RAMOFF
E_JENIE_SLEEP_DEEP

Returns
E_JENIE_SUCCESS
E_JENIE_ERR_UNKNOWN
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 119

Chapter 7
Jenie API Functions

eJenie_RadioPower

Description
This function can be used to set the transmit power level of the radio transceiver, or
to switch the radio transceiver on or off.

The transmit power level can be set to values which depend on the module type. The
possible values are listed in the table below.

The default power setting is the highest power level for the module type.

Set the parameter iPowerLevel to the nearest integer to the desired power level - for
example, to achieve a power level of +6.5 dBm on a JN5148 high-power module, set
the parameter to +6 or +7. In addition to the above values, 20 and 21 are used to
switch the radio transmitter on and off, respectively (enumerations are available to
do this). An ‘invalid parameter’ error will be returned if an out-of-range power level is
specified.

To set the power level for a high-power module, you must enable high-power mode
using the parameter bHighPower.

teJenieStatusCode eJenie_RadioPower(int8 iPowerLevel,
bool_t bHighPower);

Power Level (dBm)

JN5139 Modules JN5148 Modules

Standard High-Power Standard High-Power

-30 -7 -32 -16.5

-24 -1 -20.5 -5

-18 +5 -9 +6.5

-12 +11 +2.5 +18

-6 +15 - -

+1.5 +17.5 - -

Caution: This function should be called only after
eJenie_Start() has been called, otherwise it will have no
effect. It can be called immediately after eJenie_Start() to
configure the radio power at the earliest opportunity.

Note: ‘Boost mode’ on the JN5139 device, detailed in the
JN5139 Datasheet (JN-DS-JN5139), is not supported by
JenNet and cannot be configured using this function.
120 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
Parameters
iPowerLevel Desired power level (nearest integer), or one of:

E_JENIE_RADIO_OFF - switch radio transceiver off
E_JENIE_RADIO_ON - switch radio transceiver on

bHighPower Enables high-power mode for a high-power module:
TRUE - high-power mode enabled
FALSE - high-power mode disabled

Returns
One of:

E_JENIE_SUCCESS
E_JENIE_ERR_INVLD_PARAM

For explanations, refer to Chapter 10.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 121

Chapter 7
Jenie API Functions

u32Jenie_GetVersion

Description
This function is used obtain the version number of the specified component of the
system. The function provides a means of checking that the host device is operating.

Parameters
eComponent Component for which version number is needed, one of:

E_JENIE_COMPONENT_JENIE (Jenie API)
E_JENIE_COMPONENT_NETWORK (JenNet)
E_JENIE_COMPONENT_MAC (IEEE 802.15.4)
E_JENIE_COMPONENT_CHIP (JN51xx chip)

Returns
Version number of component, as described below:

uint32 u32Jenie_GetVersion(
teJenieComponent eComponent);

Component Bits Description

E_JENIE_COMPONENT_JENIE 31-0 Jenie API version number

E_JENIE_COMPONENT_NETWORK 31-16 Network stack protocol (JenNet) revision

15-0 Network stack software revision

E_JENIE_COMPONENT_MAC

(IEEE 802.15.4)

31-24 Non-zero value identifying special or custom build

23-16 Really major revision

15-8 Minor (patch) revision

7-0 Major revision (only changes with new ROM version)

E_JENIE_COMPONENT_CHIP 31-28 Revision number: 0x0 for R0, 0x1 for R1, etc

27-22 Metal mask version ID

21-12 Part number:
0x000 for JN5121
0x002 for JN5139
0x004 for JN5148

11-0 Manufacturer's identification
122 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
7.1.4 Statistics Functions
The statistics functions are concerned with interrogating the Routing and Neighbour
tables of the local node:

A Neighbour table contains routing information for all immediate children as
well as the node’s parent (which is the first entry in the table).
A Routing table contains routing information for all descendant nodes (lower in
the tree) that are not immediate children.

The functions are listed below, along with their page references:

Function Page
u16Jenie_GetRoutingTableSize 124
eJenie_GetRoutingTableEntry 125
u8Jenie_GetNeighbourTableSize 126
eJenie_GetNeighbourTableEntry 127
eJenie_ResetNeighbourStats 128
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 123

Chapter 7
Jenie API Functions

u16Jenie_GetRoutingTableSize

Description
This function obtains the number of valid entries in the local node’s Routing table.
Since the table is likely to become fragmented, the value returned is the number of
valid entries in the table and not the size of the table.

This function is only applicable to routing nodes (Routers and Co-ordinator).

Parameters
None

Returns
Number of valid entries in the local Routing table

uint16 u16Jenie_GetRoutingTableSize(void);
124 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
eJenie_GetRoutingTableEntry

Description
This function is used to obtain the specified entry of the local node’s Routing table.

If the entry exists, the function returns E_JENIE_SUCCESS and populates the
structure of type tsJenie_RoutingEntry pointed to by psRoutingEntry - for details of
this structure, see Section 10.2.
If the entry does not exist, the function returns E_JENIE_ERR_INVLD_PARAM
(referring to the u16EntryNum parameter) but fills in the u16TotalEntries field of
the structure pointed to by psRoutingEntry.

Parameters
u16EntryNum Index of the required Routing table entry (this value is a

'logical index' and not the physical location of the entry in the
table).

*psRoutingEntry Pointer to the data structure of type tsJenie_RoutingEntry to
be automatically filled in - see Section 10.2.

Returns
One of:

E_JENIE_SUCCESS
E_JENIE_ERR_INVLD_PARAM

For explanations, refer to Chapter 10.

teJenieStatusCode eJenie_GetRoutingTableEntry(
uint16 u16EntryNum,
tsJenie_RoutingEntry *psRoutingEntry);
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 125

Chapter 7
Jenie API Functions

u8Jenie_GetNeighbourTableSize

Description
This function is used to obtain the size (number of entries) of the local node's
Neighbour table. The result includes the node's parent as well as its children.

This function is only applicable to routing nodes (Routers and Co-ordinator).

Parameters
None

Returns
Number of entries in the Neighbour table

uint8 u8Jenie_GetNeighbourTableSize(void);
126 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
eJenie_GetNeighbourTableEntry

Description
This function is used to obtain the specified entry of the local node’s Neighbour table.

If the entry exists, the function returns E_JENIE_SUCCESS and populates the
structure of type tsJenie_NeighbourEntry pointed to by psNeighbourEntry - for details
of this structure, see Section 10.2.
If the entry does not exist, the function returns E_JENIE_ERR_INVLD_PARAM
(referring to the u8EntryNum parameter) but fills in the u8TotalEntries field of the
structure pointed to by psNeighbourEntry.

This function is only applicable to routing nodes (Routers and Co-ordinator).

Note that entry zero of a Neighbour table is always for the node’s parent. Since the
Co-ordinator has no parent, entry zero should never be specified in this function for
the Co-ordinator.

Parameters
u8EntryNum Index of the required Neighbour table entry (this value is a

'logical index' and not the physical location of the entry in the
table).

*psNeighbourEntry Pointer to the data structure of type tsJenie_NeighbourEntry
to be automatically filled in - see Section 10.2.

Returns
One of:

E_JENIE_SUCCESS
E_JENIE_ERR_INVLD_PARAM

For explanations, refer to Chapter 10.

teJenieStatusCode eJenie_GetNeighbourTableEntry(
uint8 u8EntryNum,
tsJenie_NeighbourEntry *psNeighbourEntry);
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 127

Chapter 7
Jenie API Functions

eJenie_ResetNeighbourStats

Description
This function is used to reset the statistics components of the specified Neighbour
table entry on the local node. The components that are reset are:

u8LinkQuality - quality of link with relevant neighbouring node
u16PktsLost - number of unacknowledged packets sent to the node
u16PktsSent - number of acknowledged packets sent to the node
u16PktsRcvd - number of packets received from the node

If the entry is not found, the function returns E_JENIE_ERR_INVLD_PARAM.

Parameters
u16EntryNum Index of the relevant Neighbour table entry (this value is a

'logical index' and not the physical location of the entry in the
table).

Returns
One of:

E_JENIE_SUCCESS
E_JENIE_ERR_INVLD_PARAM

For explanations, refer to Chapter 10.

teJenieStatusCode eJenie_ResetNeighbourStats(
uint16 u16EntryNum);
128 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
7.2 “Stack to Application” Functions
This section details the “Stack to Application” functions of the Jenie API. These are
callback functions triggered by events from the underlying stack. They provide the
opportunity for the application software to receive information and respond at defined
points during program execution, such as at stack initialisation, or at regular intervals.

The callback functions handle:

stack management events
data events
hardware events

Stack management and data events are described in Chapter 11. Hardware events
are interrupts generated by the on-chip peripherals and are described in the Integrated
Peripherals API User Guide (JN-UG-3066).

The callback functions are listed below, along with their page references:

Function Page
vJenie_CbConfigureNetwork 130
vJenie_CbInit 131
vJenie_CbMain 132
vJenie_CbStackMgmtEvent 133
vJenie_CbStackDataEvent 134
vJenie_CbHwEvent 135

Note: You must define these callback functions in your
application code, even those functions that are not used
in your code (and are therefore empty).

Note: None of these functions except vJenie_CbInit()
is allowed to block.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 129

Chapter 7
Jenie API Functions

vJenie_CbConfigureNetwork

Description
This function is the first callback of an application and is called before the stack
initialises itself, providing the application with the opportunity to initialise/override
default stack parameters - for full details of these parameters, refer to Chapter 9. The
function is only called during a cold start.

Parameters
None

Returns
None

void vJenie_CbConfigureNetwork(void);
130 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
vJenie_CbInit

Description
This function is called after the stack has initialised itself. It provides the application
with the opportunity to perform any additional hardware or software initialisation that
may be required.

This callback function should normally include a call to the function eJenie_Start().

Parameters
bWarmStart Specifies whether the device has undergone a cold or warm

start:
TRUE - warm start
FALSE - cold start

Returns
None

void vJenie_CbInit(bool_t bWarmStart);
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 131

Chapter 7
Jenie API Functions

vJenie_CbMain

Description
This function is the main application task. It is called many times per second by the
stack and provides the opportunity for the application to perform any processing that
is required. This function should be non-blocking.

Parameters
None

Returns
None

void vJenie_CbMain(void);
132 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
vJenie_CbStackMgmtEvent

Description
This function is called by the stack to inform the application that one of a number of
stack management events has occurred. For example, the node may have received
a service request response from a remote node.

For further details of the stack management events, refer to Section 11.1.

Parameters
eEventType The type of stack management event received, one of:

E_JENIE_REG_SVC_RSP
E_JENIE_SVC_REQ_RSP
E_JENIE_POLL_CMPLT
E_JENIE_PACKET_SENT
E_JENIE_PACKET_FAILED
E_JENIE_NETWORK_UP
E_JENIE_STACK_RESET
E_JENIE_CHILD_JOINED
E_JENIE_CHILD_LEAVE
E_JENIE_CHILD_REJECTED

*pvEventPrim Pointer to event primitive (if relevant, or NULL if not)

Returns
None

void vJenie_CbStackMgmtEvent(
teJenieEventType eEventType,
void *pvEventPrim);
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 133

Chapter 7
Jenie API Functions

vJenie_CbStackDataEvent

Description
This function is called by the stack to inform the application that one of a number of
stack data events has occurred. For example, the node may have received a
message from a remote node or a response to one of its own messages.

For further details of the data events, refer to Section 11.2.

Parameters
eEventType The type of data event received, one of:

E_JENIE_DATA
E_JENIE_DATA_TO_SERVICE
E_JENIE_DATA_ACK
E_JENIE_DATA_TO_SERVICE_ACK

*pvEventPrim Pointer to event primitive (if relevant, or NULL if not)

Returns
None

void vJenie_CbStackDataEvent(
teJenieEventType eEventType,
void *pvEventPrim);
134 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
vJenie_CbHwEvent

Description
This function is called by the stack to inform the application that a hardware event
has occurred - that is, an event has been generated by an on-chip peripheral of the
JN5148 or JN5139 device.

The on-chip peripherals can be controlled using the Integrated Peripherals API,
described in the Integrated Peripherals User Guide (JN-UG-3066). The parameters
u32DeviceId and u32ItemBitmap of this function are identical to the parameters of
the callback functions in the Integrated Peripherals API.

Parameters
u32DeviceId Indicates the on-chip peripheral that generated the event
u32ItemBitmap Indicates the source within the peripheral that caused the

event
Bits 15-8 of this bitmap parameter are also used to deliver a
received data byte to the application when a UART ‘received
data’ or ‘timeout’ interrupt occurs.

Returns
None

void vJenie_CbHwEvent(uint32 u32DeviceId,
uint32 u32ItemBitmap);

Caution: A hardware event is provided by an on-chip tick
timer every 10 ms. This tick timer cannot be controlled by the
application and is not guaranteed to always run on the
JN5139 device. Therefore, your application must not use this
tick timer directly.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 135

Chapter 7
Jenie API Functions

136 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
8. JenNet API Functions
This chapter details the core functions of the JenNet API. The JenNet API functions
are intended for advanced users who require more control over the network than is
available using the Jenie API (detailed in Chapter 7).

If using the JenNet API, your project must include the JenNet header file
SDK\Jenie\Include\JenNetApi.h, as well as SDK\Common\Include\mac_sap.h for
the declarations of the structures MAC_Addr_s and MAC_ExtAddr_s.

The JenNet API functions are listed below, along with their page references:

Function Page
eApi_SendDataToExtNwk 138
vNwk_DeleteChild 139
vApi_SetScanSleep 140
vApi_SetBcastTTL 141
vApi_SetPurgeRoute 142
vApi_SetPurgeInterval 143
vNwk_SetBeaconCalming 144
vApi_SetUserBeaconBits 145
u16Api_GetUserBeaconBits 146
u8Api_GetLastPktLqi 147
u16Api_GetDepth 148
u8Api_GetStackState 149
u32Api_GetVersion 150
vApi_RegBeaconNotifyCallback 151
vApi_RegLocalAuthoriseCallback 152
vApi_RegNwkAuthoriseCallback 153
vApi_RegScanSortCallback 154
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 137

Chapter 8
JenNet API Functions

eApi_SendDataToExtNwk

Description
This function is used to request the transmission of a data frame to another node that
is not necessarily in the same network (not necessarily having the same PAN ID).

The destination address is specified using the MAC_Addr_s structure (shown in
Section 10.2.5), which allows the application to specify the destination PAN ID and
either a 64-bit extended address (IEEE/MAC address) or a 16-bit short address (as
used in IEEE 802.15.4).

If a broadcast short address and a broadcast PAN ID are used, the packet will be
sent to all nodes within radio range, irrespective of which network they are in.

The JenNet parameter bPermitExtNwkPkts is set to FALSE by default. Setting this to
TRUE for the local node enables the reception of external network packets (packets
for which the source PAN ID is not the same as the local PAN ID).

Parameters
*psDestAddr Pointer to address of the destination node

Note that the MAC_Addr_s structure contains the PAN ID and
either a 16-bit short or 64-bit extended address

*pu8Payload Pointer to the data to be sent
u8Length Length of the data to be sent, in bytes

Returns
E_JENNET_DEFERRED

The node successfully passed the packet to the IEEE 802.15.4 MAC layer
E_JENNET_ERROR

The node was not able to pass the request into the IEEE 802.15.4 MAC layer

teJenNetStatusCode eApi_SendDataToExtNwk(
MAC_Addr_s *psDestAddr,
uint8 *pu8Payload,
uint8 u8Length);
138 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
vNwk_DeleteChild

Description
This function is used on a parent node to force an immediate child to leave the
network by deleting its entry in the local Neighbour table. The node to be removed is
specified using its 64-bit IEEE/MAC address in the MAC_ExtAddr_s structure
(shown in Section 10.2.6).

There will be a delay before the child node attempts to rejoin a network, as its ‘failed
packet threshold’ must first be exceeded.

Note that vNwk_DeleteChild() is called on the parent node. In contrast, the Jenie
API function eJenie_Leave() can be called on a child node to remove itself from the
network.

Parameters
*psNodeAddr Pointer to the IEEE/MAC address of the node to remove

Returns
None

void vNwk_DeleteChild(MAC_ExtAddr_s *psNodeAddr);
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 139

Chapter 8
JenNet API Functions

vApi_SetScanSleep

Description
This function allows the application to set the scan sleep duration at run-time. It only
applies to End Devices since Routers/Co-ordinators are not able to sleep.

The scan sleep period is the amount of time for which the End Device sleeps
between channel scans when trying to join the network - that is, if the device fails to
join the network after one scan, it will sleep for this period before scanning again.
Increasing this period will help to preserve battery life in the End Device.

Obtaining no results in the scan sort callback function (registered using
vApi_RegScanSortCallback()) or a STACK_RESET event are useful points at
which to change the scan sleep period.

Parameters
u32ScanSleepDuration Time, in milliseconds, to sleep after scan timeout

Returns
None

void vApi_SetScanSleep(uint32 u32ScanSleepDuration);
140 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
vApi_SetBcastTTL

Description
This function allows the application to modify the TTL (Time To Live) of broadcast
packets that originate from the local node. The TTL value is defined as the maximum
number of hops of a broadcast message. To allow broadcast packets to propagate
all the way through the network, this value should be set to at least the expected
depth of the network. In fact, the parameter u8MaxTTL should be set as follows:

u8MaxTTL = Desired maximum number of broadcast hops - 1

Parameters
u8MaxTTL Maximum number of hops - 1

Therefore, for a single hop, set this value to 0

Returns
None

void vApi_SetBcastTTL(uint8 u8MaxTTL);
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 141

Chapter 8
JenNet API Functions

vApi_SetPurgeRoute

Description
This function is used to tailor the route maintenance behaviour by allowing route
purging to be enabled/disabled.

By default, all Routers and the Co-ordinator will periodically check all entries in their
Routing tables for possible stale routes. A stale route is one that has not carried any
traffic in a given period of time. In long thin network topologies, this policy may be
inefficient, as the same routes will be purged by each Router. It may be more efficient
and less traffic intensive to disable this feature on Routers and just leave it enabled
on the Co-ordinator.

Route maintenance is also configured using the function vApi_SetPurgeInterval().

Parameters
bPurge Enable/disable route purging:

TRUE - enable (default)
FALSE - disable

Returns
None

void vApi_SetPurgeRoute(bool_t bPurge);
142 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
vApi_SetPurgeInterval

Description
This function is used together with vApi_SetPurgeRoute() to tailor the automatic
route maintenance. The function can be used to adjust the route maintenance cycle
- it sets the period of time between each route maintenance activity.

The default period is one second, which means that a Routing table entry is
examined every second (even if the entry is not used). The length of time taken to
process the whole Routing table is determined by the table size, which is user-
defined at build time - for example, a Routing table comprising 100 entries will take
100 seconds to process (even if only one of the entries is actually used). Routes will
be interrogated if they have not been used in two cycles, e.g. 200 seconds.

Setting a smaller period will improve clean-up time after network reconfiguration due
to node failure, but will generate more traffic travelling down the tree which could
cause contention with user data flowing up the tree. Setting a larger value will extend
the time taken to clean-up.

This feature may not be required if there is regular traffic generated from all the
network nodes.

Parameters
u32Interval Route maintenance period in units of 100 ms

Returns
None

void vApi_SetPurgeInterval(uint32 u32Interval);
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 143

Chapter 8
JenNet API Functions

vNwk_SetBeaconCalming

Description
This function enables/disables ‘beacon calming’.

When a large, dense network attempts to recover from a major failure, large numbers
of beacons are generated which can slow the flow of essential network management
messages. Enabling beacon calming suppresses beacons generated by Routers
that are statistically less able to accept associations. Hence, the speed of network
recovery increases.

Parameters
bState Enable/disable beacon calming:

TRUE - enable
FALSE - disable (default)

Returns
None

void vNwk_SetBeaconCalming(bool bState);
144 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
vApi_SetUserBeaconBits

Description
This function is used to set the user-defined part of the beacon payload. This can
then be used to control network formation.

The function must be called after the network has started, otherwise the bits will be
cleared.

Parameters
u16Bits 16 bits of user data to be inserted in the beacon payload

Returns
None

void vApi_SetUserBeaconBits(uint16 u16Bits);
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 145

Chapter 8
JenNet API Functions

u16Api_GetUserBeaconBits

Description
This function is used to read the 16-bit user-defined part of a beacon payload. These
user-defined bits can be used for any application functionality, such as to control
network formation.

The contents of beacons received using vApi_RegBeaconNotifyCallback() can be
inspected for the user bits, and beacons accepted or discarded on the basis of these
bits.

Parameters
None

Returns
16 bits of user data read from the beacon payload

uint16 u16Api_GetUserBeaconBits(void);
146 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
u8Api_GetLastPktLqi

Description
This function returns the LQI value (detected radio signal strength) of the last packet
received, and must be called in the data event handler vJenie_CbStackDataEvent()
in response to a data event. This guarantees that the returned LQI value applies to
the packet which is going to be processed. Calling the function at any other time will
return the LQI value of the last packet processed, which may be one that was routed
or may be a network management packet.

This is the LQI value of the last hop to its destination node.

For further information on the LQI value, including an approximate relationship
between the LQI value and the detected power in dBm, refer to Section 4.8.

Parameters
None

Returns
The LQI value of the last packet received

uint8 u8Api_GetLastPktLqi(void);
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 147

Chapter 8
JenNet API Functions

u16Api_GetDepth

Description
This function is used to return the number of hops of the local node from the Co-
ordinator. Since a JenNet network employs a Tree topology, the result is the depth
of the local node in the network.

Parameters
None

Returns
Number of hops from Co-ordinator

uint16 u16Api_GetDepth(void);
148 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
u8Api_GetStackState

Description
This function returns the current state of the JenNet stack and provides a mechanism
for determining the current operation of the stack.

Parameters
None

Returns
The state of the JenNet stack, one of:
E_JENNET_IDLE (0x00)
E_JENNET_ENERGY_SCAN (0x01)
E_JENNET_WAITING_FOR_ENERGY_SCAN (0x02)
E_JENNET_ACTIVE_SCAN (0x03)
E_JENNET_WAITING_FOR_ACTIVE_SCAN (0x04)
E_JENNET_ASSOCIATE (0x05)
E_JENNET_ASSOCIATE_SKIP_ESTABLISH_ROUTE (0x06)
E_JENNET_WAITING_FOR_ASSOCIATE (0x07)
E_JENNET_WAITING_FOR_ASSOCIATE_SKIP_ESTABLISH_ROUTE (0x08)
E_JENNET_START_COORD (0x09)
E_JENNET_START_COORD_SKIP_ESTABLISH_ROUTE (0x0A)
E_JENNET_ESTABLISH_ROUTE (0x0B)
E_JENNET_WAITING_FOR_ESTABLISH_ROUTE (0x0C)
E_JENNET_RUNNING (0x0D)
E_JENNET_WAITING_FOR_BACKOFF (0x0E)
E_JENNET_SLEEP (0x0F)

uint8 u8Api_GetStackState(void);
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 149

Chapter 8
JenNet API Functions

u32Api_GetVersion

Description
This allows a stack version text string to be obtained.

The Jenie API function u32Jenie_GetVersion() is used to gather information on the
stack versions. An extra text string of the version is available through
u32Api_GetVersion().

Parameters
eComponent Set to NETWORK_VERSION to return version data
psVersionInfo Pointer to structure which, if allocated, will hold the

supplementary version string

Returns
None

uint32 u32Api_GetVersion(teJenNetComponent eComponent,
tsVersionInfo* psVersionInfo);
150 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
vApi_RegBeaconNotifyCallback

Description
This function registers a user-defined callback function that will be invoked when a
beacon is received. This provides an opportunity for the application to either collect
information about other nodes in the vicinity or prevent the stack from joining
particular parents (by ignoring selected beacons).

The prototype for the callback function is detailed below.

Parameters
prCallback Pointer to callback function

Returns
None

Callback Function

Description
This user-defined callback function is invoked on receipt of a beacon. It can delete the beacon
and extract data from it. If forcing the shape of the network, only beacons from target parents
should be accepted. The beacons can also be saved for possible load balancing activity later.

The execution time of this function should be kept to a minimum.

Parameters
*psBeaconInfo Pointer to the received beacon - for tsScanElement structure, see

Section 10.2.4
 u32NetworkID Network Application ID from beacon
 u16ProtocolVersion Stack version from beacon

Returns
TRUE Accept the beacon for sorting
FALSE Delete the beacon

void vApi_RegBeaconNotifyCallback(
trBeaconNotifyCallback prCallback);

typedef bool_t (*trBeaconNotifyCallback)(
tsScanElement *psBeaconInfo,
uint32 u32NetworkID,
uint16 u16ProtocolVersion);
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 151

Chapter 8
JenNet API Functions

vApi_RegLocalAuthoriseCallback

Description
This function registers a user-defined callback function that will be invoked when a
node attempts to join the Co-ordinator or a Router. The function provides an
opportunity for the application to prevent potential child nodes from accessing the
network and can be used to force nodes onto other adjacent parents or networks.

Parameters
prCallback Pointer to callback function

Returns
None

Callback Function

Description
This user-defined callback function provides the opportunity to block nodes with specific IEEE/
MAC addresses from joining as children. The passed IEEE/MAC address can be compared
with a list of permitted or forbidden addresses, and then accepted or rejected accordingly. A
rejected node will then attempt to join the network again, until it finds a parent node which
accepts its join request.

Parameters
*psAddr Pointer to IEEE/MAC address

Returns
TRUE Joining process continues
FALSE Joining is denied

void vApi_RegLocalAuthoriseCallback(
trAuthoriseCallback prCallback);

typedef bool_t (*trAuthoriseCallback)(MAC_ExtAddr_s *psAddr);
152 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
vApi_RegNwkAuthoriseCallback

Description
This function registers a user-defined callback function that will be invoked when a
node attempts to join the network. This event only occurs on the Co-ordinator and
provides an opportunity for the application to prevent the joining node from accessing
the network. This mechanism can be used to force nodes onto other adjacent
networks.

Parameters
prCallback Pointer to callback function

Returns
None

Callback Function

Description
This user-defined callback function provides the opportunity to block nodes with specific IEEE/
MAC addresses from joining the network. The Co-ordinator receives the passed IEEE/MAC
address which can be compared with a list of permitted or forbidden addresses, and then
accepted or rejected accordingly. The rejected node will then attempt to join a network again,
until it finds a network which accepts its join request.

Parameters
*psAddr Pointer to the IEEE/MAC address

Returns
TRUE Joining process continues
FALSE Joining is denied

void vApi_RegNwkAuthoriseCallback(
trAuthoriseCallback prCallback);

typedef bool_t (*trAuthoriseCallback)(MAC_ExtAddr_s *psAddr);
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 153

Chapter 8
JenNet API Functions

vApi_RegScanSortCallback

Description
This function registers a user-defined callback function that will be invoked when a
network scan completes. Access to the scan list is provided so that the application
can change the order in which the stack attempts to associate with potential parents.

Parameters
prCallback Pointer to callback function

Returns
None

Callback Function

Description
This user-defined callback function provides the opportunity to over-ride the default operation
of the stack and customise the beacon sort algorithm to obain a preferred order of association
attempts. The function is called on completion of an active scan. The stack attempts to
associate with the first entry in the list then steps through the list until an association is
successful. If none are successful, the active scan is re-started.

To delete beacons, use the vApi_RegBeaconNotifyCallback() function and return FALSE to
ignore specific beacons.

The execution time of this function should be kept to a minimum.

Parameters
*pasScanResult Pointer to (input) array of scan results containing suitable parents -

for tsScanElement structure, see Section 10.2.4
u8ScanListSize Number of suitable parents in the scan results array
*pau8ScanListOrder Pointer to (output) array of uint8 indicating the sorted order of

potential parents from most desirable to least desirable parent
(e.g. 3, 4, 1, 6, 0, 2, 5, 7) - the integers correspond to the positions of
the parents in the initial scan results (*pasScanResult)

Returns
TRUE Control returned to application and scanning process stopped
FALSE Control returned to stack and scan process resumed

The function should normally return FALSE unless the scan process is to be aborted.

void vApi_RegScanSortCallback(
trSortScanCallback prCallback);

typedef bool_t (*trSortScanCallback)(
tsScanElement *pasScanResult,
uint8 u8ScanListSize,
uint8 *pau8ScanListOrder);
154 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
9. Global Network Parameters
This chapter details the global network parameters that can be set on each JenNet
node. Two sets of parameters are presented:

Global parameters which are part of the Jenie API (Section 9.1)
Global parameters which are part of the JenNet stack (Section 9.2)

The values of these parameters can be set in the vJenie_CbConfigureNetwork()
callback function at the start of the application. If a parameter is not set by the
application, its default value is used.

Some of the JenNet parameters are duplicated in the Jenie parameters. The Jenie
values are loaded into the JenNet parameters by vJenie_CbConfigureNetwork(),
which occurs once at the program start.

Note: Normally, it is only necessary to use the Jenie
parameters in your application code. The JenNet
parameters are intended for advanced users who
require more control over the network than is available
through the Jenie parameters.

Important: Setting a duplicate Jenie parameter through
vJenie_CbConfigureNetwork() automatically sets the
equivalent JenNet parameter, but directly setting the
JenNet parameter does not automatically set the
equivalent Jenie parameter. Therefore, where a
parameter is duplicated, you are strongly advised to set
the Jenie version rather than the JenNet version.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 155

Chapter 9
Global Network Parameters

9.1 Jenie Parameters
The Jenie global network parameters are listed and described in the table below.

Parameter Name Description Default
Value Range

gJenie_PanID 16-bit PAN ID to identify network (if
no existing network with same PAN
ID).
Co-ordinator only

0xAAAA 0-0xFFFE

gJenie_NetworkApplicationID 32-bit Network Application ID used to
identify and form network.

0xAAAA
AAAA

0-0xFFFFFFFF

gJenie_Channel The 2.4-GHz channel to be used by
the network, or auto-scan (see
gJenie_ScanChannels below).
Co-ordinator only

0 0: Auto-scan
11-26: Channel

gJenie_ScanChannels Bitmap (32 bits) of the set of channels
to consider when performing an auto-
scan of the 2.4-GHz band for a suita-
ble channel to use. The Co-ordinator
will select the quietest channel from
those available (auto-scan must have
been enabled via gJenie_Channel).
Other node types will scan the possi-
ble channels to search for network.

0x07FFF800
(all channels)

0x00000800 -
0x07FFF800

(Bit 11 set ⇒ Ch 11,
Bit 12 set ⇒ Ch 12,...)

gJenie_MaxChildren Maximum number of children the
node can have.
Co-ordinator and Routers only

10 0-16

gJenie_MaxSleepingChildren Maximum number of children that can
be End Devices (nodes capable of
sleeping). This value must be less
than or equal to gJenie_MaxChildren.
The remaining child nodes are
reserved exclusively for Routers,
although any number of children can
be Routers.
Co-ordinator and Routers only

8 0-
gJenie_MaxChildren

gJenie_MaxBcastTTL Determines the maximum number of
hops that a broadcast message sent
from the local node can make. Set
this value to one less than the desired
maximum (so the value 0 corre-
sponds to one hop).

5 0-255

gJenie_MaxFailedPkts Number of missed communications
(MAC acknowledgments) before
parent considered to be lost (and
node must try to find a new parent).

5 0-255
Zero value disables
the feature

Table 1: Global Network Parameters (Jenie)
156 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
gJenie_RoutingEnabled Enables/disables routing capability of
the node (must be disabled for End
Devices).

0 0: Disable routing
1: Enable routing
For End Devices,
always set to 0

gJenie_RoutingTableSize Number of elements in array used to
store the Routing table. Should be set
to a value slightly larger than the
maximum number of network nodes,
to allow for nodes leaving and joining.
Co-ordinator and Routers only

- 0-1000
Note that the upper
limit may be restricted
by the amount of
available RAM. Each
Routing table entry
uses 12 bytes.

gJenie_RoutingTableSpace Pointer to the Routing table array in
memory. The Routing table is an
array of structures of type
tsJenieRoutingTable, where this
array is declared in the application.
Co-ordinator and Routers only

NULL -

gJenie_RouterPingPeriod Time between auto-pings generated
by a Router (to its parent). Set in units
of 100 ms. The same value should be
set in all routing nodes in the network.
Co-ordinator and Routers only

50
(5 seconds)

0-6553
Zero value disables
pings. Non-zero val-
ues below 50 are not
recommended

gJenie_EndDevicePingInterval Number of sleep cycles between
auto-pings generated by an End
Device (to its parent).
End Devices only

1 0-255
Zero value disables
pings

gJenie_EndDeviceScanSleep Amount of time following a failed scan
that an End Device waits (sleeps)
before starting another scan.
Set in milliseconds.
End Devices only

10000 or
0x2710
(10 seconds)

0xC8-0xFFFFFFEB
Values below 0x3E8
(1 second) are not
recommended for
large networks

gJenie_EndDevicePollPeriod Time between auto-poll data requests
sent from an End Device (while
awake) to its parent. Set in units of
100 ms.
End Devices only

50 or 0x32
(5 seconds)

0-0xFFFFFFFF
Zero value disables
auto-polling

gJenie_EndDeviceChildActivity
Timeout

Timeout period for communication
(excluding data polling) from an End
Device child. If no message is
received from the End Device within
this period, the child is assumed lost
and is removed from the Neighbour
table (and Routing tables higher in
the network).
Co-ordinator and Routers only

0
(Timeout
disabled)

0-0xFFFFFFFF
Timeout is value set
multiplied by 100 ms

0 disables the timeout
but this is not
advised, as child slots
may fill with inactive
End Devices, pre-
venting other devices
from joining.

Table 1: Global Network Parameters (Jenie)
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 157

Chapter 9
Global Network Parameters

* For the 25P40 Flash memory device (used with the JN5148 device), the default sector is 7 and
the default sector size is 65536 (64K) bytes.

gJenie_RecoverFromJpdm Indicates whether network context
data is to be recovered from external
non-volatile memory during a cold
start following power loss to the on-
chip memory. Data must have been
previously saved to external memory
using vJPDM_SaveContext().

0 0: Disable recovery
1: Enable recovery

gJenie_RecoverChildren
FromJpdm

Enables the recovery of child/neigh-
bour table when restoring context
data from non-volatile memory. Con-
text recovery must also be enabled
using gJenie_RecoverFromJpdm.
Co-ordinator and Routers only

1 0: Disable recovery
1: Enable recovery

gJpdmSector Number of sector where context will
be saved in external non-volatile
memory.

3* Positive integer

gJpdmSectorSize Size of sector where context data will
be saved in external non-volatile
memory.

32768 (32K)* Size in bytes

gJpdmFlashType Type of Flash memory device used
as external non-volatile memory.

Auto-detect E_FL_CHIP_ST_M25P10_
A
E_FL_CHIP_SST_25VF010
E_FL_CHIP_ATMEL_AT25
F512
E_FL_CHIP_CUSTOM
E_FL_CHIP_AUTO

gJpdmFlashFuncTable Pointer to function table for custom
Flash memory device.

NULL -

Table 1: Global Network Parameters (Jenie)
158 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
9.2 JenNet Parameters
The JenNet parameters are detailed in the tables below, according to the node type(s)
to which they apply.

Co-ordinator Parameters

General Parameters

Note: The JenNet parameters are intended for
advanced users who require more control over the
network than is available through the Jenie parameters.
Normally, it is only necessary to use the Jenie
parameters, detailed in Section 9.1.

Parameter Name Description Default Value Range

gChannel The 2.4-GHz channel to be used by
the network, or an auto-scan (stack
will automatically select a channel).

0 0: Auto-scan
11-26: Channel

gPanID PAN ID used to form the network, if
no pre-existing network found with
the same PAN ID.

0xAAAA 0-0xFFFE

Table 2: Co-ordinator Parameters (JenNet)

Parameter Name Description Default Value Range

gInternalTimer The timer to be used as an internal
timer: Timer 0, Timer 1 or the Tick
Timer. The valid values are shown
to the right and defined in the
header file AppHardwareApi.h.

E_AHI_DEVICE
_TICK_TIMER

E_AHI_DEVICE_TICK_TIMER
E_AHI_DEVICE_TIMER0
E_AHI_DEVICE_TIMER1

gMaxBcastTTL Determines the maximum number of
hops that a broadcast message sent
from the local node can make. Set
this value to one less than the
desired maximum (so the value 0
corresponds to one hop).

5 0-255

gMaxFailedPkts Number of missed communications
(MAC acknowledgments) before
parent considered to be lost (and
node must try to find a new parent).

5 1-255

gMinBeaconLQI Minimum valid radio signal strength
(as an LQI value) of a beacon - the
stack rejects beacons with signal
strength less than this value.

0 0-255

For information on LQI values,
refer to Section 4.8

Table 3: General Parameters (JenNet)
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 159

Chapter 9
Global Network Parameters

Co-ordinator/Router Parameters

gNetworkID 32-bit Network Application ID used
to identify an individual application/
network.

0xAAAAAAAA 0-0xFFFFFFFF

gScanChannels Bitmap (32 bits) of the set of chan-
nels to consider when performing an
auto-scan of the 2.4-GHz band for a
suitable channel to use. The Co-
ordinator will select the quietest
channel from those available (auto-
scan must have been enabled via
gChannel.). Other node types will
scan the possible channels to
search for network.

0x07FFF800
(All Channels)

0x00000800 -0x07FFF800

(Bit 11 set ⇒ Ch 11,
Bit 12 set ⇒ Ch 12,...)

Parameter Name Description Default Value Range

gEDChildActivityTimeout * Timeout period for communication
(excluding data polling) from an End
Device child. If no message is
received from the End Device within
this period, the child is assumed lost
and is removed from the Neighbour
table (and Routing tables higher in
the network), provided End Device
purging has been enabled through
gRouterPurgeInactiveED.

0 0-0xFFFFFFFF
Timeout is value set multi-
plied by 100 ms

gMaxChildren Maximum number of children that the
node can have.

10 0-16

gMaxSleepingChildren Maximum number of children that
can be End Devices (nodes capable
of sleeping). This value must be less
than or equal to gMaxChildren. The
remaining child nodes are reserved
exclusively for Routers, although any
number of children can be Routers.

8 1-gMaxChildren

bPermitExtNwkPkts Enables/disables reception of pack-
ets from external networks.
Do not configure in
vJenie_CbConfigureNetwork().

FALSE
(disabled)

TRUE - enable
FALSE - disable

gRouteImport Enables/disables the ability of routing
nodes to import routes from child
nodes that have children.

TRUE
(enabled)

TRUE - enable
FALSE - disable

gRouterEnableAutoPurge Enables/disables the auto-purge
facility which removes inactive nodes
from the network.

TRUE
(enabled)

TRUE - enable
FALSE - disable

Table 4: Co-ordinator/Router Parameters (JenNet)

Parameter Name Description Default Value Range

Table 3: General Parameters (JenNet)
160 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
* The JenNet parameters gRouterPurgeInactiveED and gEDChildActivityTimeout are combined
into a single Jenie parameter, gJenie_EndDeviceChildActivityTimeout, detailed in Section 9.1.

** The JenNet parameter gRouterPingPeriod and the Jenie parameter gJenie_RouterPingPeriod
control the same feature but have different units (10 ms and 100 ms, respectively).

End Device Parameters

gRoutingTableSize Number of elements in array used to
store the Routing table. Should be
set to a value slightly larger than the
maximum number of network nodes,
to allow for nodes leaving and join-
ing. Set 0 for End Devices.

0 0-1000
Note that the upper limit
may be restricted by the
amount of available RAM.
Each Routing table entry
uses 12 bytes.

gRouterPingPeriod ** Time between auto-pings generated
by a Router (to its parent). Set in
units of 10 ms. The same value
should be set in all routing nodes in
the network.

500
(5 seconds)

500-65535

gRouterPurgeInactiveED * Enable/disable the timeout on End
Device activity - see the parameter
gEDChildActivityTimeout.

FALSE
(disabled)

TRUE - enable
FALSE - disable

gpvRoutingTableSpace Pointer to space allocated for the
Routing table. This space must be
equal to [sizeof(tsJenieRoutingTable)
x gRoutingTableSize], or NULL in the
case of an End Device.

NULL Pointer

Parameter Name Description Default Value Range

gEndDevicePingInterval Number of sleep cycles between
auto-pings generated by an End
Device (to its parent).

1 0-255
Zero value disables pings

gEndDevicePollPeriod Time between auto-poll data
requests sent from an End Device
(while awake) to its parent. Set in
units of 100 ms.

50 or 0x32
(5 seconds)

0-0x FFFFFFFF
Zero value disables auto-
polling.

gEndDeviceScanSleep Amount of time following a failed
scan that an End Device waits
(sleeps) before starting another
scan. Set in milliseconds.

10000 or
0x2710
(10 seconds)

0xC8-0xFFFFFFEB
Values below 0x3E8 (1
second) are not recom-
mended for large networks

Table 5: End Device Parameters (JenNet)

Parameter Name Description Default Value Range

Table 4: Co-ordinator/Router Parameters (JenNet)
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 161

Chapter 9
Global Network Parameters

162 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
10. Enumerations and Data Types
This chapter lists the enumerations and data types used by the Jenie API.

10.1 Enumerations and Defines
The following enumerated types and defines are used by the Jenie API functions and
are included in the header file Jenie.h.

10.1.1 teJenieStatusCode (Return Status)
These status responses are returned by most Jenie API function calls.

typedef enum

{

E_JENIE_SUCCESS, /*0 Function successfully completed*/

E_JENIE_DEFERRED, /*1 Stack response deferred*/

E_JENIE_ERR_UNKNOWN, /*2 Unknown error*/

E_JENIE_ERR_INVLD_PARAM, /*3 Error - invalid parameter*/

E_JENIE_ERR_STACK_RSRC, /*4 Error - insufficient resources*/

E_JENIE_ERR_STACK_BUSY /*5 Error - stack too busy*/

} teJenieStatusCode;

10.1.2 teJenieDeviceType (Node Type)
typedef enum

{

 E_JENIE_COORDINATOR,

 E_JENIE_ROUTER,

 E_JENIE_END_DEVICE

} teJenieDeviceType;

10.1.3 teJenieComponent (Component)
typedef enum

{

E_JENIE_COMPONENT_JENIE, /*Jenie*/

E_JENIE_COMPONENT_NETWORK, /*Network level - JenNet*/

E_JENIE_COMPONENT_MAC, /*IEEE 802.15.4*/

E_JENIE_COMPONENT_CHIP /*JN513x chip*/

} teJenieComponent;
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 163

Chapter 10
Enumerations and Data Types

10.1.4 teJenieRadioPower (Radio Transceiver)
typedef enum

{

 E_JENIE_RADIO_ON = 20,

 E_JENIE_RADIO_OFF = 21

} teJenieRadioPower;

10.1.5 teJeniePollStatus (Poll Status)
typedef enum

{

 E_JENIE_POLL_NO_DATA, /* No data available */

 E_JENIE_POLL_DATA_READY, /* Data pending */

 E_JENIE_POLL_TIMEOUT /* Poll failed since no response */

}teJeniePollStatus;

Note that E_JENIE_POLL_TIMEOUT is returned if the poll-cycle fails to complete
within 200 ms (due to no acknowledgement from the poll target within this time).

10.1.6 TXOPTION #defines

Code Value Description

TXOPTION_ACKREQ 0x01 Requests an acknowledgement from the
destination node

TXOPTION_BDCAST 0x04 Sends a broadcast message to all Routers
in the network

TXOPTION_SILENT 0x08 Sends without packet sent/failed notification

Table 6: TXOPTION #defines
164 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
10.2 Data Types
The following data types are used by the Jenie API and are included in the header file
Jenie.h, unless stated otherwise.

10.2.1 tsJenieSecKey (Security Key)
typedef struct

{

 uint32 u32register0;

 uint32 u32register1;

 uint32 u32register2;

 uint32 u32register3;

} tsJenieSecKey;

10.2.2 tsJenie_RoutingEntry (Routing Table Entry)
typedef struct

{

 uint16 u16EntryNum; // Entry number

 uint16 u16TotalEntries; // Total number of entries in table

 uint64 u64DestAddr; // Destination address

 uint64 u64NextHopAddr; // Next hop address

}tsJenie_RoutingEntry;

10.2.3 tsJenie_NeighbourEntry (Neighbour Table Entry)
typedef struct

{

 uint8 u8EntryNum; // Entry number

 uint8 u8TotalEntries; // Total number of entries in table

 uint64 u64Addr; // Address of neighbouring node

 bool_t bSleepingED; // If device is a sleeping node

 uint32 u32Services; // Services provided by the node

 uint8 u8LinkQuality; // Last received link quality info

 uint16 u16PktsLost; // Sent packets not acknowledged

 uint16 u16PktsSent; // Sent packets acknowledged

 uint16 u16PktsRcvd; // Packets received from node

}tsJenie_NeighbourEntry;
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 165

Chapter 10
Enumerations and Data Types

10.2.4 tsScanElement (Scan Results)
This structure is used by the JenNet API, described in Chapter 8. It contains
information about a remote node - for example, properties reported as the result of an
energy scan.

typedef struct

{

 MAC_ExtAddr_s sExtAddr; // MAC address of remote node

 uint16 u16PanId; // PAN ID of host network

 uint16 u16Depth; // Depth of node in network

 uint8 u8Channel; // Channel number (11-26)

 uint8 u8LinkQuality; // Link quality to node

 uint8 u8NumChildren; // Number of child nodes

 uint16 u16UserDefined; // User-defined value

}tsScanElement;

For more information on u8LinkQuality, refer to the Note on page 165.

10.2.5 MAC_Addr_s
This structure is contained in the header file mac_sap.h and is needed when using
the JenNet API.

typedef struct

{

uint8 u8AddrMode; /* Address mode: 2 for short, 3 for extended */

uint16 u16PanId; /* PAN ID */

MAC_Addr_u uAddr; /* Address */

} MAC_Addr_s;

Note: u8LinkQuality is a Link Quality Indication
(LQI) value in the range 0-255. For more information on
the LQI value, including an approximate relationship
between the LQI value and detected power in dBm, see
Section 4.8.
166 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
10.2.6 MAC_ExtAddr_s
This structure is contained in the header file mac_sap.h and is needed when using
the JenNet API.

typedef struct

{

uint32 u32L; /* Low word */

uint32 u32H; /* High word */

} MAC_ExtAddr_s;
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 167

Chapter 10
Enumerations and Data Types

168 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
11. Stack Events
The chapter details the stack events (management and data) that can be handled by
the Jenie API callback functions described in Section 7.2.

11.1 Management Events and Structures
The table below lists and describes the stack management events that can be handled
by the callback function vJenie_CbStackMgmtEvent().

Stack Event Description Structure Type

E_JENIE_REG_SVC_RSP To register the services of an End Device requires
communication with the parent. In this case, the return
value of the call to eJenie_RegisterServices()
indicates a deferred response. This event is generated
when the registration is complete.

NULL

E_JENIE_SVC_REQ_RSP Indicates a response to a service request has been
received from a remote node.

tsSvcReqRsp

E_JENIE_POLL_CMPLT Indicates that the End Device has finished polling the
parent node for data.
End Devices only

tsPollCmplt

E_JENIE_PACKET_SENT Indicates that a packet has been successfully sent (to
the next node).

NULL

E_JENIE_PACKET_FAILED Indicates that a packet send (to the next node) has
failed.

NULL

E_JENIE_NETWORK_UP Indicates that the network is up and running. tsNwkStartUp

E_JENIE_STACK_RESET Indicates that the stack is going to reset, normally
because the node has left the network or lost its parent.

NULL

E_JENIE_CHILD_JOINED Indicates that a child has joined a Router/Co-ordinator. tsChildJoined

E_JENIE_CHILD_LEAVE Indicates that a child has left a Router/Co-ordinator. tsChildLeave

E_JENIE_CHILD_REJECTED Indicates that a request by a node to join a network has
been rejected by the Co-ordinator (normally due to lack
of space in the Co-ordinator’s routing table).

tsChildRejected

Table 7: Stack Management Events
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 169

Chapter 11
Stack Events

vJenie_CbStackMgmtEvent() has two parameters, the first being the stack event as
described above. The second parameter is a pointer to a data structure that contains
additional information fields. If the additional data is not necessary, the second
parameter is simply a NULL pointer. If a pointer to the primitive is sent, it must be cast
to the appropriate type described below.

11.1.1 tsSvcReqRsp
typedef struct

{

 uint64 u64SrcAddress; /* Address of responding node */

 uint32 u32Services; /* Services available on node */

} tsSvcReqRsp;

u32Services is a 32-bit value in which each bit position represents a network service
- the bit representations are as in the network’s Service Profile, defined in the header
file Jenie.h. In u32services, ‘1’ indicates that the responding node supports the
corresponding service and ‘0’ indicates that the service is not supported by the node.

11.1.2 tsPollCmplt
typedef struct

{

 teJeniePollStatus ePollStatus;

}tsPollCmplt;

For details of the enumerated type teJeniePollStatus, refer to Section 10.1.5.

11.1.3 tsChildJoined
typedef struct

{

 uint64 u64SrcAddress; /* Address of node that has joined */

} tsChildJoined;

Note: In the descriptions below, each of
u64SrcAddress and u64ParentAddress is a 64-bit
IEEE/MAC address.
170 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
11.1.4 tsChildLeave
typedef struct

{

 uint64 u64SrcAddress; /* Address of node that has left */

} tsChildLeave;

11.1.5 tsChildRejected
typedef struct

{

 uint64 u64SrcAddress; /* Address of rejected node */

} tsChildRejected;

11.1.6 tsNwkStartUp
typedef struct{

 uint64 u64ParentAddress; /*Address of parent node*/

 uint64 u64LocalAddress; /*Address of local node*/

 uint16 u16Depth; /*Depth of node in the network*/

 uint16 u16PanID; /*PAN ID of the network*/

 uint8 u8Channel; /*Operating channel */

}tsNwkStartUp
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 171

Chapter 11
Stack Events

11.2 Data Events and Structures
The table below lists and describes the data events that can be handled by the
callback function vJenie_CbStackDataEvent().

vJenie_CbStackDataEvent() has two parameters, the first being the stack event as
described above. The second parameter is a pointer to a data structure that contains
additional information fields. The pointer must be cast to an appropriate type
described below.

11.2.1 tsData
typedef struct

{

 uint64 u64SrcAddress; /* Address of message source */

 uint8 u8MsgFlags; /* Flags reserved for future use */

 uint16 u16Length; /* Length of data payload, in bytes */

 uint8 *pau8Data; /* Pointer to data payload */

}tsData;

Stack Event Description Structure Type

E_JENIE_DATA Indicates that data has been received from
another node. Event contains the data.

tsData

E_JENIE_DATA_TO_SERVICE Indicates that data has been received from
another node, destined for a particular service
on the local node. Event contains the data.

tsDataToService

E_JENIE_DATA_ACK Indicates that a response has been received
from a remote node, acknowledging receipt of
data previously sent from the local node.

tsDataAck

E_JENIE_DATA_TO_SERVICE_ACK Indicates that a response has been received
from a remote node, acknowledging receipt of
data previously sent from the local node to a
particular service on the remote node.

tsDataToServiceAck

Table 8: Data Events

Note: In the descriptions below, u64SrcAddress is a
64-bit IEEE/MAC address.
172 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
11.2.2 tsDataToService
typedef struct

{

 uint64 u64SrcAddress; /* Address of message source */

 uint8 u8SrcService; /* Service on sending node */

 uint8 u8DestService; /* Service on receiving node */

 uint8 u8MsgFlags; /* Flags reserved for future use */

 uint16 u16Length; /* Length of data payload, in bytes */

 uint8 *pau8Data; /* Pointer to data payload */

}tsDataToService;

11.2.3 tsDataAck
typedef struct

{

 uint64 u64SrcAddress; /* Address of acknowledgement source */

}tsDataAck;

11.2.4 tsDataToServiceAck
typedef struct

{

 uint64 u64SrcAddress; /* Address of sending node */

}tsDataToServiceAck;
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 173

Chapter 11
Stack Events

174 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
Part III:
Appendices
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 175

176 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
A. Hardware and Memory Use
This appendix details the JN5148/JN5139 hardware required by JenNet, and the
memory resources required by JenNet, with and without the Jenie API.

A.1 Hardware Resources
The JN5148/JN5139 hardware required by the JenNet stack is as follows:

For End Devices only: Wake Timer 0 for sleep mode.
For all devices: Tick timer for scheduling - this timer fires every 10 ms and a
tick is passed up to the application as a hardware event via the callback
function vJenie_CbHwEvent().

A.2 Memory Resources (JenNet Only)
This section details the memory resources required by the JenNet stack (without the
Jenie API) on the JN5148 and JN5139 devices.

JN5148 Memory Resources
From the 128 KB of RAM on the JN5148 device, the exact memory resources required
by the JenNet stack depend on the size of the Routing table, as indicated in Table 1
below.

Note: The above figures do not include 6 KB for the 802.15.4 stack layers, 4 KB for the
machine stack and 2 KB for the heap

Note: The Routing table size is configurable at
application compile-time.

Routing Table Size Memory Required

Co-ordinator Router End Device

25 27 KB 27 KB 17 KB

100 28 KB 28 KB 17 KB

250 30 KB 30 KB 17 KB

500 33 KB 33 KB 17 KB

1000 39 KB 39 KB 17 KB

Table 1: JN5148 Memory Required by JenNet Stack
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 177

Appendices
JN5139 Memory Resources
From the 96 KB of RAM on the JN5139 device, the exact memory resources required
by the JenNet stack depend on the size of the Routing table, as indicated in Table 2
below.

Note: The above figures do not include 6 KB for the 802.15.4 stack layers, 4 KB for the
machine stack and 2 KB for the heap.

A.3 Memory Resources (JenNet and Jenie API)
This section details the memory resources required by the JenNet stack with the Jenie
API on the JN5148 and JN5139 devices.

 JN5148 Memory Resources
From the 128 KB of RAM on the JN5148 device, the exact memory resources required
by the JenNet stack (with Jenie API) depend on the size of the Routing table, as
indicated in Table 3 below.

Note: The above figures do not include 6 KB for the 802.15.4 stack layers, 4 KB for the
machine stack and 2 KB for the heap.

Routing Table Size Memory Required

Co-ordinator Router End Device

25 41 KB 41 KB 29 KB

100 42 KB 42 KB 29 KB

250 44 KB 44 KB 29 KB

500 47 KB 47 KB 29 KB

1000 53 KB 53 KB 29 KB

Table 2: JN5139 Memory Required by JenNet Stack

Note: The Routing table size is configurable at
application compile-time.

Routing Table Size Memory Required

Co-ordinator Router End Device

25 31 KB 31 KB 20 KB

100 32 KB 32 KB 20 KB

250 33 KB 33 KB 20 KB

500 36 KB 36 KB 20 KB

1000 42 KB 42 KB 20 KB

Table 3: JN5148 Memory Required by JenNet Stack with Jenie API
178 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
JN5139 Memory Resources
From the 96 KB of RAM on the JN5139 device, the exact memory resources required
by the JenNet stack (with Jenie API) depend on the size of the Routing table, as
indicated in Table 2 below.

Note: The above figures do not include 6 KB for the 802.15.4 stack layers, 4 KB for the machine
stack and 2 KB for the heap.

Routing Table Size Memory Required

Co-ordinator Router End Device

25 51 KB 51 KB 37 KB

100 52 KB 52 KB 37 KB

250 54 KB 54 KB 37 KB

500 57 KB 57 KB 37 KB

1000 63 KB 63 KB 37 KB

Table 4: JN5139 Memory Required by JenNet Stack with Jenie API
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 179

Appendices
B. Frames
This appendix details the different types of JenNet frame that can be exchanged
between nodes.

A JenNet frame is carried as the payload of an IEEE 802.15.4 MAC frame. A MAC
frame can contain a maximum of 127 bytes and comprises a header, payload and
footer, as shown below.

All JenNet frames follow the same basic structure, shown below.

There are several types of JenNet frame. The header is the same for all frame types
and is described in Appendix B.1. The body of the JenNet frame depends on the frame
type, as described in Appendix B.2.

B.1 Frame Header
All JenNet frames have a header, consisting of 12 bytes and structured as shown
below.

As shown above, the header contain fields for frame flags, sequence number, frame
type, source address and CRC (Cyclic Redundancy Check) value. The Source
Address field contains the 64-bit IEEE/MAC address of the originating node. The
Frame Flags and Frame Type fields are detailed below.

Figure 1: MAC Frame Structure

Figure 2: JenNet Frame Structure

Figure 3: Frame Header

MAC Header
(X bytes)

MAC Payload containing JenNet frame
(Y bytes)

MAC Footer
(2 bytes)

Up to 127 bytes

Header
(12 bytes)

Body of Frame
(N bytes)

Frame Flags
(1 byte)

Frame Type
(1 byte)

Source Address
(8 bytes)

Seq. Num.
(1 byte)

CRC Value
(1 byte)
180 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
Frame Flags Field
The Frame Flags field of the header consists of a single byte and is structured as
shown below.

The sub-fields are as follows:

End Device flag: Set to '1' to specify that the node which initiated a transaction
is a sleeping End Device. This bit only has meaning in outgoing request frames
- it has no meaning in response frames.
Response flag: Set to '1' to indicate that the frame is a response.
Response-Required flag: Set to '1' to indicate that the sender requires a
response to be sent back from the destination node.
Success flag: Set to '1' in a response to indicate that the request was a
success. In many transactions, this has no real meaning - success is implicit in
the fact that a response has been sent

Frame Type Field
The Frame Type field of the header consists of a single byte. The Frame Type values
are listed in the table below.

Figure 4: Frame Flags Field

Value Frame Type

0 DATA_TO_COORD

1 DATA_TO_PEER

2 ESTABLISH_ROUTE

3 DELETE_ROUTE

4 REPAIR_ROUTE

5 ACTIVATE_SERVICES

6 SERVICE_REQUEST

7 PING

8 UNKNOWN_NODE

9 DATA_TO_NETWORK

10 Not used

11 DATA_TO_SERVICE

12 PURGE_ROUTE

Table 5: Frame Type Values

End Device
Bit 3

Response
Bit 2

Success
Bit 0

Response
Required

Bit 1

Reserved
Bit 4

Reserved
Bit 7

Reserved
Bit 6

Reserved
Bit 5
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 181

Appendices
B.2 Frame Body
The frame body depends on the frame type. There are sixteen frame types, listed
below:

Data-to-Coordinator
Data-to-Peer
Data-to-Network
Data-to-Service
Establish-Route
Delete-Route
Repair-Route
Purge-Route
Find-Node
Route-Request
Route-Import
Activate-Services
Service-Request/Response
Ping
Unknown-Node
Set-Depth

These are described in the sub-sections below.

B.2.1 Data-to-Coordinator Frame

A Data-to-Coordinator frame is used to send data from an End Device or Router to the
Co-ordinator.

No destination address is required, since the Co-ordinator will always be the device at
the top of the tree (or at the centre of the star). Only the address of the source device
is included in the frame (in the header).

13 FIND_NODE

14 ROUTE_REQUEST

15 ROUTE_IMPORT

16 SET_DEPTH

Value Frame Type

Table 5: Frame Type Values
182 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
The Data-to-Coordinator frame structure is shown below.

If the Response-Required flag is set in the Frame Type field (in the header), the Co-
ordinator sends a response back to the source node. The response frame is identical
to the request frame except that the Response-Required flag is cleared and the
Response flag is set.

B.2.2 Data-to-Peer Frame

A Data-to-Peer frame is used to send data to a remote device, for which the IEEE/
MAC address is known. Both the source address and destination address are included
in the frame (the source address is in the header).

The Data-to-Peer frame structure is shown below.

If the Response-Required flag is set in the Frame Type field (in the header), the
remote node sends a response back to the local node. The response frame is identical
to the request frame except that the Response-Required flag is cleared and the
Response flag is set.

B.2.3 Data-to-Network Frame

A Data-to-Network frame is used to send data to all nodes in the network.

The Response-Required flag (in the header) is ignored when this frame is received.

This frame is broadcast and the value of the TTL (Time-to-Live) field determines the
number of times the frame can be forwarded during the broadcast.

Figure 5: Data-to-Coordinator Frame Structure

Figure 6: Data-to-Peer Frame Structure

Figure 7: Data-to-Network Frame Structure

Header
(12 bytes)

Data
(Max: 91 bytes)

Destination Address
(8 bytes)

Header
(12 bytes)

Data
(Max: 83 bytes)

Header
(12 bytes)

Data
(Max: 90 bytes)

TTL
(1 byte)
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 183

Appendices
B.2.4 Data-to-Service Frame

A Data-to-Service frame is used to send data to a specific service on a remote node,
for which the IEEE/MAC address is known. Both the source address and destination
address are included in the frame (the source address is in the header).

The Data-to-Service frame structure is shown below.

If the Response-Required flag is set in the Frame Type field (in the header), the
remote node sends a response back to the local node. The response frame is identical
to the request frame except that the Response-Required flag is cleared and the
Response flag is set.

B.2.5 Establish-Route Frame

The Establish-Route frame is sent by a device to establish a route from itself all the
way up the branch that it has joined, ending at the Co-ordinator. Routing table entries
are created in all ascendant nodes, with the sole exception of the node's parent.

The frame is initially passed to the node's parent. It is then passed upwards to the next
node in the tree, which adds a Routing table entry for the local node, before passing
the frame up the branch. Each time a Routing table entry is created, the next hop
address is the address of the node from which the frame has been received.

The Establish-Route frame structure is shown below.

The source address of the local node is included in the frame (in the header), along
with the number of descendant nodes (including immediate children) of which the
node is aware. If the Response-Required flag is set in the Frame Type field, the Co-
ordinator node sends a response back to the local node. The response frame is
identical to the request frame except:

the Depth field is set to the depth of the local node in the network
the sequence number is not the same
the Response-Required flag is cleared
the Response flag is set

Figure 8: Data-to-Service Frame Structure

Figure 9: Establish-Route Frame Structure

Destination Address
(8 bytes)

Header
(12 bytes)

Data
(Max: 75 bytes)

Src Service
(4 bytes)

Dst Service
(4 bytes)

Header
(12 bytes)

Node Depth in Network
(2 bytes)

Number of Descendants
(2 bytes)
184 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
B.2.6 Delete-Route Frame

A Delete-Route frame is sent by a node to purge the entire network of all Routing table
entries that relate to the node. Neighbour table entries are also removed.

This frame is generated whenever a node attaches or re-attaches to the network, or
when a node receives a Repair-Route frame from a remote node. The frame also
initiates network-wide garbage collection. The frame is initially sent in unicast mode
from the local node to its parent. The parent then broadcasts the frame to the network.

The frame consists only of the header, as shown below.

Only the source address of the local node is included in the frame. If the Response-
Required flag is set in the Frame Type field, the parent node sends a response back
to the local node. The response frame is identical to the request frame except that the
Response-Required flag is cleared and the Response flag is set.

B.2.7 Repair-Route Frame

A Repair-Route frame is sent by a node which has lost communication with a remote
node. The assumption is that the remote device has left the network and then re-
joined, but without successfully removing all Routing table entries for its old route.

Repair-Route is a request for the remote node to repeat the "Delete-Route, Establish-
Route" procedure. The frame is first sent from the local node to its parent. The parent
then passes the frame to the next node down the route. Any Router which receives
the frame checks whether the destination node is one of its children. If this is the case,
the frame is sent to the child only. Any device which receives such a directed frame
initiates the "Delete-Route, Establish-Route" procedure.

The Repair-Route frame structure is shown below.

The source address of the local node is included in the frame (in the header), along
with the destination address of the remote node. If the Response-Required flag is set
in the Frame Type field (in the header), the remote node sends a response back to the
local node. The response frame is identical to the request frame except that the
Response-Required flag is cleared and the Response flag is set.

Figure 10: Delete-Route Frame Structure

Figure 11: Repair-Route Frame Structure

Header
(12 bytes)

Destination Address
(8 bytes)

Header
(12 bytes)
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 185

Appendices
B.2.8 Purge-Route Frame

A Purge-Route frame is used to check whether Routing table entry (that has not been
used for a long time) is still valid - that is, whether the corresponding descendant node
still exists in the network.

The Purge-Route frame structure is shown below.

The source address of the local node is included in the frame (in the header), along
with the destination address of the descendant node.

B.2.9 Find-Node Frame

A Find-Node frame is used by the Co-ordinator to check for the existence of a node
for which it has no Routing table entry but for which it has a message to be routed.

The Find-Node frame structure is shown below.

The source address of the Co-ordinator is included in the frame (in the header), along
with the destination address of the remote node. If it exists, the remote node sends an
Establish-Route frame back to the Co-ordinator.

The frame is broadcast and the value of the TTL (Time-to-live) field determines the
number of times the frame can be forwarded during the broadcast.

B.2.10 Route-Request Frame

The Route-Request frame is used in Routing table maintenance.

The Route-Request frame structure is shown below.

Figure 12: Purge-Route Frame Structure

Figure 13: Find-Node Frame Structure

Figure 14: Route-Request Frame Structure

Destination Address
(8 bytes)

Header
(12 bytes)

Destination Address
(8 bytes)

Header
(12 bytes)

TTL
(1 byte)

Destination Address
(8 bytes)

Header
(12 bytes)

Entry No.
(2 bytes)
186 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
B.2.11 Route-Import Frame

The Route-Import frame is used in re-shaping the network.

The Route-Request frame structure is shown below.

B.2.12 Activate-Services Frame

The Activate-Services frame is sent by an End Device to register a set of services with
its parent. The parent then uses the list of registered services whenever it receives a
Request-Services frame from another node.

The Activate-Services frame structure is shown below.

The most significant bit of the Services field is ignored - only the bottom 31 bits specify
services.

If the Response-Required flag is set in the Frame Type field (in the header), the parent
sends a response back to the local node. The response frame is identical to the
request frame except that the Response-Required flag is cleared, and the Response
flag is set.

Figure 15: Route-Import Frame Structure

Note: Routers do not send Activate-Services frames, as
they advertise their own services locally rather than
through their parent.

Figure 16: Activate-Services Frame Structure

Destination Address
(8 bytes)

Header
(12 bytes)

Entry No.
(2 bytes)

Header
(12 bytes)

Services
(4 bytes)
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 187

Appendices
B.2.13 Service-Request Frame

The Service-Request frame is used by nodes to discover remote nodes that offer a
specified set of services.

If a Router generates this frame, it broadcasts the frame immediately.
If an End Device generates the frame, it first sends the frame in unicast mode
to its parent. The parent then broadcasts the frame to the network.

The Service-Request frame structure is shown below.

Only the source address of the local node is included in the frame (in the header). The
least significant byte of the frame is set to:

1 if all the specified services must match
0 if any of the specified services can match

This frame is broadcast and the value of the TTL (Time-to-Live) field determines the
number of times the frame can be forwarded during the broadcast.

When a Router receives a Service-Request frame, if either itself or one of its End
Device children offers the specified services then it sends a response to the local
node, regardless of the status of the Response-Required flag in the Frame Type field
(in the header). The structure of the Response frame is shown in the figure below.

The Response frame is identical to the Service-Request frame, except that the
address of the node which offers the specified services is appended, and the
Response flag is set in the Frame Type field.

Figure 17: Service-Request Frame Structure

Figure 18: Service-Request Response Frame Structure

Header
(12 bytes)

Services
(4 bytes)

TTL
(1 byte)

Match
(1 byte)

Header
(12 bytes)

Services
(4 bytes)

Destination Address
(8 bytes)
188 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
B.2.14 Ping Frame

A Ping frame is used by devices to check the integrity of its parent:

If the parent is present and still accepts the local node as its child, a Ping
response frame is sent to the local node.
If the parent is not present, no response is sent.
If the parent is present but does not accept the local node as its child (for
example, if it has left and re-joined the network), an Unknown-Node frame is
sent to the local node (see Appendix B.2.15).

The frame consists only of the header, as shown below.

Neither source nor destination addresses are included, as this is a 1-hop transaction
and the IEEE 802.15.4 MAC layer addressing is sufficient. If a response is to be sent,
it is sent regardless of the state of the Response-Required flag in the Frame Type field.
The response frame is identical to the Ping frame except that the Response-Required
flag is cleared, and the Response flag is set.

B.2.15 Unknown-Node Frame

An Unknown-Node frame is generated by a Router which has received a frame from
a device which is neither its child nor its parent.

The frame consists only of the header, as shown below.

Neither source nor destination addresses are included, as this is a 1-hop transaction
and the IEEE 802.15.4 MAC layer addressing is sufficient.

Figure 19: Ping Frame Structure

Figure 20: Unknown-Node Frame Structure

Header
(12 bytes)

Header
(12 bytes)
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 189

Appendices
B.2.16 Set-Depth Frame

A Set-Depth frame is sent by a parent node to all of its descendants to indicate the
depth of the node in the network. The frame may be sent after the parent and its
descendants have been moved in the network, in order to inform the descendants of
the parent’s new depth in the network. The descendants can then update their own
depths.

The Set-Depth frame structure is shown below.

Figure 21: Set-Depth Frame Structure

Depth
(2 bytes)

Header
(12 bytes)
190 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
C. Beacons
A JenNet beacon is a frame used by a routing node (Router or Co-ordinator) to
describe itself to other nodes of the network during a network scan. In fact, these
beacons are sent by the IEEE 802.15.4 MAC layer and not by the JenNet level, and
so are distinct from JenNet frames (and do not follow their structure).

The structure of a JenNet beacon is shown below:

The beacon includes the following information:

JenNet version
Depth of node in network (Co-ordinator is at depth zero)
Network Application ID
Network flags
Number of child nodes

Figure 22: JenNet Beacon Frame Structure

Network Application ID
(4 bytes)

Version
(4 bytes)

Depth
(2 bytes)

Nwk Flags
(1 byte)

Children
(1 byte)

Reserved
(2 bytes)
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 191

Appendices
D. Glossary

Term Description

Address A numeric value that is used to identify a network node. In JenNet, the 64-bit IEEE/
MAC address of the device is used.

API Application Programming Interface: A set of programming functions that can be
incorporated in application code to provide an easy-to-use interface to underlying
functionality and resources.

Application The program that deals with the input/output/processing requirements of the node,
as well as high-level interfacing to the network.

Binding The process of associating a service on one node with a compatible service on
another node so that communication between them can be performed without
specifying addresses.

Channel A narrow frequency range within the designated radio band - for example, the
IEEE 802.15.4 2400-MHz band is divided into 16 channels. A wireless network
operates in a single channel which is determined at network initialisation.

Child A node which is connected directly to a parent node and for which the parent node
provides routing functionality. A child can be an End Device or Router. Also see
Parent.

Context Data Data which reflects the current state of the node. The context data must be pre-
served during sleep mode (of an End Device).

Co-ordinator The node through which a network is started, initialised and formed - the Co-ordina-
tor acts as the seed from which the network grows, as it is joined by other nodes.
The Co-ordinator also usually provides a routing function. All networks must have
one and only one Co-ordinator.

End Device A node which has no networking role (such as routing) and is only concerned with
data input/output/processing. As such, an End Device cannot be a parent.

IEEE 802.15.4 A standard network protocol that is used as the lowest level of the JenNet software
stack. Among other functionality, it provides the physical interface to the network’s
transmission medium (radio).

Jenie API Easy-to-use interface between the application and the JenNet software stack.

JenNet Proprietary network protocol which is based on IEEE 802.15.4. An application inter-
acts with the JenNet software stack through the Jenie API.

Joining The process by which a device becomes a node of a network. The device transmits
a joining request. If this is received and accepted by a parent node (Co-ordinator or
Router), the device becomes a child of the parent. Note that the parent must have
“permit joining” enabled.

Network
Application ID

A 32-bit value that identifies the network application (e.g. a product). It is used in
JenNet as the main way to identify a network (rather than using the PAN ID).

PAN ID Personal Area Network Identifier - this is a 16-bit value that uniquely identifies the
network in that all neighbouring networks must have different PAN IDs.

Parent A node which allows other nodes (children) to connect to it and provides a routing
function for these child nodes. A maximum number of children can be accepted
(this limit is user-configurable). A parent can be a Router or the Co-ordinator. Also
see Child.
192 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
Registering Services The process by which a node provides a list of its services to the network. A parent
node holds its own service list and those of its children.

Requesting Services The process by which a node specifies the services that it requires from other
nodes. The remote nodes send responses detailing which of these services they
support.

Router A node which provides routing functionality (in addition to input/output/processing)
if used as a parent node. Also see Routing.

Routing The ability of a node to pass messages from one node to another, acting as a step-
ping stone from the source node to the target node. Routing functionality is pro-
vided by Routers and the Co-ordinator. Routing is handled by the network level
software and is transparent to the application on the node.

Service A JenNet concept corresponding to a feature, function or capability of a node (e.g.
support of LCD display). A node can support up to 32 services.

Service Profile The list of services supported in a network. It is represented as a 32-bit value in
which each bit represents a service - ‘1’ indicating service supported, ‘0’ indicating
service not supported.

Sleep Mode An operating state of a node in which the device consumes minimal power. During
sleep, the only activity of the node is to time the sleep duration to determine when
to wake up and resume normal operation. The total sleep duration is user-config-
urable. Only End Devices can sleep.

Stack The collection of software layers used to operate a system. The high-level user
application is at the top of the stack and the low-level interface to the transmission
medium is at the bottom of the stack.

UART Universal Asynchronous Receiver Transmitter - a standard interface used for
cabled serial communications between two devices (each device must have a
UART).

Term Description
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 193

Appendices
194 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

 JenNet Stack
User Guide
Revision History

Version Date Comments

1.0-1.4 2007-2010 Editions covering only JenNet stack information
(Jenie API documented separately).

2.0 28-Sept-2010 Re-worked to incorporate former Jenie API User Guide (JN-UG-
3042) and Jenie API Reference Manual (JN-RM-2035). JPI functions
removed from Jenie API description. Other minor modifications and
corrections also made.
JN-UG-3041 v2.0 © NXP Laboratories UK 2010 195

JenNet Stack
User Guide

Important Notice
Jennic reserves the right to make corrections, modifications, enhancements, improvements and other changes to its
products and services at any time, and to discontinue any product or service without notice. Customers should obtain
the latest relevant information before placing orders, and should verify that such information is current and complete.
All products are sold subject to Jennic's terms and conditions of sale, supplied at the time of order acknowledgment.
Information relating to device applications, and the like, is intended as suggestion only and may be superseded by
updates. It is the customer's responsibility to ensure that their application meets their own specifications. Jennic makes
no representation and gives no warranty relating to advice, support or customer product design.
Jennic assumes no responsibility or liability for the use of any of its products, conveys no license or title under any
patent, copyright or mask work rights to these products, and makes no representations or warranties that these
products are free from patent, copyright or mask work infringement, unless otherwise specified.
Jennic products are not intended for use in life support systems/appliances or any systems where product malfunction
can reasonably be expected to result in personal injury, death, severe property damage or environmental damage.
Jennic customers using or selling Jennic products for use in such applications do so at their own risk and agree to fully
indemnify Jennic for any damages resulting from such use.
All trademarks are the property of their respective owners.

NXP Laboratories UK Ltd
(Formerly Jennic Ltd)

Furnival Street
Sheffield
S1 4QT

United Kingdom

Tel: +44 (0)114 281 2655
Fax: +44 (0)114 281 2951
E-mail: info@jennic.com

For the contact details of your local Jennic office or distributor, refer to the Jennic web site:
196 © NXP Laboratories UK 2010 JN-UG-3041 v2.0

	Contents
	About this Manual
	Organisation
	Conventions
	Acronyms and Abbreviations
	Related Documents
	Feedback Address

	Part I: Concept and Operational Information
	1. Introduction to JenNet
	1.1 Ideal Applications for JenNet
	1.2 Radio Frequency Operation
	1.3 Battery-Powered Components
	1.4 Easy Installation and Configuration
	1.5 Reliable Radio Communication
	1.6 Routing
	1.7 Network Topologies
	1.8 Security
	1.9 Co-existence
	1.10 Basic Software Architecture

	2. Operational Features
	2.1 Node Types and Network Topologies
	2.1.1 Star Topology
	2.1.2 Tree Topology

	2.2 Node Addressing
	2.3 Network Identification and Isolation
	2.3.1 Network Identification
	2.3.2 Network Isolation

	2.4 Network Formation
	2.4.1 Starting a Network
	2.4.2 Joining a Network

	2.5 Message Routing
	2.5.1 Message Propagation and Routes
	2.5.2 Neighbour and Routing Tables
	2.5.3 Establishing Routes
	2.5.4 Routing Process on a Node
	2.5.5 Routing Example
	2.5.6 Message Acknowledgements
	2.5.7 Sequence Number History
	2.5.8 Route Repair

	2.6 Services
	2.6.1 Service Profile
	2.6.2 Service Discovery

	2.7 Binding
	2.7.1 Types of Binding
	2.7.2 Example Bindings

	2.8 Data Transfer
	2.8.1 Data Transfer Methods
	2.8.2 Data Polling (End Device Only)

	2.9 Auto-ping

	3. JenNet Stack and APIs
	3.1 JenNet Stack
	3.2 Jenie API
	3.2.1 Function Types
	3.2.2 Functionality

	3.3 JenNet API
	3.4 Software Installation

	4. Application Tasks
	4.1 Starting the Network (Co-ordinator only)
	4.2 Starting Other Nodes (Routers and End Devices)
	4.3 Configuring the Radio Transmitter
	4.4 Configuring Security
	4.5 Discovering Services
	4.5.1 Registering Services
	4.5.2 Requesting Services

	4.6 Binding Services
	4.7 Transferring Data
	4.7.1 Sending and Receiving Data using Addresses
	4.7.2 Sending and Receiving Data using Bound Services
	4.7.3 Receiving Data for an End Device

	4.8 Obtaining Signal Strength Measurements
	4.9 Entering and Leaving Sleep Mode (End Devices Only)
	4.9.1 Sleep Mode with Memory Held
	4.9.2 Sleep Mode without Memory Held

	4.10 Saving and Restoring Context Data
	4.10.1 Network Context
	4.10.2 Application Context

	4.11 Leaving the Network

	5. Application Structure
	5.1 JenNet Application Templates
	5.2 Code Descriptions
	5.2.1 Co-ordinator Code
	5.2.2 Router Code
	5.2.3 End Device Code

	6. Advanced Issues in Network Operation
	6.1 Identifying the Network
	6.2 Sending Messages
	6.2.1 Timing Issues in Data Sends
	6.2.2 Re-tries in Data Sends
	6.2.3 End-to-End Acknowledgements for Data Sends

	6.3 Routing
	6.3.1 Neighbour Tables and Routing Tables
	6.3.2 Stale Route Purging
	6.3.3 Automatic Route Importation

	6.4 Losing a Parent Node (Orphaning)
	6.4.1 Detecting Orphaning
	6.4.2 Re-joining the Network

	6.5 Losing a Child Node
	6.5.1 End Device Children
	6.5.2 Router Children

	6.6 Auto-polling (End Device Only)
	6.7 Beacon Calming
	6.8 Packet Loss
	6.8.1 Packet Collisions
	6.8.2 Minimising Packet Loss
	6.8.3 Route Updates

	6.9 Network Self-Healing
	6.9.1 Automatic Recovery
	6.9.2 Network Recovery

	6.10 Key Performance Parameters
	6.10.1 Broadcast TTL (Time To Live)
	6.10.2 Automatic Recovery Threshold
	6.10.3 Ping Period
	6.10.4 End Device Poll Period
	6.10.5 End Device Scan Sleep Period

	Part II: Reference Information
	7. Jenie API Functions
	7.1 “Application to Stack” Functions
	7.1.1 Network Management Functions
	eJenie_Start
	eJenie_Leave
	eJenie_RegisterServices
	eJenie_RequestServices
	eJenie_BindService
	eJenie_UnBindService
	eJenie_SetPermitJoin
	bJenie_GetPermitJoin
	eJenie_SetSecurityKey

	7.1.2 Data Transfer Functions
	eJenie_SendData
	eJenie_SendDataToBoundService
	eJenie_PollParent

	7.1.3 System Functions
	vJPDM_SaveContext
	eJPDM_RestoreContext
	vJPDM_EraseAllContext
	eJenie_SetSleepPeriod
	eJenie_Sleep
	eJenie_RadioPower
	u32Jenie_GetVersion

	7.1.4 Statistics Functions
	u16Jenie_GetRoutingTableSize
	eJenie_GetRoutingTableEntry
	u8Jenie_GetNeighbourTableSize
	eJenie_GetNeighbourTableEntry
	eJenie_ResetNeighbourStats

	7.2 “Stack to Application” Functions
	vJenie_CbConfigureNetwork
	vJenie_CbInit
	vJenie_CbMain
	vJenie_CbStackMgmtEvent
	vJenie_CbStackDataEvent
	vJenie_CbHwEvent

	8. JenNet API Functions
	eApi_SendDataToExtNwk
	vNwk_DeleteChild
	vApi_SetScanSleep
	vApi_SetBcastTTL
	vApi_SetPurgeRoute
	vApi_SetPurgeInterval
	vNwk_SetBeaconCalming
	vApi_SetUserBeaconBits
	u16Api_GetUserBeaconBits
	u8Api_GetLastPktLqi
	u16Api_GetDepth
	u8Api_GetStackState
	u32Api_GetVersion
	vApi_RegBeaconNotifyCallback
	vApi_RegLocalAuthoriseCallback
	vApi_RegNwkAuthoriseCallback
	vApi_RegScanSortCallback

	9. Global Network Parameters
	9.1 Jenie Parameters
	9.2 JenNet Parameters

	10. Enumerations and Data Types
	10.1 Enumerations and Defines
	10.1.1 teJenieStatusCode (Return Status)
	10.1.2 teJenieDeviceType (Node Type)
	10.1.3 teJenieComponent (Component)
	10.1.4 teJenieRadioPower (Radio Transceiver)
	10.1.5 teJeniePollStatus (Poll Status)
	10.1.6 TXOPTION #defines

	10.2 Data Types
	10.2.1 tsJenieSecKey (Security Key)
	10.2.2 tsJenie_RoutingEntry (Routing Table Entry)
	10.2.3 tsJenie_NeighbourEntry (Neighbour T able Entry)
	10.2.4 tsScanElement (Scan Results)
	10.2.5 MAC_Addr_s
	10.2.6 MAC_ExtAddr_s

	11. Stack Events
	11.1 Management Events and Structures
	11.1.1 tsSvcReqRsp
	11.1.2 tsPollCmplt
	11.1.3 tsChildJoined
	11.1.4 tsChildLeave
	11.1.5 tsChildRejected
	11.1.6 tsNwkStartUp

	11.2 Data Events and Structures
	11.2.1 tsData
	11.2.2 tsDataToService
	11.2.3 tsDataAck
	11.2.4 tsDataToServiceAck

	Part III: Appendices
	A. Hardware and Memory Use
	A.1 Hardware Resources
	A.2 Memory Resources (JenNet Only)
	A.3 Memory Resources (JenNet and Jenie API)

	B. Frames
	B.1 Frame Header
	B.2 Frame Body
	B.2.1 Data-to-Coordinator Frame
	B.2.2 Data-to-Peer Frame
	B.2.3 Data-to-Network Frame
	B.2.4 Data-to-Service Frame
	B.2.5 Establish-Route Frame
	B.2.6 Delete-Route Frame
	B.2.7 Repair-Route Frame
	B.2.8 Purge-Route Frame
	B.2.9 Find-Node Frame
	B.2.10 Route-Request Frame
	B.2.11 Route-Import Frame
	B.2.12 Activate-Services Frame
	B.2.13 Service-Request Frame
	B.2.14 Ping Frame
	B.2.15 Unknown-Node Frame
	B.2.16 Set-Depth Frame

	C. Beacons
	D. Glossary

