
Jenie API
Reference Manual

JN-RM-2035
Revision 1.8

17 March 2010

Jenie API
Reference Manual

 Jennic

2 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
Contents

About this Manual 9
Organisation 9
Conventions 10
Acronyms and Abbreviations 10
Related Documents 11
Feedback Address 11

1. Jenie Overview 13
1.1 Core Functionality 13
1.2 Hardware Functionality 14

2. Jenie Functions 15
2.1 “Application to Stack” Functions 16

2.1.1 Network Management Functions 16
eJenie_Start 17
eJenie_Leave 18
eJenie_RegisterServices 19
eJenie_RequestServices 20
eJenie_BindService 21
eJenie_UnBindService 22
eJenie_SetPermitJoin 23
bJenie_GetPermitJoin 24
eJenie_SetSecurityKey 25

2.1.2 Data Transfer Functions 26
eJenie_SendData 27
eJenie_SendDataToBoundService 29
eJenie_PollParent 30

2.1.3 System Functions 31
vJPDM_SaveContext 32
eJPDM_RestoreContext 33
vJPDM_EraseAllContext 34
eJenie_SetSleepPeriod 35
eJenie_Sleep 36
eJenie_RadioPower 38
u32Jenie_GetVersion 39

2.1.4 Statistics Functions 40
u16Jenie_GetRoutingTableSize 41
eJenie_GetRoutingTableEntry 42
u8Jenie_GetNeighbourTableSize 43
eJenie_GetNeighbourTableEntry 44
JN-RM-2035 v1.8 © Jennic 2010 3

Contents Jennic

eJenie_ResetNeighbourStats 45

2.2 “Stack to Application” Functions 46
vJenie_CbConfigureNetwork 47
vJenie_CbInit 48
vJenie_CbMain 49
vJenie_CbStackMgmtEvent 50
vJenie_CbStackDataEvent 51
vJenie_CbHwEvent 52

3. Jenie Peripherals Interface (JPI) 53
3.1 General 54

u32JPI_Init 55
u8JPI_PowerStatus 56
vJPI_SwReset 57
vJPI_DriveResetOut 58
vJPI_HighPowerModuleEnable 59
vJPI_SysCtrlRegisterCallback 60

3.2 Analogue Peripherals 61
vJPI_AnalogueConfigure 62
vJPI_AnalogueEnable 63
vJPI_AnalogueDisable 64
vJPI_APRegisterCallback 65
bJPI_APRegulatorEnabled 66
vJPI_AnalogueStartSample 67
u16JPI_AnalogueAdcRead 68
bJPI_AdcPoll 69
vJPI_AnalogueDacOutput 70
bJPI_DacPoll 71
vJPI_ComparatorEnable 72
vJPI_ComparatorDisable 73
bJPI_ComparatorStatus 74
vJPI_ComparatorIntEnable 75
bJPI_ComparatorWakeStatus 76

3.3 Digital I/O 77
vJPI_DioSetDirection 78
vJPI_DioSetOutput 79
vJPI_DioSetPullup 80
u32JPI_DioReadInput 81
vJPI_DioWake 82
u32JPI_DioWakeStatus 84

3.4 UARTs 85
vJPI_UartEnable 87
vJPI_UartDisable 88
vJPI_UartSetClockDivisor 89
vJPI_UartSetBaudDivisor 90
4 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vJPI_UartSetControl 91
vJPI_UartSetInterrupt 92
vJPI_UartSetRTSCTS 93
vJPI_UartReset 94
u8JPI_UartReadLineStatus 95
u8JPI_UartReadModemStatus 96
u8JPI_UartReadInterruptStatus 97
vJPI_UartWriteData 98
u8JPI_UartReadData 99
vJPI_Uart0RegisterCallback 100
vJPI_Uart1RegisterCallback 101

3.5 Timers 102
vJPI_TimerEnable 104
vJPI_TimerDisable 106
vJPI_TimerStart 107
vJPI_TimerStop 109
vJPI_TimerStartCapture 110
u32JPI_TimerReadCapture 111
u8JPI_TimerFired 112
vJPI_Timer0RegisterCallback 113
vJPI_Timer1RegisterCallback 114
vJPI_Timer2RegisterCallback (JN5148 Only) 115

3.6 Wake Timers 116
vJPI_WakeTimerEnable 118
vJPI_WakeTimerStart 119
vJPI_WakeTimerStop 120
u32JPI_WakeTimerRead 121
u8JPI_WakeTimerStatus 122
u8JPI_WakeTimerFiredStatus 123
u32JPI_WakeTimerCalibrate 124

3.7 Serial Peripheral Interface (SPI) 125
vJPI_SpiConfigure 126
vJPI_SpiReadConfiguration 128
vJPI_SpiRestoreConfiguration 129
vJPI_SpiSelect 130
vJPI_SpiStop 131
vJPI_SpiStartTransfer32 132
u32JPI_SpiReadTransfer32 133
vJPI_SpiStartTransfer16 134
u16JPI_SpiReadTransfer16 135
vJPI_SpiStartTransfer8 136
u8JPI_SpiReadTransfer8 137
bJPI_SpiPollBusy 138
vJPI_SpiWaitBusy 139
vJPI_SpiRegisterCallback 140
JN-RM-2035 v1.8 © Jennic 2010 5

Contents Jennic

3.8 Serial Interface (2-Wire) 141

vJPI_SiConfigure 142
vJPI_SiSetCmdReg 143
vJPI_SiWriteData8 145
vJPI_SiWriteSlaveAddr 146
u8JPI_SiReadData8 147
bJPI_SiPollBusy 148
bJPI_SiPollTransferInProgress 149
bJPI_SiPollRxNack 150
bJPI_SiPollArbitrationLost 151
vJPI_SiRegisterCallback 152

3.9 Intelligent Peripheral Interface 153
vJPI_IpEnable 154
bJPI_IpSendData 155
bJPI_IpReadData 156
bJPI_IpTxDone 157
bJPI_IpRxDataAvailable 158
vJPI_IpRegisterCallback 159

Appendices 161
A. Global Network Parameters 161
B. Enumerated Types and Defines 164

B.1 For Core Jenie Functions 164
B.2 For Jenie Peripheral Interface Functions 166

C. Data Types 178
D. Stack Events 180

D.1 Stack Management Events 180
D.2 Data Events 182

E. Integrated Peripheral Interrupt Handling 184
E.1 Callback Function Prototype and Parameters 184
E.2 Handling Wake Interrupts 188

F. JenNet API 191
F.1 JenNet Functions 192

eApi_SendDataToExtNwk 193
vNwk_DeleteChild 194
vApi_SetScanSleep 195
vApi_SetBcastTTL 196
vApi_SetPurgeRoute 197
vApi_SetPurgeInterval 198
vNwk_SetBeaconCalming 199
vApi_SetUserBeaconBits 200
u16Api_GetUserBeaconBits 201
6 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
u8Api_GetLastPktLqi 202
u16Api_GetDepth 203
u8Api_GetStackState 204
u32Api_GetVersion 205
vApi_RegBeaconNotifyCallback 206
vApi_RegLocalAuthoriseCallback 207
vApi_RegNwkAuthoriseCallback 208
vApi_RegScanSortCallback 209

F.2 JenNet Network Parameters 210

G. Link Quality Indication (LQI) 214
JN-RM-2035 v1.8 © Jennic 2010 7

Contents Jennic
8 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
About this Manual
This manual provides key reference information for developers using the Jenie
Application Programming Interface (API) to produce wireless network applications for
the Jennic JN5139 and JN5148 wireless microcontrollers. The manual provides
detailed descriptions of functions of the Jenie API intended for programmers with a
knowledge of C.

Organisation
This manual consists of 3 chapters and 7 appendices, as follows:

Chapter 1 introduces the Jenie API.
Chapter 2 details the main functions of the Jenie API.
Chapter 3 details the Jenie Peripherals Interface (JPI) functions of the API.
The Appendices provide ancillary information needed to use the Jenie API:
global network parameters, enumerated types, data types, stack events,
hardware interrupts and LQI values. In addition, an appendix is provided which
describes functions and network parameters of the JenNet layer, which sits
below Jenie in the stack.

Tip: You should use this Reference Manual in
conjunction with the Jenie API User Guide
(JN-UG-3042), which provides both relevant concept
information and practical guidance on using Jenie to
develop wireless network applications.

Tip: Jenie is also available in the form of the AT-Jenie
serial command set, which provides a simpler
alternative to the Jenie API. AT-Jenie is currently
available only for the JN5139 device, and is described in
separate user documentation - the AT-Jenie User Guide
(JN-UG-3043) and the AT-Jenie Reference Manual
(JN-RM-2038).
JN-RM-2035 v1.8 © Jennic 2010 9

About this Manual Jennic

Conventions

Files, folders, functions and parameter types are represented in bold type.

Function parameters are represented in italics type.

Code fragments are represented in the Courier New typeface.

Acronyms and Abbreviations
API Application Programming Interface

JenNet Jennic Network

LQI Link Quality Indication

MAC Media Access Control

PAN Personal Area Network

UART Universal Asynchronous Receiver Transmitter

This is a Tip. It indicates useful or practical information.

This is a Note. It highlights important additional
information.

This is a Caution. It warns of situations that may result
in equipment malfunction or damage.
10 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
Related Documents
[1] Jenie Application Templates Application Note (JN-AN-1061)

[2] Jenie Tutorial Application Note (JN-AN-1085)

[3] Jenie API User Guide (JN-UG-3042)

[4] JenNet Stack User Guide (JN-UG-3041)

[5] IEEE 802.15.4 Wireless Networks User Guide (JN-UG-3024)

[6] Board API Reference Manual (JN-RM-2003)

[7] Application Queue API Reference Manual (JN-RM-2025)

Feedback Address
If you wish to comment on this manual, or any other Jennic user documentation,
please provide your feedback by writing to us (quoting the manual reference number
and version) at the following postal address or e-mail address:

Applications
Jennic Ltd
Furnival Street
Sheffield S1 4QT
United Kingdom

doc@jennic.com
JN-RM-2035 v1.8 © Jennic 2010 11

About this Manual Jennic
12 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
1. Jenie Overview
Jennic’s proprietary Jenie software provides an easy-to-use interface for developing
wireless network applications for the Jennic JN5139 and JN5148 wireless
microcontrollers. The Jenie Application Programming Interface (API) comprises C
functions for controlling the wireless network and the on-chip hardware peripherals of
the JN5139/JN5148 device. This functionality is outlined below.

1.1 Core Functionality
Jenie provides functionality for implementing network management, data transfer and
system tasks, as follows.

Management tasks:
Configure and initialise network
Start a device as a Co-ordinator, Router or End Device
Determine whether a Router or Co-ordinator is accepting join requests
Advertise local node services and seek remote node services
Establish bindings between local and remote node services
Handle stack management events

Data transfer tasks:
Send data to a remote node or broadcast data to all Router nodes
Send data to a bound service on a remote node
Handle stack data events

System tasks:
Configure and start sleep mode
Configure, start and stop the radio transmitter
Obtain the version number of a component on the node
Handle hardware events

In addition to the functions of the Jenie API, functions of the JenNet layer (which sits
below Jenie in the stack) are described in this manual in Appendix F. The JenNet
functions are intended for advanced users who require more control over the network
than is available through Jenie.

Note: For a more complete introduction to Jenie, refer
to the Jenie API User Guide (JN-UG-3042).
JN-RM-2035 v1.8 © Jennic 2010 13

Chapter 1
Jenie Overview

 Jennic

1.2 Hardware Functionality

Jenie also includes functionality for interacting with the integrated peripherals of the
JN5139/JN5148 wireless microcontroller. These peripherals include:

Analogue resources: ADC, DACs, comparators
Digital I/O (DIOs)
UARTs
Timers
Wake timers
Serial Peripheral Interface (SPI)
2-Wire Serial Interface (SI)
Intelligent Peripheral (IP) interface

The part of the Jenie API concerned with the above peripherals is referred to as the
Jenie Peripherals Interface (JPI).

Note 1: The JPI library is provided for Jennic customers
who are maintaining Jenie applications for the JN5139
device or migrating Jenie applications from the JN5139
to the JN5148 device. Any new Jenie application
development for the JN5139 or JN5148 device should
instead use the Integrated Peripherals API, which is
described in the Integrated Peripherals API Reference
Manual (JN-RM-2001).

Note 2: Jennic also provide separate software for
controlling hardware resources on the JN5139/JN5148
carrier boards. This software is described in the Board
API Reference Manual (JN-RM-2003).
14 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
2. Jenie Functions
This chapter details the core functions of the Jenie API (Application Programming
Interface). These functions are divided into two categories, according to how they are
called:

“Application to Stack” functions, described in Section 2.1.
“Stack to Application” functions, described in Section 2.2.

In addition, each of the above categories is sub-divided into functions that deal with
management tasks, data transfer tasks and system tasks (see Chapter 1 for an
overview of these three areas).

Note: In addition to the functions of the Jenie API,
functions of the JenNet layer (which sits below Jenie in
the stack) are described in this manual in Appendix F.
The JenNet functions are intended for advanced users
who require more control over the network than is
available through Jenie.
JN-RM-2035 v1.8 © Jennic 2010 15

Chapter 2
Jenie Functions

 Jennic

2.1 “Application to Stack” Functions

This section details the “Application to Stack” functions of the Jenie API. These
functions are called in the application to invoke tasks in the underlying stack. They are
pre-defined in the header file Jenie.h.

The function descriptions are divided by sub-section into functions that deal with
management tasks, data transfer tasks and operating system tasks.

2.1.1 Network Management Functions
The network management functions are largely concerned with tasks to start and form
the wireless network. These tasks include:

Configure and initialise network
Start a device as a Co-ordinator, Router or End Device
Determine whether a Router or Co-ordinator is accepting join requests
Advertise local node services and seek remote node services
Establish bindings between local and remote node services
Configure security used for message encryption/decryption

The functions are listed below, along with their page references:

Function Page
eJenie_Start 17
eJenie_Leave 18
eJenie_RegisterServices 19
eJenie_RequestServices 20
eJenie_BindService 21
eJenie_UnBindService 22
eJenie_SetPermitJoin 23
bJenie_GetPermitJoin 24
eJenie_SetSecurityKey 25

Caution: The Jenie “Application to Stack” functions
described in this section must not be called from
interrupt context (for example, from within a user-
defined callback function). Instead, the application
should set a flag to indicate that the call should be made
later, outside of interrupt context.
16 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
eJenie_Start

Description
This function is normally (but not always) called from eJenie_CbInit() and starts the
stack on the device.

On the Co-ordinator, this will start a network.
On an End Device or Router, starting the stack causes the node to find and join a
network.
On a sleeping End Device, once the device has woken from sleep with memory
contents held, this function will cause the stack to resume without the device needing to
re-associate with its parent.

The appropriate behaviour of this function for a given node type requires the
application to be linked with the relevant Jenie library file - Jenie_TreeCRLib.a for
the Co-ordinator or a Router, Jenie_TreeEDLib.a for an End Device.

Parameters
eDevType Indicates the role of the device in the network - one of Co-

ordinator, Router, End Device:
E_JENIE_COORDINATOR
E_JENIE_ROUTER
E_JENIE_END_DEVICE

Returns
One of:

E_JENIE_SUCCESS
E_JENIE_ERR_INVLD_PARAM

For explanations, refer to Appendix B.

teJenieStatusCode eJenie_Start(
teJenieDeviceType eDevType);
JN-RM-2035 v1.8 © Jennic 2010 17

Chapter 2
Jenie Functions

 Jennic

eJenie_Leave

Description
This function disassociates the node from its parent and therefore causes the device
to leave the network.

On leaving the network, the device enters the idle state in which vJenie_CbMain()
is called regularly, but the device does not necessarily attempt to establish or join a
network. The device will remain in the idle state until eJenie_Start() is called.

Parameters
None

Returns
One of:

E_JENIE_SUCCESS
E_JENIE_ERR_UNKNOWN
E_JENIE_ERR_STACK_BUSY

For explanations, refer to Appendix B.

teJenieStatusCode eJenie_Leave(void);
18 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
eJenie_RegisterServices

Description
This function is used to register the services available on the local node.

To do this, a list of supported services is submitted to the network as a 32-bit value
based on the network’s Service Profile, in which each bit position corresponds to a
particular service in the network. Here, a bit value of ‘1’ indicates the corresponding
service is supported, while ‘0’ indicates the service is not supported.

If the local node is the Co-ordinator or a Router, the registered services are held locally
and this function can return immediately with status code success or failure.
If the local node is an End Device, the registered services are submitted to its parent
and the status code is deferred - it is eventually received as the stack management
event E_JENIE_REG_SVC_RSP via a call to the callback function
vJenie_CbStackMgmtEvent().

This function will not successfully return until the network is up and running. Until the
network is up, the function will return the error code E_JENIE_ERR_STACK_BUSY.

Parameters
u32Services 32-bit value detailing the services to be registered (see above)

Returns
One of:

E_JENIE_SUCCESS
E_JENIE_DEFERRED
E_JENIE_ERR_UNKNOWN
E_JENIE_ERR_STACK_BUSY

For explanations, refer to Appendix B.

teJenieStatusCode eJenie_RegisterServices(
uint32 u32Services);
JN-RM-2035 v1.8 © Jennic 2010 19

Chapter 2
Jenie Functions

 Jennic

eJenie_RequestServices

Description
This function is used to find remote nodes that have the specified services. The
remote nodes will respond individually.

The requested services are specified as a 32-bit value based on the network’s
Service Profile, in which each bit position corresponds to a particular service in the
network. Here, a bit value of ‘1’ indicates the corresponding service is requested,
while ‘0’ indicates the service is not requested.

You must also specify whether all of the requested services or at least one of the
requested services must be present on the remote node for the latter to generate a
response.

The function returns almost immediately but will not be successful until the network
is up and running. Until the network is up, the function will return the error code
E_JENIE_ERR_STACK_BUSY.

Responses from the remote nodes will be received as a series of
E_JENIE_SVC_REQ_RSP stack events via the callback function
vJenie_CbStackMgmtEvent().

Parameters
u32Services 32-bit value detailing the requested services (see above)
bMatchAll Indicates whether ALL or ANY of the requested services

should be present on the remote node to warrant a response:
TRUE: All the requested services should be present
FALSE: Any of the requested services should be present

Returns
One of:

E_JENIE_ERR_INVLD_PARAM
E_JENIE_DEFERRED
E_JENIE_ERR_UNKNOWN
E_JENIE_ERR_STACK_BUSY

For explanations, refer to Appendix B.

teJenieStatusCode eJenie_RequestServices(
uint32 u32Services
bool_t bMatchAll);
20 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
eJenie_BindService

Description
This function is used to bind a local service to the specified service on the specified
remote node. Among the parameters of this function, you must specify the address
of the remote node (u64DestAddr) and the remote service (u8DestService). These
two pieces of information will have been obtained from the event
E_JENIE_SVC_REQ_RSP received as the result of a service request submitted
using the function eJenie_RequestServices().
Once a service binding has been created, messages can be sent to the remote
service(s) using the function eJenie_SendDataToBoundService().
If you wish to subsequently unbind two services, use the eJenie_UnBindService()
function.

Parameters
u8SrcService Service ID of local service to be bound
u64DestAddr Address of the remote node which contains the bound service
u8DestService Service ID of the service to be bound to on the remote node

Returns
One of:

E_JENIE_SUCCESS
E_JENIE_ERR_INVLD_PARAM
E_JENIE_ERR_STACK_RSRC

For explanations, refer to Appendix B.

teJenieStatusCode eJenie_BindService(
uint8 u8SrcService,
uint64 u64DestAddr,
uint8 u8DestService);

Note: You can call eJenie_BindService() more than once to
bind a local source service to several destination services.
However, in Jenie v1.4 or lower, you are advised not to bind to
more than four destination services.
JN-RM-2035 v1.8 © Jennic 2010 21

Chapter 2
Jenie Functions

 Jennic

eJenie_UnBindService

Description
This function is used to unbind a local service from the specified service on the
specified remote node. The services must have been previously bound using the
function eJenie_BindService(). Among the parameters, you must specify the local
service (u8SrcService), the address of the remote node (u64DestAddr) and the
remote service (u8DestService) to be unbound. These parameters can be used as
described in the table below to remove one or more bindings in one function call:

Once the services have been unbound, messages can no longer be sent to the
remote service(s) using the function eJenie_SendDataToBoundService().

Parameters
u8SrcService Service ID of local service to be unbound
u64DestAddr Address of the remote node which contains the bound service
u8DestService Service ID of the service to be unbound on the remote node

Returns
One of:

E_JENIE_SUCCESS
E_JENIE_ERR_INVLD_PARAM
E_JENIE_ERR_STACK_RSRC

For explanations, refer to Appendix B.

teJenieStatusCode eJenie_UnBindService(
uint8 u8SrcService,
uint64 u64DestAddr,
uint8 u8DestService);

Source
Service ID

Remote Node
Address

Remote
Service ID Action

1-32 Valid address 1-32 Remove the specific entry
described by the three parame-
ters

0xFF Not used 1-32 Remove all bindings where the
destination service matches the
parameter passed

1-32 Valid address 0xFF Remove all bindings where the
source service matches the
parameter passed

0xFF Not used 0xFF Remove all bindings
22 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
eJenie_SetPermitJoin

Description
This function is used to enable or disable "permit joining" on the Co-ordinator or a
Router - that is, it configures the device to allow or forbid other devices (End Devices
or Routers) to associate with it, and therefore to join the network.

Parameters
bAssociate “Permit joining” status to set:

TRUE - allow joinings
FALSE - forbid joinings

Returns
E_JENIE_SUCCESS

teJenieStatusCode eJenie_SetPermitJoin(
bool_t bAssociate);
JN-RM-2035 v1.8 © Jennic 2010 23

Chapter 2
Jenie Functions

 Jennic

bJenie_GetPermitJoin

Description
This function is used to obtain the current "permit joining" state of the Co-ordinator or
Router - that is, whether the device is currently allowing other devices (End Devices
or Routers) to associate with it, and therefore to join the network.

Parameters
None

Returns
One of:

TRUE - joinings allowed
FALSE - joinings forbidden

bool_t bJenie_GetPermitJoin(void);
24 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
eJenie_SetSecurityKey

Description
This function is used to enable security and set a key value for encrypting/decrypting
data during communications between the local node and the specified remote node
- that is, the local node will encode the data with the specified key and the remote will
decode the data with the same key. Note that this function must therefore also be
called on the remote node to set the same key value.

The function should be called from within the callback function vJenie_CbInit() and
should not be called from within vJenie_CbConfigureNetwork().
When security is enabled, the data that is encrypted is the payload of the
IEEE 802.15.4 MAC frame.

This function can also be used to disable security in communications with the
specified remote node by specifying a NULL security key pointer.

Parameters
*pKey Pointer to a security key. A NULL pointer disables security.
u64Addr Address of remote node associated with specified key -

ignored in current release (see Caution above).

Returns
One of:

E_JENIE_SUCCESS
E_JENIE_ERR_INVLD_PARAM

For explanations, refer to Appendix B.

teJenieStatusCode eJenie_SetSecurityKey(
tsJenieSecKey *pKey,
uint64 u64Addr);

Caution: In the current release of Jenie, the specified security
key is used for communication with all nodes (the specified
address is ignored). All nodes must use the same key.
Therefore, this function only needs to be called once for
communication with the whole network.
JN-RM-2035 v1.8 © Jennic 2010 25

Chapter 2
Jenie Functions

 Jennic

2.1.2 Data Transfer Functions

The data transfer functions are concerned with sending and receiving data. These
tasks include:

Send data to a remote node or broadcast data to all Router nodes
Send data to a bound service on a remote node

The functions are listed below, along with their page references:

Function Page
eJenie_SendData 27
eJenie_SendDataToBoundService 29
eJenie_PollParent 30
26 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
eJenie_SendData

Description
This function is used to send data to the specified remote node. This type of send
requires the address of the destination node - this is the 64-bit IEEE/MAC address of
the device. This address will have been previously obtained as the result of a Service
Discovery implemented using eJenie_RequestServices().
A data broadcast to all Router nodes can also be performed using this function - in
this case, the destination address must be set to zero and TXOPTION_BDCAST must
be selected in the transmission options (u8TxFlags).

The maximum payload data size depends on the type of transmission (and therefore
the JenNet frame type) and whether security has been enabled (using the function
eJenie_SetSecurityKey()), as follows:

This function will not successfully return until the network is up and running. Until the
network is up, the function will return the error code E_JENIE_ERR_STACK_BUSY.

A call to this function will (eventually) result in an E_JENIE_PACKET_SENT or
E_JENIE_PACKET_FAILED event to indicate the success or failure of the sent
message reaching the first hop to the destination, unless the transmission option
TXOPTION_SILENT or TXOPTION_BDCAST has been set in which case these
events are not generated.

Parameters
u64DestAddr Address of the destination node. For a broadcast or to send

data to the Co-ordinator, this parameter must be set to zero
(for a broadcast, u8TxFlags must also be set appropriately)

*pu8Payload Pointer to the data to be sent
u16Length Length of data to be sent, in bytes (for limits, see above)
u8TxFlags Sets the transmission options. These options are detailed in

Table 2 on page 165. The values can be logical ORed to
simultaneously specify more than one option

teJenieStatusCode eJenie_SendData(uint64 u64DestAddr,
uint8 *pu8Payload,
uint16 u16Length,
uint8 u8TxFlags);

Type of Transmission Security Disabled Security Enabled

Broadcast to all nodes 89 bytes 68 bytes

Unicast to Co-ordinator 90 bytes 69 bytes

Unicast to any other node 82 bytes 61 bytes
JN-RM-2035 v1.8 © Jennic 2010 27

Chapter 2
Jenie Functions

 Jennic

Returns

One of:
E_JENIE_ERR_INVLD_PARAM
E_JENIE_DEFERRED
E_JENIE_ERR_UNKNOWN
E_JENIE_ERR_STACK_BUSY

For explanations, refer to Appendix B.
28 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
eJenie_SendDataToBoundService

Description
This function is used to send data from a local service to a remote service, where
these services have previously been bound using eJenie_BindService(). Only the
local service needs to be specified.

The maximum payload data size depends on whether security has been enabled
(using the function eJenie_SetSecurityKey()), as follows:

If security is disabled, the maximum data size is 74 bytes.
If security is enabled, the maximum data size is 53 bytes.

This function will not successfully return until the network is up and running. Until the
network is up, the function will return the error code E_JENIE_ERR_STACK_BUSY.

A call to this function will (eventually) result in an E_JENIE_PACKET_SENT or
E_JENIE_PACKET_FAILED event to indicate the success or failure of the sent
message reaching the first hop to the destination.

Parameters
u8Service Service ID of local service from which data is to be sent
*pu8Payload Pointer to the data to be sent
u16Length Length of data to be sent, in bytes (for limits, see above)
u8TxFlags Sets the transmission options. These options are detailed in

Table 2 on page 165. The values can be logical ORed to
simultaneously specify more than one option

Returns
One of:

E_JENIE_ERR_INVLD_PARAM
E_JENIE_DEFERRED
E_JENIE_ERR_UNKNOWN
E_JENIE_ERR_STACK_BUSY

For explanations, refer to Appendix B.

teJenieStatusCode eJenie_SendDataToBoundService(
uint8 u8Service,
uint8 *pu8Payload,
uint16 u16Length,
uint8 u8TxFlags);
JN-RM-2035 v1.8 © Jennic 2010 29

Chapter 2
Jenie Functions

 Jennic

eJenie_PollParent

Description
This function is used by an End Device to check if its parent is holding pending data
for it. If data is pending, a data event will be received after a short delay via the
callback function vJenie_CbStackDataEvent(). The function can, for example, be
called after the End Device has come out of sleep mode.

The function will not successfully return until the network is up and running. Until the
network is up, the function will return the error code E_JENIE_ERR_STACK_BUSY.
Therefore, the function should not be called until an E_JENIE_NETWORK_UP event
has been generated (and must not be called immediately after a
E_JENIE_STACK_RESET event).

If a call to this function is successful (i.e. it returns a status of E_JENIE_DEFERRED)
then an E_JENIE_POLL_CMPLT event will be generated. If this event contains a
status value of E_JENIE_POLL_DATA_READY, this indicates that data is available
which will follow immediately in a E_JENIE_DATA event. However, this data event
may not deliver all the pending data for the node. You are therefore advised to call
eJenie_PollParent() repeatedly until there is no further pending data, indicated
when the event E_JENIE_POLL_CMPLT contains a status value of
E_JENIE_POLL_NO_DATA.

The E_JENIE_POLL_CMPLT event will also be generated (and the status
E_JENIE_DEFERRED returned) if no response is received from the parent. In this
case, the event also contains a status value of E_JENIE_POLL_NO_DATA.

Parameters
None

Returns
One of:

E_JENIE_DEFERRED
E_JENIE_ERR_UNKNOWN
E_JENIE_ERR_STACK_BUSY

For explanations, refer to Appendix B.

teJenieStatusCode eJenie_PollParent(void);

Caution: Call this function regularly if auto-polling is disabled
(through the global variable gJenie_EndDevicePollPeriod),
since a build-up of unclaimed data for the End Device on its
parent will eventually cause the End Device to be orphaned
by its parent.
30 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
2.1.3 System Functions
The system functions are largely concerned with implementing sleep mode and
controlling the radio transmitter. These tasks include:

Save and restore context data
Configure and start sleep mode
Configure, start and stop the radio transmitter
Obtain the version number of a component on the node

The functions are listed below, along with their page references:

Function Page
vJPDM_SaveContext 32
eJPDM_RestoreContext 33
vJPDM_EraseAllContext 34
eJenie_SetSleepPeriod 35
eJenie_Sleep 36
eJenie_RadioPower 38
u32Jenie_GetVersion 39
JN-RM-2035 v1.8 © Jennic 2010 31

Chapter 2
Jenie Functions

 Jennic

vJPDM_SaveContext

Description
This function is used to save both network and application context data to external
non-volatile memory. This allows the data to be recovered and the node to resume
normal operation following power loss to the on-chip memory (e.g. power failure or
sleep without memory held). Network and application context save/restore can be
individually enabled but if both are enabled, a single call to this function will save both
sets of context data.

To enable save/restore of network context, the global variable
gJenie_RecoverFromJpdm must be set to TRUE within the callback function
vJenie_CbConfigureNetwork(). The saved data will then be automatically
recovered when the stack is re-started using eJenie_Start().
To enable save/restore of application context, the eJPDM_RestoreContext()
function must be called within the callback function vJenie_CbInit().
Note that for a Router, child tables and routing tables will not be saved.

Parameters
None

Returns
None

void vJPDM_SaveContext(void);
32 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
eJPDM_RestoreContext

Description
This function is used to retrieve application context data stored in external non-
volatile memory, where this data was previously saved using the function
vJPDM_SaveContext(). This allows application data to be recovered so that the
node can resume normal operation following power loss to the on-chip memory (e.g.
power failure or sleep without memory held).

The eJPDM_RestoreContext() function must be included in the callback function
vJenie_CbInit() for a cold start:

The first time the application is run, the function registers a buffer in on-chip memory
where the application context data will be stored - this buffer is set up using the macro
JPDM_DECLARE_BUFFER_DESCRIPTION (see below).
When the application is subsequently re-started, the function will recover saved
application context data from external non-volatile memory. The recovered data is
stored in the buffer set up using JPDM_DECLARE_BUFFER_DESCRIPTION.

The above macro is defined as follows:

JPDM_DECLARE_BUFFER_DESCRIPTION(name, ptr, size)
where:

name is a label for the buffer as an ASCII string in quotes

ptr is a pointer to the start of the buffer in on-chip memory

size is the number of bytes in the buffer

Parameters
*psDescription Pointer to descriptor of on-chip memory buffer in which

application context data will be stored.

Returns
One of:

E_JENIE_SUCCESS
E_JENIE_ERR_INVLD_PARAM

For explanations, refer to Appendix B.

The invalid parameter code is returned, for example, if the specified memory buffer
size is too large (it must not be greater than the external memory sector size
determined by the global variable gJpdmSectorSize).

teJenieStatusCode eJPDM_RestoreContext(
tsJPDM_BufferDescription *psDescription);
JN-RM-2035 v1.8 © Jennic 2010 33

Chapter 2
Jenie Functions

 Jennic

vJPDM_EraseAllContext

Description
This function can be used to erase all context data (application and network) in
non-volatile memory, previously stored using the function
vJPDM_SaveContext(void).
You are likely to want to do this in order to revert back to the default context data. To
prevent the current context data from automatically being re-saved in non-volatile
memory, you should immediately follow this function call with a software reset, by
calling vJPI_SwReset(). This will ensure that the current context data is lost and the
default context data is restored to RAM.

Parameters
None

Returns
None

void vJPDM_EraseAllContext(void);
34 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
eJenie_SetSleepPeriod

Description
This function can be used on an End Device to set the duration for which the device
will sleep when put into sleep mode using the function eJenie_Sleep().
This wake method uses an on-chip wake timer, for which the 32-kHz oscillator must
be running during sleep. Therefore, a sleep mode with oscillator running must be
specified through eJenie_Sleep().

Parameters
u32SleepPeriodMs Sleep duration, in milliseconds

Returns
E_JENIE_SUCCESS

teJenieStatusCode eJenie_SetSleepPeriod(
uint32 u32SleepPeriodMs);

Caution: If you set a long sleep duration, greater than 7 s
(7000 ms), avoid sending data to this End Device while it is
asleep (while it is not polling its parent for data). This will
prevent the End Device from being orphaned by its parent.
JN-RM-2035 v1.8 © Jennic 2010 35

Chapter 2
Jenie Functions

 Jennic

eJenie_Sleep

Description
This function can be used to put an End Device into sleep mode. The function informs
the stack that the application will be ready to sleep once it has performed any tasks
that remain to be completed. It must be called from vJenie_CbMain() only (and from
no other callback function).

The following sleep options can be specified:

with or without the 32-kHz on-chip oscillator running
with or without preserving the contents of on-chip RAM (memory held)

Note that ‘doze mode’ of the JN5139/JN5148 device is not supported by Jenie/
JenNet.

The device can be pre-configured to sleep for a fixed duration, set using the function
eJenie_SetSleepPeriod(). This wake method uses the on-chip wake timers, for
which the 32-kHz oscillator must be running during sleep. The device can
alternatively be woken from sleep by an event deriving from the on-chip comparators
or DIOs - this method does not require the oscillator to be running during sleep.

Holding memory during sleep enables the device to retain context data which will
allow the device to quickly resume its network operation on waking. However, “sleep
with memory held” consumes more power than “sleep without memory held”. If you
have selected “sleep without memory held”, you can save context data (externally)
before sleeping using the function vJPDM_SaveContext().
On waking from sleep, the network stack calls the function vJenie_CbInit(), and the
device remains in the idle state and does not rejoin the network until this function
calls eJenie_Start(). While in the idle state, vJenie_CbMain() is regularly called by
the network stack, so that other necessary tasks can be performed. If you have
selected “sleep without memory held”, you will need to perform a cold restart and
retrieve the stored application context data by calling the function
eJPDM_RestoreContext() before calling eJenie_Start() in vJenie_CbInit().
Note that if a wake timer (see Section 3.6) is used to wake the device from “sleep
with memory held”, no event is generated via the vJenie_CbHwEvent() function or
the registered system controller callback function (although a wake-up initiated by a
DIO or comparator will generate a hardware event).

In ‘deep sleep’ mode, all switchable power domains are powered off and the 32-kHz
oscillator is stopped. This mode can only be exited by power cycling (switching off
then on) or resetting the chip (a DIO event can be used to trigger a reset).

teJenieStatusCode eJenie_Sleep(
teJenNetSleepMode eSleepMode);
36 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
Parameters
eSleepMode Specifies the required sleep mode, one of:

E_JENIE_SLEEP_OSCON_RAMON
E_JENIE_SLEEP_OSCON_RAMOFF
E_JENIE_SLEEP_OSCOFF_RAMON
E_JENIE_SLEEP_OSCOFF_RAMOFF
E_JENIE_SLEEP_DEEP

Returns
E_JENIE_SUCCESS
E_JENIE_ERR_UNKNOWN
JN-RM-2035 v1.8 © Jennic 2010 37

Chapter 2
Jenie Functions

 Jennic

eJenie_RadioPower

Description
This function can be used to set the transmit power level of the radio transceiver, or
to switch the radio transceiver on or off. The transmit power level can be set to a
value in the range -30 to +18 dBm, in steps of 6 dBm, with the following restrictions
depending on the module type:

Standard module: -30 to 0 dBm (default: 0 dBm)
High-power module: -12 to +18 dBm (default: 18 dBm)

In addition to the above values, 20 and 21 are used to switch the radio transmitter on
and off, respectively (enumerations are available to do this). With the exception of
these two special values, if the specified power level is not a multiple of 6, the power
level set by this function is the nearest multiple of 6 dBm within the valid range.

To set the power level for a high-power module, you must enable high-power mode
using the parameter bHighPower.

An ‘invalid parameter’ error will be returned if an out-of-range power level is specified.

Parameters
iPowerLevel Power level as multiple of 6 in the range -30 to +18, or one of:

E_JENIE_RADIO_OFF - switch radio transceiver off
E_JENIE_RADIO_ON - switch radio transceiver on

bHighPower Enables high-power mode for a Jennic high-power module:
TRUE - high-power mode enabled
FALSE - high-power mode disabled

Returns
One of:

E_JENIE_SUCCESS
E_JENIE_ERR_INVLD_PARAM

For explanations, refer to Appendix B.

teJenieStatusCode eJenie_RadioPower(int8 iPowerLevel,
bool_t bHighPower);

Caution: This function should be called only after
eJenie_Start() has been called, otherwise it will have no
effect. It can be called immediately after eJenie_Start() to
configure the radio power at the earliest opportunity.

Note: ‘Boost mode’ on the JN5139 device, detailed in the
JN5139 Datasheet (JN-DS-JN5139), is not supported by
Jenie/JenNet and cannot be configured using this function.
38 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
u32Jenie_GetVersion

Description
This function is used obtain the version number of the specified component of the
system. The function provides a means of checking that the host device is operating.

Parameters
eComponent Component for which version number is needed, one of:

E_JENIE_COMPONENT_JENIE (Jenie)
E_JENIE_COMPONENT_NETWORK (JenNet)
E_JENIE_COMPONENT_MAC (IEEE 802.15.4)
E_JENIE_COMPONENT_CHIP (JN513x chip)

Returns
Version number of component, as described below:

uint32 u32Jenie_GetVersion(
teJenieComponent eComponent);

Component Bits Description

E_JENIE_COMPONENT_JENIE 31-0 Jenie API version number

E_JENIE_COMPONENT_NETWORK 31-16 Network stack protocol (JenNet) revision

15-0 Network stack software revision

E_JENIE_COMPONENT_MAC

(IEEE 802.15.4)

31-24 Non-zero value identifying special or custom build

23-16 Really major revision

15-8 Minor (patch) revision

7-0 Major revision (only changes with new ROM version)

E_JENIE_COMPONENT_CHIP 31-28 Revision number: 0x0 for R0, 0x1 for R1, etc

27-22 Metal mask version ID

21-12 Jennic part number:
0x000 for JN5121
0x002 for JN5139
0x004 for JN5148

11-0 Manufacturer's identification
JN-RM-2035 v1.8 © Jennic 2010 39

Chapter 2
Jenie Functions

 Jennic

2.1.4 Statistics Functions

The statistics functions are concerned with interrogating the Routing and Neighbour
tables of the local node:

A Neighbour table contains routing information for all immediate children as
well as the node’s parent (which is the first entry in the table).
A Routing table contains routing information for all descendant nodes (lower in
the tree) that are not immediate children.

The functions are listed below, along with their page references:

Function Page
u16Jenie_GetRoutingTableSize 41
eJenie_GetRoutingTableEntry 42
u8Jenie_GetNeighbourTableSize 43
eJenie_GetNeighbourTableEntry 44
eJenie_ResetNeighbourStats 45
40 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
u16Jenie_GetRoutingTableSize

Description
This function obtains the number of valid entries in the local node’s Routing table.
Since the table is likely to become fragmented, the value returned is the number of
valid entries in the table and not the size of the table.

This function is only applicable to routing nodes (Routers and Co-ordinator).

Parameters
None

Returns
Number of valid entries in the local Routing table

uint16 u16Jenie_GetRoutingTableSize(void);
JN-RM-2035 v1.8 © Jennic 2010 41

Chapter 2
Jenie Functions

 Jennic

eJenie_GetRoutingTableEntry

Description
This function is used to obtain the specified entry of the local node’s Routing table.

If the entry exists, the function returns E_JENIE_SUCCESS and populates the
structure of type tsJenie_RoutingEntry pointed to by psRoutingEntry - for details of
this structure, see Appendix C.
If the entry does not exist, the function returns E_JENIE_ERR_INVLD_PARAM
(referring to the u16EntryNum parameter) but fills in the u16TotalEntries field of
the structure pointed to by psRoutingEntry.

Parameters
u16EntryNum Index of the required Routing table entry (this value is a

'logical index' and not the physical location of the entry in the
table).

*psRoutingEntry Pointer to the data structure of type tsJenie_RoutingEntry to
be filled in by Jenie - see Appendix C.

Returns
One of:

E_JENIE_SUCCESS
E_JENIE_ERR_INVLD_PARAM

For explanations, refer to Appendix B.

teJenieStatusCode eJenie_GetRoutingTableEntry(
uint16 u16EntryNum,
tsJenie_RoutingEntry *psRoutingEntry);
42 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
u8Jenie_GetNeighbourTableSize

Description
This function is used to obtain the size (number of entries) of the local node's
Neighbour table. The result includes the node's parent as well as its children.

This function is only applicable to routing nodes (Routers and Co-ordinator).

Parameters
None

Returns
Number of entries in the Neighbour table

uint8 u8Jenie_GetNeighbourTableSize(void);
JN-RM-2035 v1.8 © Jennic 2010 43

Chapter 2
Jenie Functions

 Jennic

eJenie_GetNeighbourTableEntry

Description
This function is used to obtain the specified entry of the local node’s Neighbour table.

If the entry exists, the function returns E_JENIE_SUCCESS and populates the
structure of type tsJenie_NeighbourEntry pointed to by psNeighbourEntry - for details
of this structure, see Appendix C.
If the entry does not exist, the function returns E_JENIE_ERR_INVLD_PARAM
(referring to the u8EntryNum parameter) but fills in the u8TotalEntries field of the
structure pointed to by psNeighbourEntry.

This function is only applicable to routing nodes (Routers and Co-ordinator).

Note that entry zero of a Neighbour table is always for the node’s parent. Since the
Co-ordinator has no parent, entry zero should never be specified in this function for
the Co-ordinator.

Parameters
u8EntryNum Index of the required Neighbour table entry (this value is a

'logical index' and not the physical location of the entry in the
table).

*psNeighbourEntry Pointer to the data structure of type tsJenie_NeighbourEntry
to be filled in by Jenie - see Appendix C.

Returns
One of:

E_JENIE_SUCCESS
E_JENIE_ERR_INVLD_PARAM

For explanations, refer to Appendix B.

teJenieStatusCode eJenie_GetNeighbourTableEntry(
uint8 u8EntryNum,
tsJenie_NeighbourEntry *psNeighbourEntry);
44 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
eJenie_ResetNeighbourStats

Description
This function is used to reset the statistics components of the specified Neighbour
table entry on the local node. The components that are reset are:

u8LinkQuality - quality of link with relevant neighbouring node
u16PktsLost - number of unacknowledged packets sent to the node
u16PktsSent - number of acknowledged packets sent to the node
u16PktsRcvd - number of packets received from the node

If the entry is not found, the function returns E_JENIE_ERR_INVLD_PARAM.

Parameters
u16EntryNum Index of the relevant Neighbour table entry (this value is a

'logical index' and not the physical location of the entry in the
table).

Returns
One of:

E_JENIE_SUCCESS
E_JENIE_ERR_INVLD_PARAM

For explanations, refer to Appendix B.

teJenieStatusCode eJenie_ResetNeighbourStats(
uint16 u16EntryNum);
JN-RM-2035 v1.8 © Jennic 2010 45

Chapter 2
Jenie Functions

 Jennic

2.2 “Stack to Application” Functions

This section details the “Stack to Application” functions of the Jenie API. These are
callback functions triggered by events from the underlying stack. They provide the
opportunity for the application software to receive information and respond at defined
points during program execution, such as at stack initialisation, or at regular intervals.
You must define these functions in your application code, even those functions that are
not used in your code (and are therefore empty).

The callback functions handle:

stack management events
data events
hardware events

Stack management and data events are described in Appendix D. Hardware events
are described in Appendix E.

The callback functions are listed below, along with their page references:

Function Page
vJenie_CbConfigureNetwork 47
vJenie_CbInit 48
vJenie_CbMain 49
vJenie_CbStackMgmtEvent 50
vJenie_CbStackDataEvent 51
vJenie_CbHwEvent 52

Note: None of these functions except vJenie_CbInit()
is allowed to block.
46 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vJenie_CbConfigureNetwork

Description
This function is the first callback of an application and is called before the stack
initialises itself, providing the application with the opportunity to initialise/override
default stack parameters - for full details of these parameters, refer to Appendix A.
The function is only called during a cold start.

Parameters
None

Returns
None

void vJenie_CbConfigureNetwork(void);
JN-RM-2035 v1.8 © Jennic 2010 47

Chapter 2
Jenie Functions

 Jennic

vJenie_CbInit

Description
This function is called after the stack has initialised itself. It provides the application
with the opportunity to perform any additional hardware or software initialisation that
may be required.

This callback function should normally include a call to the function eJenie_Start().

Parameters
bWarmStart Specifies whether the device has undergone a cold or warm

start:
TRUE - warm start
FALSE - cold start

Returns
None

void vJenie_CbInit(bool_t bWarmStart);
48 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vJenie_CbMain

Description
This function is the main application task. It is called many times per second by the
stack and provides the opportunity for the application to perform any processing that
is required. This function should be non-blocking.

Parameters
None

Returns
None

void vJenie_CbMain(void);
JN-RM-2035 v1.8 © Jennic 2010 49

Chapter 2
Jenie Functions

 Jennic

vJenie_CbStackMgmtEvent

Description
This function is called by the stack to inform the application that one of a number of
stack management events has occurred. For example, the node may have received
a service request response from a remote node.

For further details of the stack management events, refer to Appendix D.1.

Parameters
eEventType The type of stack management event received, one of:

E_JENIE_REG_SVC_RSP
E_JENIE_SVC_REQ_RSP
E_JENIE_POLL_CMPLT
E_JENIE_PACKET_SENT
E_JENIE_PACKET_FAILED
E_JENIE_NETWORK_UP
E_JENIE_STACK_RESET
E_JENIE_CHILD_JOINED
E_JENIE_CHILD_LEAVE
E_JENIE_CHILD_REJECTED

*pvEventPrim Pointer to event primitive (if relevant, or NULL if not)

Returns
None

void vJenie_CbStackMgmtEvent(
teJenieEventType eEventType,
void *pvEventPrim);
50 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vJenie_CbStackDataEvent

Description
This function is called by the stack to inform the application that one of a number of
stack data events has occurred. For example, the node may have received a
message from a remote node or a response to one of its own messages.

For further details of the data events, refer to Appendix D.2.

Parameters
eEventType The type of data event received, one of:

E_JENIE_DATA
E_JENIE_DATA_TO_SERVICE
E_JENIE_DATA_ACK
E_JENIE_DATA_TO_SERVICE_ACK

*pvEventPrim Pointer to event primitive (if relevant, or NULL if not)

Returns
None

void vJenie_CbStackDataEvent(
teJenieEventType eEventType,
void *pvEventPrim);
JN-RM-2035 v1.8 © Jennic 2010 51

Chapter 2
Jenie Functions

 Jennic

vJenie_CbHwEvent

Description
This function is called by the stack to inform the application that a hardware event
has occurred - that is, an event has been generated by an on-chip peripheral of the
JN5139/JN5148 wireless microcontroller.

Parameters
u32DeviceId Indicates the on-chip peripheral that generated the event - see

Appendix E.
u32ItemBitmap Indicates the source within the peripheral that caused the

event - see Appendix E.
Bits 15-8 of this bitmap parameter are also used to deliver a
received data byte to the application when a UART ‘received
data’ or ‘timeout’ interrupt occurs.

Returns
None

void vJenie_CbHwEvent(uint32 u32DeviceId,
uint32 u32ItemBitmap);

Caution: A hardware event is provided by an on-chip tick
timer every 10 ms (event E_JPI_DEVICE_TICK_TIMER).
This tick timer cannot be controlled by the application and is
not guaranteed to always run. Therefore, your application
must not use this tick timer.
52 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
3. Jenie Peripherals Interface (JPI)
This chapter details the Jenie Peripherals Interface (JPI), part of the Jenie API. These
functions are used to interface with the on-chip peripherals of the Jennic JN5139/
JN5148 wireless microcontroller. The functions are defined in the header file JPI.h.

Peripheral control using these functions covers:

General - see Section 3.1
Analogue resources (ADC, DACs, comparators) - see Section 3.2
Digital I/O (DIOs) - see Section 3.3
UARTs - see Section 3.4
Timers - see Section 3.5
Wake timers - see Section 3.6
Serial Peripheral Interface (SPI) - see Section 3.7
2-Wire Serial Interface (SI) master - see Section 3.8
Intelligent Peripheral (IP) interface - see Section 3.9

Before using the JPI functions, you are advised to consult the following documentation
for information on the JN5139/JN5148 integrated peripherals:

Jenie API User Guide (JN-UG-3042)
JN513x or JN5148 Data Sheet (JN-DS-JN513x or JN-DS-JN5148)

Important: The JPI library is provided for Jennic
customers who are maintaining Jenie applications for
the JN5139 device or migrating Jenie applications from
the JN5139 to the JN5148 device. Any new Jenie
application development for the JN5139 or JN5148
device should instead use the Integrated Peripherals
API, which includes extra functionality. The functions of
this API are provided in the file AppHardwareApi.h and
are described in the Integrated Peripherals API
Reference Manual (JN-RM-2001).

Caution: The Jenie ‘Application to Stack’ functions
included in Chapter 2 must not be called from interrupt
context. Therefore, these functions must not be called
from within a user-defined callback function registered
through the JPI. Instead, the application should set a
flag to indicate that the call should be made later,
outside of interrupt context.
JN-RM-2035 v1.8 © Jennic 2010 53

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

3.1 General

This section details the general functions that are not specific to an individual JN5139/
JN5148 integrated peripheral.

The functions are listed below, along with their page references:

Function Page
u32JPI_Init 55
u8JPI_PowerStatus 56
vJPI_SwReset 57
vJPI_DriveResetOut 58
vJPI_HighPowerModuleEnable 59
vJPI_SysCtrlRegisterCallback 60
54 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
u32JPI_Init

Description
This function initialises the Jenie Peripherals Interface (JPI). The function should be
called after every reset or wake-up, and before any other JPI functions are called.

Parameters
None

Returns
0 if initialisation failed, otherwise a 32-bit version number (most significant 16 bits are
main revision, least significant 16 bits are minor revision)

uint32 u32JPI_Init(void);
JN-RM-2035 v1.8 © Jennic 2010 55

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

u8JPI_PowerStatus

Description
This function obtains various settings for the JN5139/JN5148 device (see below).

Parameters
None

Returns
Returns the status information in bits 0-3 of the 8-bit return value:

uint8 u8JPI_PowerStatus(void);

Bit Reads a ‘1’ if...

0 Device has completed a sleep-wake cycle

1 RAM contents were retained during sleep

2 Analogue power domain is switched on

3 Protocol logic is operational - clock is enabled

4-7 Unused
56 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vJPI_SwReset

Description
This function generates an internal reset, which completely re-starts the system.

Parameters
None

Returns
None

void vJPI_SwReset (void);

Caution: Calling this function has the same effect as
momentarily pulling the external RESETN line low. When
RESETN is low, on-chip RAM is not powered. Therefore, as a
result of this function call, data stored in RAM may be
corrupted or lost.
JN-RM-2035 v1.8 © Jennic 2010 57

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_DriveResetOut

Description
This function drives the ResetN line low for the specified time.

Note that one or more external devices may be connected to the ResetN line.
Therefore, using this function to drive this line low may affect these external devices.
For more information on the ResetN line and external devices, consult the datasheet
for your wireless microcontroller.

Parameters
u8Period Duration for which line will be driven low, in milliseconds

Returns
None

void vJPI_DriveResetOut(uint8 u8Period);
58 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vJPI_HighPowerModuleEnable

Description
This function allows the transmitter and receiver sections of a Jennic high-power
module to be enabled or disabled. The transmitter and receiver sections must both
be enabled or disabled at the same time (enabling only one of them is not supported).
The function must be called before using the radio transceiver on a high-power
module.

The function sets the CCA (Clear Channel Assessment) threshold to suit the gain of
the attached Jennic high-power module.

Note that this function cannot be used with a high-power module from a manufacturer
other than Jennic.

Parameters
bRFTXEn Enable/disable setting for high-power module transmitter

(must be same setting as for bRFRXEn):
TRUE - enable transmitter
FALSE - disable transmitter

bRFRXEn Enable/disable setting for high-power module receiver
(must be same setting as for bRFTXEn):
TRUE - enable receiver
FALSE - disable receiver

Returns
None

void vJPI_HighPowerModuleEnable(bool_t bRFTXEn,
bool_t bRFRXEn);
JN-RM-2035 v1.8 © Jennic 2010 59

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_SysCtrlRegisterCallback

Description
This function registers an application callback that will be called when the System
Controller interrupt is triggered.

A System Controller interrupt can be caused by wake timer, comparator and DIO
events. Note that the System Controller interrupt handler will clear the interrupt
before invoking the callback function to deal with the interrupt. Also note that when a
DIO or comparator event wakes the device from sleep with memory held, the
registered callback function will be called before any other Jenie callback function.

The registered callback function is only preserved during sleep with memory held. If
RAM is powered off during sleep and interrupts are required, the callback function
must be re-registered before calling u32JPI_Init() on waking.

Interrupt handling is described in Appendix E.

Parameters
prSysCtrlCallback Pointer to function to be called when a System Controller

interrupt occurs

Returns
None

void vJPI_SysCtrlRegisterCallback(
PR_HWINT_APPCALLBACK prSysCtrlCallback);
60 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
3.2 Analogue Peripherals
This section details the functions for controlling the analogue peripherals - ADC, DACs
and comparators. The JN5139/JN5148 device has:

One 12-bit ADC (Analogue-to-Digital Converter)
Two DACs (Digital to Analogue Converters) - DAC1 and DAC2 - these are
11-bit DACs on the JN5139 device and 12-bit DACs on the JN5148 device
Two comparators - COMP1 and COMP2

A comparator can be programmed to provide an interrupt when the difference
between its inputs changes sense, and can also be used to wake the chip from sleep.
The inputs to the comparator use dedicated pins on the chip.

The functions are listed below, along with their page references:

Function Page
vJPI_AnalogueConfigure 62
vJPI_AnalogueEnable 63
vJPI_AnalogueDisable 64
vJPI_APRegisterCallback 65
bJPI_APRegulatorEnabled 66
vJPI_AnalogueStartSample 67
u16JPI_AnalogueAdcRead 68
bJPI_AdcPoll 69
vJPI_AnalogueDacOutput 70
bJPI_DacPoll 71
vJPI_ComparatorEnable 72
vJPI_ComparatorDisable 73
bJPI_ComparatorStatus 74
vJPI_ComparatorIntEnable 75
bJPI_ComparatorWakeStatus 76

Note 1: The analogue peripheral regulator must be
enabled when configuring a comparator, but can be
disabled once configuration is complete.

Note 2: If a comparator is to be used to wake the device
from sleep mode then the DAC output option cannot be
used, since the analogue power domain is turned off
when the device enters sleep mode.

Note 3: Only one DAC can be used at any one time,
since the two DACs share resources. If both DACs are
to be used concurrently, they can be multiplexed.
JN-RM-2035 v1.8 © Jennic 2010 61

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_AnalogueConfigure

Description
This function configures common parameters for all on-chip analogue resources.

The analogue peripheral regulator can be enabled - this dedicated power source
minimises digital noise and is sourced from the analogue supply pin VDD1.
Interrupts can be enabled that are generated after each ADC conversion (Analogue
Peripherals interrupts are handled by a callback function registered using
vJPII_APRegisterCallback())
The clock frequency (derived from the chip’s 16-MHz clock) is specified.
The ‘sampling interval’ is specified as a number of clock periods.
The source of the reference voltage, Vref, is specified.

For the ADC, the input signal is integrated over 3 x Sampling Interval. For the ADC
and DACs, the total conversion period (for a single value) is given by

(3 x sampling interval) + (14 x clock period)

Parameters
bAPRegulator Enable/disable analogue peripheral regulator:

E_JPI_AP_REGULATOR_ENABLE
E_JPI_AP_REGULATOR_DISABLE

bIntEnable Enable/disable interrupt when conversion/capture completes:
E_JPI_AP_INT_ENABLE
E_JPI_AP_INT_DISABLE

u8SampleSelect Select sampling interval in terms of divided clock periods:
E_JPI_AP_SAMPLE_2 (2 clock periods)
E_JPI_AP_SAMPLE_4 (4 clock periods)
E_JPI_AP_SAMPLE_6 (6 clock periods)
E_JPI_AP_SAMPLE_8 (8 clock periods)

u8ClockDivRatio Clock divide ratio:
E_JPI_AP_CLOCKDIV_2MHZ (achieves 2 MHz)
E_JPI_AP_CLOCKDIV_1MHZ (achieves 1 MHz)
E_JPI_AP_CLOCKDIV_500KHZ (achieves 500 kHz)
E_JPI_AP_CLOCKDIV_250KHZ (achieves 250 kHz)
(500 kHz is recommended for ADC and 250 kHz for DACs)

bRefSelect Select source of reference voltage, Vref:
E_JPI_AP_EXTREF (external from VREF pin)
E_JPI_AP_INTREF (internal)

Returns
None

void vJPI_AnalogueConfigure(bool_t bAPRegulator,
bool_t bIntEnable,
uint8 u8SampleSelect,
uint8 u8ClockDivRatio,
bool_t bRefSelect);
62 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vJPI_AnalogueEnable

Description
This function configures and enables the specified analogue device (ADC or DAC).
A parameter is relevant to both ADC and DACs unless otherwise stated. Note that:

The source of Vref is defined using vJPI_AnalogueConfigure().

For the ADC, the internal voltage monitor measures the voltage on the pin VDD1.
The ADC can be configured to operate in single-shot mode or continuous mode.
Only one of the DACs can be enabled at any one time - if both DACs are to be used
concurrently, they can be multiplexed.
For a DAC, the first value to be converted is specified through this function - the
conversion will be started immediately after the function call. Subsequent values must
be specified through vJPI_AnalogueDacOutput().

Parameters
eChan Analogue device to configure and enable:

E_JPI_ANALOGUE_DAC_0 (DAC1)
E_JPI_ANALOGUE_DAC_1 (DAC2)
E_JPI_ANALOGUE_ADC (ADC)

bInputRange Set input voltage range to either 0-Vref or 0-2Vref:
E_JPI_AP_INPUT_RANGE_2 (0-2Vref)
E_JPI_AP_INPUT_RANGE_1 (0-Vref)

bContinuous Enable/disable continuous conversion for ADC:
E_JPI_ADC_CONTINUOUS (continuous mode)
E_JPI_ADC_SINGLE_SHOT (single shot mode)

u8Source Source for ADC conversions:
E_JPI_ADC_SRC_ADC_1 (ADC1 input pin)
E_JPI_ADC_SRC_ADC_2 (ADC2 input pin)
E_JPI_ADC_SRC_ADC_3 (ADC3 input pin)
E_JPI_ADC_SRC_ADC_4 (ADC4 input pin)
E_JPI_ADC_SRC_TEMP (on-chip temperature sensor)
E_JPI_ADC_SRC_VOLT (internal voltage monitor)

bOutputHold Unused - set to 0 (FALSE)
u16InitValue Initial digital value for DAC to convert (only lower 11/12 bits used)

Returns
None

void vJPI_AnalogueEnable(
teJPI_AnalogueChannel eChan,
bool_t bInputRange,
bool_t bContinuous,
uint8 u8Source,
bool_t bOutputHold,
uint16 u16InitValue);
JN-RM-2035 v1.8 © Jennic 2010 63

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_AnalogueDisable

Description
This function disables the specified analogue device (ADC or DAC).

Note that only one of the two DACs can be used at any one time. If both DACs are
to be used, you must alternate between them - use vJPI_AnalogueEnable() to
enable a DAC and then vJPI_AnalogueDisable() to disable the DAC before
enabling the next one using vJPI_AnalogueEnable(), and so on.

Parameters
eChan Analogue device to disable:

E_JPI_ANALOGUE_DAC_0 (DAC1)
E_JPI_ANALOGUE_DAC_1 (DAC2)
E_JPI_ANALOGUE_ADC (ADC)

Returns
None

void vJPI_AnalogueDisable(teJPI_AnalogueChannel eChan);
64 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vJPI_APRegisterCallback

Description
This function registers an application callback that will be called when the Analogue
Peripherals interrupt is triggered.

The registered callback function is only preserved during sleep with memory held. If
RAM is powered off during sleep and interrupts are required, the callback function
must be re-registered before calling u32JPI_Init() on waking.

Interrupt handling is described in Appendix E.

Parameters
prApCallback Pointer to function to be called when the Analogue

Peripherals interrupt occurs

Returns
None

void vJPI_APRegisterCallback(
PR_HWINT_APPCALLBACK prApCallback);

Note: Among the analogue peripherals, only the ADC
generates Analogue Peripheral interrupts. The DACs do not
generate interrupts and the comparators generate System
Controller interrupts (see Section 3.1, page 60).
JN-RM-2035 v1.8 © Jennic 2010 65

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

bJPI_APRegulatorEnabled

Description
This function enquires whether the analogue peripheral regulator has powered up.
The function should be called after enabling the regulator through
vJPI_AnalogueConfigure(). When the regulator is enabled, it will take a little time
to start up - this period is 31.25 µs for the JN5139/JN5148 device.

Parameters
None

Returns
TRUE if powered up, FALSE otherwise

bool_t bJPI_APRegulatorEnabled(void);
66 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vJPI_AnalogueStartSample

Description
This function starts the ADC sampling in single-shot or continuous mode, depending
on which mode has been configured using vJPI_AnalogueEnable():

Single-shot mode: ADC will perform a single conversion and then stop (only valid if
DACs are not enabled).
Continuous mode: ADC will perform conversions repeatedly until stopped using the
function vJPI_AnalogueDisable().

If analogue peripheral interrupts have been enabled in vJPI_AnalogueConfigure(),
an interrupt will be triggered when a result becomes available. Alternatively, if
interrupts are disabled, you can use bJPI_AdcPoll() to check for a result. Once a
conversion result becomes available, it should be read with
u16JPI_AnalogueAdcRead().

Parameters
None

Returns
None

void vJPI_AnalogueStartSample(void);
JN-RM-2035 v1.8 © Jennic 2010 67

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

u16JPI_AnalogueAdcRead

Description
This function reads the most recent ADC conversion result. The value is 12 bits wide.

If analogue peripheral interrupts have been enabled in vJPI_AnalogueConfigure(),
you must call this read function from a callback function invoked when an interrupt
has been generated to indicate that an ADC result is ready (this user-defined
callback function is registered using the function vJPI_APRegisterCallback()).
Alternatively, if interrupts have not been enabled, before calling the read function,
you must first check whether a result is ready using the function bJPI_AdcPoll().

Parameters
None

Returns
Most recent ADC conversion result (the result is contained in the least significant
12 bits of the 16-bit returned value)

uint16 u16JPI_AnalogueAdcRead(void);
68 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
bJPI_AdcPoll

Description
This function can be used when the ADC is operating in single-shot mode or
continuous mode, to check whether the ADC is still busy performing a conversion:

In single-shot mode, the poll result indicates whether the sample has been taken and is
ready to be read.
In continuous mode, the poll result indicates whether a new sample is ready to be read.

You may wish to call this function before attempting to read the conversion result
using u16JPI_AnalogueAdcRead(), particularly if you are not using the analogue
peripheral interrupts.

Parameters
None

Returns
TRUE if ADC is busy, FALSE if conversion complete

bool_t bJPI_AdcPoll(void);
JN-RM-2035 v1.8 © Jennic 2010 69

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_AnalogueDacOutput

Description
This function allows the next value for conversion by the specified DAC to be set.
This value will be used for all subsequent conversions until the function is called
again with a new value.Although a 16-bit value must be specified in this function:

For the JN5148 device, only the 12 least significant bits will be used, since the chip
features 12-bit DACs
For the JN5139 device, only the 11 least significant bits will be used, since the chip
features 11-bit DACs

Parameters
u8Dac Identity of DAC:

E_JPI_ANALOGUE_DAC_0 (DAC1)
E_JPI_ANALOGUE_DAC_1 (DAC2)

u16Value Value to convert to analogue - only the 11 or 12 least
significant bits will be used (see above)

Returns
None

void vJPI_AnalogueDacOutput(uint8 u8Dac,
uint16 u16Value);

Note: The first value to convert using the DAC is specified
when the DAC is enabled through vJPI_AnalogueEnable().
70 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
bJPI_DacPoll

Description
This function checks whether the enabled DAC is busy performing a conversion.

A short delay (approximately 2 µs) after polling and checking the DAC is included to
prevent lock-ups when further calls are made to the DAC.

Parameters
None

Returns
TRUE if DAC is busy, FALSE if conversion complete

bool_t bJPI_DacPoll (void);
JN-RM-2035 v1.8 © Jennic 2010 71

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_ComparatorEnable

Description
This function configures and enables the specified comparator. The reference signal
and hysteresis setting must be specified.

The hysteresis voltage selected should be greater than:

the noise level in the input signal on the comparator '+' pin (COMP1P or COMP2P), if
comparing the signal on this pin with the internal reference voltage or DAC output
the differential noise between the signals on the comparator ‘+’ and ‘-’ pins, if
comparing the signals on these two pins

Note that the same hysteresis setting is used for both comparators, so if this function
is called several times for different comparators, only the hysteresis value from the
final call will be used.

Once enabled using this function, the comparator can be disabled using the function
vJPI_ComparatorDisable().

Parameters
eComparator Identity of comparator:

E_JPI_COMPARATOR_1
E_JPI_COMPARATOR_2

u8Hysteresis Hysteresis setting (controllable from 0 to ±20mV):
JN5139:
E_JPI_COMP_HYSTERESIS_0MV (0 mV)
E_JPI_COMP_HYSTERESIS_5MV (±5 mV)
E_JPI_COMP_HYSTERESIS_10MV (±10 mV)
E_JPI_COMP_HYSTERESIS_20MV (±20 mV)
JN5148:
E_JPI_COMP_HYSTERESIS_0MV (0 mV)
E_JPI_COMP_HYSTERESIS_10MV (±5 mV)
E_JPI_COMP_HYSTERESIS_20MV (±10 mV)
E_JPI_COMP_HYSTERESIS_40MV (±20 mV)

u8SignalSelect Reference signal to compare with input signal on comparator
'+' pin:
E_JPI_COMP_SEL_EXT (Comparator '-' pin)
E_JPI_COMP_SEL_DAC (Related DAC output)
E_JPI_COMP_SEL_BANDGAP (Fixed at Vref)

Returns
None

void vJPI_ComparatorEnable(
teJPI_Comparator eComparator,
uint8 u8Hysteresis,
uint8 u8SignalSelect);
72 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vJPI_ComparatorDisable

Description
This function disables the specified comparator.

Parameters
eComparator Identity of comparator:

E_JPI_COMPARATOR_1
E_JPI_COMPARATOR_2

Returns
None

void vJPI_ComparatorDisable(
teJPI_Comparator eComparator);
JN-RM-2035 v1.8 © Jennic 2010 73

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

bJPI_ComparatorStatus

Description
This function returns the status of the specified comparator.

Parameters
eComparator Identity of comparator:

E_JPI_COMPARATOR_1
E_JPI_COMPARATOR_2

Returns
FALSE if the input signal is lower than reference signal
TRUE if the input signal is higher than reference signal

bool_t bJPI_ComparatorStatus(
teJPI_Comparator eComparator);
74 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vJPI_ComparatorIntEnable

Description
This function enables the comparator interrupt for the specified comparator. The
interrupt can be used to wake the device from sleep, and as a normal interrupt.

If enabled, an interrupt is generated on one of the following conditions (which must
be configured):

The input signal rises above the reference signal (plus hysteresis level, if non-zero)
The input signal falls below the reference signal (minus hysteresis level, if non-zero)

Comparator interrupts are handled by the System Controller callback function,
registered using the function vJPI_SysCtrlRegisterCallback().

Parameters
eComparator Identity of comparator:

E_JPI_COMPARATOR_1
E_JPI_COMPARATOR_2

bIntEnable TRUE to enable interrupt
FALSE to disable interrupt

bRisingNotFalling TRUE - interrupt when input signal rises above reference
FALSE - interrupt when input signal falls below reference

Returns
None

void vJPI_ComparatorIntEnable(
teJPI_Comparator eComparator,
bool_t bIntEnable,
bool_t bRisingNotFalling);
JN-RM-2035 v1.8 © Jennic 2010 75

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

bJPI_ComparatorWakeStatus

Description
This function returns the wake-up interrupt status of the specified comparator. The
value is cleared after reading.

Parameters
eComparator Identity of comparator:

E_JPI_COMPARATOR_1
E_JPI_COMPARATOR_2

Returns
0 if wake-up interrupt has not occurred
Non-zero value if wake-up interrupt has occurred

uint8 u8JPI_ComparatorWakeStatus(
teJPI_Comparator eComparator);

Note: You cannot use this function to check whether a
comparator was responsible for a recent wake-up event. You
should determine the wake source as part of your System
Controller callback function, as described in Appendix E.2.
76 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
3.3 Digital I/O
This section details the functions for controlling the digital I/O (DIO) pins. The JN5139/
JN5148 device includes 21 DIO pins, denoted DIO0 to DIO20. Each pin can be
individually configured as an input or output. When configured as an input, a DIO can
be used to generate interrupts and to wake the device from sleep. However, the pins
for the DIO lines are shared with other peripherals (see list below) and are not
available when those peripherals are enabled:

UARTs
Timers
Serial Interface (2-wire)
Serial Peripheral Interface (SPI)
Intelligent Peripheral (IP) interface

For details of the shared pins, refer to the datasheet for your wireless microcontroller.

In addition to normal operation, when configured as inputs, the DIOs can be used to
generate interrupts and wake the device from sleep.

The functions are listed below, along with their page references:

Function Page
vJPI_DioSetDirection 78
vJPI_DioSetOutput 79
vJPI_DioSetPullup 80
u32JPI_DioReadInput 81
vJPI_DioWake 82
u32JPI_DioWakeStatus 84
JN-RM-2035 v1.8 © Jennic 2010 77

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_DioSetDirection

Description
This function sets the direction for the DIO pins individually as either input or output.
This is done through two bitmaps for inputs and outputs, u32Inputs and u32Outputs
respectively. In these values, each of bits 0 to 20 represents a DIO pin, where bit 0
represents DIO0 and bit 20 represents DIO20 (bits 21-31 are ignored).

Note that:

Not all DIO pins must be defined (in other words, u32Inputs logical ANDed with
u32Outputs does not need to produce all zeros for bits 0-20).
Any DIO pins that are not defined by a call to this function (the relevant bits being
cleared in both bitmaps) will be left in their previous states.
If a bit is set in both u32Inputs and u32Outputs, it will default to becoming an input.
If a DIO is assigned to another peripheral which is enabled, this function call will not
immediately affect the relevant pin. However, the DIO setting specified by this function
will take effect if/when the relevant peripheral is subsequently disabled.
This function does not change the DIO pull-up status - this must be done separately
using vJPI_DioSetPullup().

Parameters
u32Inputs Bitmap of inputs - a bit set means that the corresponding DIO

pin will become an input
u32Outputs Bitmap of outputs - a bit set means that the corresponding DIO

pin will become an output

Returns
None

void vJPI_DioSetDirection(uint32 u32Inputs,
uint32 u32Outputs);
78 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vJPI_DioSetOutput

Description
This function sets individual DIO outputs on or off. This is done through two bitmaps
for on-pins and off-pins, u32On and u32Off respectively. In these values, each of bits
0 to 20 represents a DIO pin, where bit 0 represents DIO0 and bit 20 represents
DIO20 (bits 21-31 are ignored). Setting a bit in one of these bitmaps configures the
corresponding DIO output as on or off, depending on the bitmap.

Note that:

Not all DIO pins must be defined (in other words, u32On logical ANDed with u32Off
does not need to produce all zeros for bits 0-20).
Any DIO pins that are not defined by a call to this function (the relevant bits being
cleared in both bitmaps) will be left in their previous states.
If a bit is set in both u32On and u32Off, the DIO pin will default to off.
This call has no effect on DIO pins that are not defined as outputs (see
vJPI_DioSetDirection()) until a time when they are re-configured as outputs.
If a DIO is assigned to another peripheral which is enabled, this function call will not
affect the relevant DIO, until a time when the relevant peripheral is disabled.

Parameters
u32On Bitmap of on-pins - a bit set means that the corresponding DIO

pin will be set to on
u32Off Bitmap of off-pins - a bit set means that the corresponding DIO

pin will be set to off

Returns
None

void vJPI_DioSetOutput(uint32 u32On, uint32 u32Off);
JN-RM-2035 v1.8 © Jennic 2010 79

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_DioSetPullup

Description
This function sets the pull-ups on individual DIO pins as on or off. A pull-up can be
set irrespective of whether the pin is an input or output. This is done through two
bitmaps for ‘pull-ups on’ and ‘pull-ups off’, u32On and u32Off respectively. In these
values, each of bits 0 to 20 represents a DIO pin, where bit 0 represents DIO0 and
bit 20 represents DIO20 (bits 21-31 are ignored).

Note that:

By default, the pull-ups are enabled (on) at power-up.
Not all DIO pull-ups must be set (in other words, u32On logical ORed with u32Off does
not need to produce all zeros for bits 0-20).
Any DIO pull-ups that are not set by a call to this function (the relevant bits being
cleared in both bitmaps) will be left in their previous states.
If a bit is set in both u32On and u32Off, the corresponding DIO pull-up will default to off.
If a DIO is assigned to another peripheral which is enabled, this function call will not
immediately affect the relevant pin. However, the DIO pull-up setting specified by this
function will take effect if/when the relevant peripheral is subsequently disabled.

Parameters
u32On Bitmap of ‘pull-ups on’ - a bit set means that the corresponding

pull-up will be turned on
u32Off Bitmap of ‘pull-ups off’ - a bit set means that the corresponding

pull-up will be turned off

Returns
None

void vJPI_DioSetPullup(uint32 u32On, uint32 u32Off);
80 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
u32JPI_DioReadInput

Description
This function returns the value of each of the DIO input pins (irrespective of whether
the pins are used as inputs, as outputs or by other enabled peripherals).

Parameters
None

Returns
Bitmap:

Each of bits 0-20 corresponds to a DIO pin, where bit 0 represents DIO0 and
bit 20 represents DIO20. The bit is set to 1 if the input is high or to 0 if the input
is low. Bits 21-31 are always 0.

uint32 u32JPI_DioReadInput(void);
JN-RM-2035 v1.8 © Jennic 2010 81

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_DioWake

Description
This function configures and enables/disables wake signals (interrupts) on the DIO
input pins.

The function enables/disables wake interrupts on the DIO pins - that is, whether
activity on a DIO input will be able to wake the device from sleep or doze mode. This
is done through two bitmaps for ‘wake enabled’ and ‘wake disabled’, u32Enable and
u32Disable respectively. In these values, each of bits 0 to 20 represents a DIO pin,
where bit 0 represents DIO0 and bit 20 represents DIO20 (bits 21-31 are ignored).
Setting a bit in one of these bitmaps enables/disables wake interrupts on the
corresponding DIO, depending on the bitmap. Note that:

Not all DIO wake interrupts must be defined (in other words, u32Enable logical ORed
with u32Disable does not need to produce all zeros for bits 0-20).
Any DIO wake interrupts that are not defined by a call to this function (the relevant bits
being cleared in both bitmaps) will be left in their previous states.
If a bit is set in both u32Enable and u32Disable, the corresponding DIO wake interrupt
will default to disabled.
This call has no effect on DIO pins that are not defined as inputs (see
vJPI_DioSetDirection()).
DIOs assigned to enabled JN5139/JN5148 peripherals are affected by this function.
The DIO wake interrupt settings made with this function are retained during sleep.

The function also controls whether individual DIOs will generate wake interrupts on
a rising or falling edge of the DIO input. This is done through two bitmaps for ‘rising
edge’ and ‘falling edge’, u32Rising and u32Falling respectively. In these values, each
of bits 0 to 20 represents a DIO pin, where bit 0 represents DIO0 and bit 20
represents DIO20 (bits 21-31 are ignored). Setting a bit in one of these bitmaps
configures wake interrupts on the corresponding DIO to occur on a rising or falling
edge, depending on the bitmap (by default, all DIO wake interrupts are ‘rising edge’).
Note that:

Not all DIO wake interrupts must be configured (in other words, u32Rising logical ORed
with u32Falling does not need to produce all zeros for bits 0-20).
Any DIO wake interrupts that are not configured by a call to this function (the relevant
bits being cleared in both bitmaps) will be left in their previous states.
If a bit is set in both u32Rising and u32Falling, the corresponding DIO wake interrupt
will default to ‘rising edge’.

Note that DIO wake interrupts are handled by the System Controller callback
function, registered using the function vJPI_SysCtrlRegisterCallback().

void vJPI_DioWake(uint32 u32Enable,
uint32 u32Disable,
uint32 u32Rising,
uint32 u32Falling);
82 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
Parameters
u32Enable Bitmap for wake enable - a bit set means that the wake signal

on the corresponding DIO pin will be enabled
u32Disable Bitmap for wake disable - a bit set means that the wake signal

on the corresponding DIO pin will be disabled
u32Rising Bitmap for rising edge - a bit set means that the wake signal

on the corresponding DIO pin will be triggered on a rising edge
u32Falling Bitmap for falling edge - a bit set means that the wake signal

on the corresponding DIO pin will be triggered on a falling
edge

Returns
None
JN-RM-2035 v1.8 © Jennic 2010 83

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

u32JPI_DioWakeStatus

Description
This function returns the interrupt status of each of the DIO input pins.

The returned value is a bitmap in which a bit is set if a wake interrupt has occurred
on the corresponding DIO input pin (see below). Bit values are not valid for DIO pins
that are assigned as outputs or assigned to another enabled peripheral. After reading
the interrupt status, the value is cleared.

Parameters
None

Returns
Bitmask:

Each of bits 0-20 corresponds to a DIO pin, where bit 0 represents DIO0 and
bit 20 represents DIO20. The bit is set if an interrupt associated with the pin
has triggered. Bits 21-31 are always 0.

uint32 u32JPI_DioWakeStatus(void);

Note: You cannot use this function to check whether a DIO
was responsible for a recent wake-up event. You should
determine the wake source as part of your System Controller
callback function, as described in Appendix E.2.
84 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
3.4 UARTs
This section details the functions for controlling the UARTs (Universal Asynchronous
Receiver Transmitters). The JN5139/JN5148 device has two 16550-compatible
UARTs, denoted UART0 and UART1, which can be independently enabled. UART0
is also used for the debugger.

Note the following:

UART Pins
Each UART uses four pins, shared with the DIOs, for the following signals: clear-to-
send (CTS) input, request-to-send (RTS) output, transmit data output, receive data
input.

On the JN5148 device, the pins normally used by a UART can alternatively be used
to connect a JTAG emulator for debugging.

Receive FIFO Interrupt Operation
Receiver interrupts for the UARTs are enabled using vJPI_UartSetInterrupt().
The "receive data available interrupt" is issued when the FIFO reaches its
programmed trigger level. It is cleared as soon as the FIFO drops below its
programmed trigger level. The FIFO trigger level can be set to 1, 4, 8 or 14
bytes using vJPI_UartSetInterrupt().
The function u8JPI_UartReadInterruptStatus() can be used to get the
"receive data available status". This is set when the FIFO trigger level is
reached and, like the interrupt, it is cleared when the FIFO drops below the
trigger level.
When Receiver FIFO interrupts are enabled, timeout interrupts also occur. A
FIFO timeout interrupt will occur if the following conditions exist:

At least one character is in the FIFO
No character has entered the FIFO during a time interval in which at least
four characters could potentially have been received
Nothing has been read from the FIFO during a time interval in which at
least four characters could potentially have been read

When a timeout interrupt occurs, it is cleared and the timer is reset by reading a
character from the receive FIFO.
JN-RM-2035 v1.8 © Jennic 2010 85

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

Enabling/Disabling the UARTs

Avoid using the UARTs while attempting to join the network. Only enable the UARTs
on a device once it has joined a network. If UART output is important while trying to
join the network, the relevant UART could be enabled at the start of any functions
requiring UART output and disabled once the functions have completed.

The UARTs can be disabled before entering sleep mode in order to reduce current
consumption while sleeping. In this case, when entering sleep mode, wait for the
UART transmit buffers to empty before disabling the UART.

On waking or reset, the following recommendations should be applied:

Following a cold start, do not enable the UARTs until the network is running, as
indicated by an E_JENIE_NETWORK_UP event. This is the case following a
device reset or sleep without memory held.
Following a warm start, enable the UARTs as a part of the vJenie_CbInit()
callback function. This is the case following sleep with memory held.

The UART functions are listed below, along with their page references:

Function Page
vJPI_UartEnable 87
vJPI_UartDisable 88
vJPI_UartSetClockDivisor 89
vJPI_UartSetBaudDivisor 90
vJPI_UartSetControl 91
vJPI_UartSetInterrupt 92
vJPI_UartSetRTSCTS 93
vJPI_UartReset 94
u8JPI_UartReadLineStatus 95
u8JPI_UartReadModemStatus 96
u8JPI_UartReadInterruptStatus 97
vJPI_UartWriteData 98
u8JPI_UartReadData 99
vJPI_Uart0RegisterCallback 100
vJPI_Uart1RegisterCallback 101
86 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vJPI_UartEnable

Description
This function enables the specified UART. It must be the first UART function called.

Be sure to enable the UART using this function before writing to the UART using the
function vJPI_UartWriteData(), otherwise an exception will result.

If you wish to implement RTS/CTS flow control, you will need to call
vJPI_UartSetRTSCTS() before calling vJPI_UartEnable() in order to take control of
the DIOs used for RTS and CTS. The UARTs use certain DIO lines, as follows:

If a UART uses only the RxD and TxD lines, it is said to operate in 2-wire mode. If, in
addition, it uses the RTS and CTS lines, it is said to operate in 4-wire mode.

Parameters
u8Uart Identity of UART:

E_JPI_UART_0
E_JPI_UART_1

Returns
None

void vJPI_UartEnable(uint8 u8Uart);

Signal DIOs for UART0 DIOs for UART1

CTS DIO4 DIO17

RTS DIO5 DIO18

TxD DIO6 DIO19

RxD DIO7 DIO20
JN-RM-2035 v1.8 © Jennic 2010 87

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_UartDisable

Description
This function disables the specified UART.

Be sure to re-enable the UART using vJPI_UartEnable() before attempting to write
to the UART using the function vJPI_UartWriteData(), otherwise an exception will
result.

Parameters
u8Uart Identity of UART:

E_JPI_UART_0
E_JPI_UART_1

Returns
None

void vJPI_UartDisable(uint8 u8Uart);
88 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vJPI_UartSetClockDivisor

Description
This function sets the baud rate for the specified UART to one of a number of
standard rates.

The possible baud rates are:

4800 bps
9600 bps
19200 bps
38400 bps
76800 bps
115200 bps

To set the baud rate to other values, use the function vJPI_UartSetBaudDivisor().

Parameters
u8Uart Identity of UART:

E_JPI_UART_0
E_JPI_UART_1

u8BaudRate Desired baud rate:
E_JPI_UART_RATE_4800 (4800 bps)
E_JPI_UART_RATE_9600 (9600 bps)
E_JPI_UART_RATE_19200 (19200 bps)
E_JPI_UART_RATE_38400 (38400 bps)
E_JPI_UART_RATE_76800 (76800 bps)
E_JPI_UART_RATE_115200 (115200 bps)

Returns
None

void vJPI_UartSetClockDivisor(uint8 u8Uart,
uint8 u8BaudRate);
JN-RM-2035 v1.8 © Jennic 2010 89

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_UartSetBaudDivisor

Description
This function sets an integer divisor to derive the baud rate from a 1-MHz frequency
for the specified UART. The function allows baud rates to be set that are not available
through the function vJPI_UartSetClockDivisor().
The baud rate produced is defined by:

baud rate = 1000000/u16Divisor

For example:

Parameters
u8Uart Identity of UART:

E_JPI_UART_0
E_JPI_UART_1

u16Divisor Integer divisor (for 1-MHz clock)

Returns
None

void vJPI_UartSetBaudDivisor(uint8 u8Uart,
uint16 u16Divisor);

u16Divisor Baud rate (bit/s)

1 1000000

2 500000

9 115200 (approx)

26 38400 (approx)
90 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vJPI_UartSetControl

Description
This function sets various control bits for the specified UART.

Note that RTS cannot be controlled automatically, but only enabled or disabled under
software control.

Parameters
u8Uart Identity of UART:

E_JPI_UART_0
E_JPI_UART_1

bEvenParity Parity (even or odd):
E_JPI_UART_EVEN_PARITY
E_JPI_UART_ODD_PARITY

bEnableParity Enable/disable parity check:
E_JPI_UART_PARITY_ENABLE
E_JPI_UART_PARITY_DISABLE

u8WordLength Word length:
E_JPI_UART_WORD_LEN_5 (Word is 5 bits)
E_JPI_UART_WORD_LEN_6 (Word is 6 bits)
E_JPI_UART_WORD_LEN_7 (Word is 7 bits)
E_JPI_UART_WORD_LEN_8 (Word is 8 bits)

bOneStopBit Number of stop bits - TRUE for 1 stop bit, FALSE for 1.5 or 2
stop bits, depending on word length - enumerated as:
E_JPI_UART_1_STOP_BIT (TRUE)
E_JPI_UART_2_STOP_BITS (FALSE)

bRtsValue Enable or disable RTS:
E_JPI_UART_RTS_HIGH (TRUE) - Disable RTS
E_JPI_UART_RTS_LOW (FALSE) - Enable RTS

Returns
None

void vJPI_UartSetControl(uint8 u8Uart,
bool_t bEvenParity,
bool_t bEnableParity,
uint8 u8WordLength,
bool_t bOneStopBit,
bool_t bRtsValue);
JN-RM-2035 v1.8 © Jennic 2010 91

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_UartSetInterrupt

Description
This function enables or disables the interrupts generated by the specified UART and
sets the receive FIFO level - that is, the number of words received by the FIFO in
order to trigger a receive data interrupt.

UART interrupts are handled by callback functions registered using the following
functions:

vJPI_Uart0RegisterCallback() for UART0
vJPI_Uart1RegisterCallback() for UART1

Parameters
u8Uart Identity of UART:

E_JPI_UART_0
E_JPI_UART_1

bEnableModemStatus Enable/disable modem status interrupt (e.g. CTS change
detected) - TRUE for enable, FALSE for disable

bEnableRxLineStatus Enable/disable receive line status interrupt (e.g. framing
error, parity error) - TRUE for enable, FALSE for disable

bEnableTxFifoEmpty Enable/disable interrupt when transmit FIFO empty -
TRUE for enable, FALSE for disable

bEnableRxData Enable/disable interrupt when receive data seen - TRUE
for enable, FALSE for disable

u8FifoLevel Number of received words required to trigger a receive
data interrupt:
E_JPI_UART_FIFO_LEVEL_1 (1 word)
E_JPI_UART_FIFO_LEVEL_4 (4 words)
E_JPI_UART_FIFO_LEVEL_8 (8 words)
E_JPI_UART_FIFO_LEVEL_14 (14 words)

Returns
None

void vJPI_UartSetInterrupt(uint8 u8Uart,
bool_t bEnableModemStatus,
bool_t bEnableRxLineStatus,
bool_t bEnableTxFifoEmpty,
bool_t bEnableRxData,
uint8 u8FifoLevel);

Note: If the receive FIFO level is set to a value greater than
one, UART timeout interrupts (described on page 85) will
automatically be enabled.
92 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vJPI_UartSetRTSCTS

Description
This function instructs the specified UART to take or release control of the DIO lines
used for RTS/CTS flow control.

UART0: DIO4 for CTS
DIO5 for RTS

UART1: DIO17 for CTS
DIO18 for RTS

The function must be called before vJPI_UartEnable() is called.

If a UART uses these two additional DIO lines, it is said to operate in 4-wire mode,
otherwise it is said to operate in 2-wire mode.

Parameters
u8Uart Identity of UART:

E_JPI_UART_0
E_JPI_UART_1

bRTSCTSEn Take or release control of DIOs for RTS/CTS:
TRUE to take control
FALSE to release control

Returns
None

void vJPI_UartSetRTSCTS(uint8 u8Uart, bool_t bRTSCTSEn);
JN-RM-2035 v1.8 © Jennic 2010 93

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_UartReset

Description
This function resets the Transmit and Receive FIFOs. The character currently being
transferred is not affected. The Transmit and Receive FIFOs can be reset individually
or together.

The function also sets the FIFO trigger level to single-byte trigger. The FIFO interrupt
trigger level can be set via vJPI_UartSetInterrupt().

Parameters
u8Uart Identity of UART:

E_JPI_UART_0
E_JPI_UART_1

bTxReset Transmit FIFO reset:
TRUE to reset
FALSE not to reset

bRxReset Receive FIFO reset
TRUE to reset
FALSE not to reset

Returns
None

void vJPI_UartReset(uint8 u8Uart,
bool_t bTxReset,
bool_t bRxReset);
94 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
u8JPI_UartReadLineStatus

Description
This function returns line status information for the specified UART as a bitmap.

Note that the following bits are cleared after reading:
E_JPI_UART_LS_ERROR
E_JPI_UART_LS_BI
E_JPI_UART_LS_FE
E_JPI_UART_LS_PE
E_JPI_UART_LS_OE

Parameters
u8Uart Identity of UART:

E_JPI_UART_0
E_JPI_UART_1

Returns
Bitmap:

uint8 u8JPI_UartReadLineStatus(uint8 u8Uart);

Bit Description

E_JPI_UART_LS_ERROR This bit will be set if a parity error, framing error
or break indication has been received

E_JPI_UART_LS_TEMT This bit will be set if the transmit shift register is
empty

E_JPI_UART_LS_THRE This bit will be set if the transmit FIFO is empty

E_JPI_UART_LS_BI This bit will be set if a break indication has been
received (line held low for a whole character)

E_JPI_UART_LS_FE This bit will be set if a framing error has been
received

E_JPI_UART_LS_PE This bit will be set if a parity error has been
received

E_JPI_UART_LS_OE This bit will be set if a receive overrun has
occurred, i.e. the receive buffer is full but
another character arrives

E_JPI_UART_LS_DR This bit will be set if there is data in the receive
FIFO
JN-RM-2035 v1.8 © Jennic 2010 95

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

u8JPI_UartReadModemStatus

Description
This function obtains modem status information from the specified UART as a bitmap
which includes the CTS and ‘CTS has changed’ status (which can be extracted as
described below).

Parameters
u8Uart Identity of UART:

E_JPI_UART_0
E_JPI_UART_1

Returns
Bitmap in which:

CTS input status is bit 4 (‘1’ indicates CTS is high, ‘0’ indicates CTS is low).
‘CTS has changed’ status is bit 0 (‘1’ indicates that CTS input has changed). If the
return value logically ANDed with E_JPI_UART_MS_DCTS is non-zero, the CTS input
has changed.

uint8 u8JPI_UartReadModemStatus(uint8 u8Uart);
96 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
u8JPI_UartReadInterruptStatus

Description
This function returns a pending interrupt for the specified UART as a bitmap.

Interrupts are returned one at a time, so there may need to be multiple calls to this
function. If interrupts are enabled, the interrupt handler processes this activity and
posts each interrupt to the queue or to a callback function.

Parameters
u8Uart Identity of UART:

E_JPI_UART_0
E_JPI_UART_1

Returns
Bitmap:

uint8 u8JPI_UartReadInterruptStatus(uint8 u8Uart);

Bit range Value/Enumeration Description

Bit 0 0 More interrupts pending

1 No more interrupts pending

Bits 1-3 E_JPI_UART_INT_MODEM Modem status interrupt

E_JPI_UART_INT_TX Transmit FIFO empty interrupt

E_JPI_UART_INT_RXDATA Receive data available interrupt

E_JPI_UART_INT_RXLINE Receive line status interrupt

E_JPI_UART_INT_TIMEOUT Timeout interrupt
JN-RM-2035 v1.8 © Jennic 2010 97

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_UartWriteData

Description
This function writes a data byte to the Transmit FIFO of the specified UART for
transmission.

Before this function is called, the UART must be enabled using the function
vJPI_UartEnable(), otherwise an exception will result.

Parameters
u8Uart Identity of UART:

E_JPI_UART_0
E_JPI_UART_1

u8Data Byte to transmit

Returns
None

void vJPI_UartWriteData(uint8 u8Uart, uint8 u8Data);
98 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
u8JPI_UartReadData

Description
This function returns a single byte read from the Receive FIFO of the specified
UART. If the FIFO is empty, the value is not valid.

Refer to the description of u8JPI_UartReadLineStatus() for details of how to
determine whether the FIFO is empty.

Parameters
u8Uart Identity of UART:

E_JPI_UART_0
E_JPI_UART_1

Returns
Received byte

uint8 u8JPI_UartReadData(uint8 u8Uart);
JN-RM-2035 v1.8 © Jennic 2010 99

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_Uart0RegisterCallback

Description
This function registers an application callback that will be called when the UART0
interrupt is triggered.

The registered callback function is only preserved during sleep with memory held. If
RAM is powered off during sleep and interrupts are required, the callback function
must be re-registered before calling u32JPI_Init() on waking.

Interrupt handling is described in Appendix E.

Parameters
prUart0Callback Pointer to function that is to be called when UART0 interrupt

occurs.

Returns
None

void vJPI_Uart0RegisterCallback(
PR_HWINT_APPCALLBACK prUart0Callback);
100 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vJPI_Uart1RegisterCallback

Description
This function registers an application callback that will be called when the UART1
interrupt is triggered.

The registered callback function is only preserved during sleep with memory held. If
RAM is powered off during sleep and interrupts are required, the callback function
must be re-registered before calling u32JPI_Init() on waking.

Interrupt handling is described in Appendix E.

Parameters
prUart1Callback Pointer to function that is to be called when UART1 interrupt

occurs.

Returns
None

void vJPI_Uart1RegisterCallback(
PR_HWINT_APPCALLBACK prUart1Callback);
JN-RM-2035 v1.8 © Jennic 2010 101

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

3.5 Timers

This section details the functions for controlling the general-purpose timers. The
number of timers available depends on the device type:

JN5139 has two timers: Timer 0 and Timer 1
JN5148 has three timers: Timer 0, Timer 1 and Timer 2

These timers are distinct from the wake timers described in Section 3.6.

The timers normally use the internal 16-MHz clock source of the JN5139/JN5148
device.

Modes of Operation
The timers can be operated in the following modes: Timer, PWM, Delta-Sigma,
Capture. These modes are summarised in the table below, along with the functions
needed for each mode.

Caution: The tick timer, also provided by the JN5139/
JN5148 device, is reserved for Jenie use and must not
be directly used by your application.

Mode Description Functions

Timer The source clock is used to produce a pulse cycle
defined by the number of clock cycles until a pos-
itive pulse edge and until a negative pulse edge.
Interrupts can be generated on either or both
edges. The pulse cycle can be produced just
once in ‘single-shot’ mode or continuously in
‘repeat’ mode.

vJPI_TimerEnable()
vJPI_TimerStart()

PWM As for Timer mode, except the Pulse Width Modu-
lated signal is output on a DIO (which depends on
the specific timer used - see DIO Usage below).

vJPI_TimerEnable()
vJPI_TimerStart()

Delta-Sigma The timer is used as a low-rate DAC. The con-
verted signal is output on a DIO (which depends
on the specific timer used - see DIO Usage
below) and requires simple filtering to give the
analogue signal.

vJPI_TimerEnable()
vJPI_TimerStart()

Capture An external input signal is sampled on every tick
of the source clock. The results of the capture
allow the period and pulse width of the sampled
signal to be calculated.

vJPI_TimerEnable()
vJPI_TimerStartCapture()
u32JPI_TimerReadCapture()

Table 1: Modes of Timer Operation
102 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
DIO Usage
The timers use the JN5139/JN5148 device’s DIO pins as follows:

* DIO11 is shared by Timer 1 and TImer 2 on the JN5148 device,
and their use must not confict.

The functions are listed below, along with their page references:

Function Page
vJPI_TimerEnable 104
vJPI_TimerDisable 106
vJPI_TimerStart 107
vJPI_TimerStop 109
vJPI_TimerStartCapture 110
u32JPI_TimerReadCapture 111
u8JPI_TimerFired 112
vJPI_Timer0RegisterCallback 113
vJPI_Timer1RegisterCallback 114
vJPI_Timer2RegisterCallback (JN5148 Only) 115

Timer 0
DIO pin

Timer 1
DIO pin

Timer 2
DIO pin Function

8 11 * - Clock/gate input

9 12 - Capture input

10 13 11 * PWM and Delta-Sigma output
JN-RM-2035 v1.8 © Jennic 2010 103

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_TimerEnable

Description
This function configures and enables the specified timer, and must be the first timer
function called. The timer can be used in various modes, described in Table 1 on
page 102.

The parameters of this enable function cover the following features:

Source clock (eClockType): The clock for the timer is normally the internal 16-MHz
system clock, which can be optionally inverted.
Prescaling (u8Prescale): The timer’s source clock is divided down to produce a slower
clock for the timer, the divisor being 2Prescale. Therefore:

Timer clock frequency = Source clock frequency / 2Prescale

Interrupts (mIntMask): Interrupts can be generated in Timer mode on a low-to-high
transition (rising output) and/or on a high-to-low transition (end of the timer period).
Alternatively, timer interrupts can be disabled. If enabled, timer interrupts are handled
by callback functions registered using:

vJPI_Timer0RegisterCallback() for Timer 0
vJPI_Timer1RegisterCallback() for Timer 1
vJPI_Timer2RegisterCallback() for Timer 2 (JN5148 only)

DIOs (bTimerIOEn): Timer 0 uses DIO8-10, Timer 1 uses DIO11-13 and Timer2 uses
DIO11. Use of these pins must be explicitly enabled.
Output (bOutputEn): When operating in PWM mode or Delta-Sigma mode, the timer’s
signal is output on a DIO pin (DIO10 for Timer 0, DIO13 for Timer 1, DIO11 for Timer 2),
which must be enabled. If this option is enabled, the other DIOs associated with the
timer cannot be used for general-purpose input/output.

Parameters
eTimer Identity of timer:

E_JPI_TIMER_0
E_JPI_TIMER_1
E_JPI_TIMER_2 (JN5148 Only)

u8Prescale Prescale index, in range 0 to 16, used to divide down clock
(divisor is 2Prescale)

mIntMask Mask for interrupt generation on timer events:
0x00 to disable timer interrupts
E_JPI_TIMER_INT_PERIOD (interrupt at end of timed period)
E_JPI_TIMER_INT_RISE (interrupt on low-to-high transition)

void vJPI_TimerEnable(teJPI_Timer eTimer,
uint8 u8Prescale,
uint8 mIntMask,
bool_t bOutputEn,
bool_t bTimerIOEn,
teJPI_TimerClockType eClockType);
104 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
bOutputEn Enable/disable output of timer signal on DIO pin (see above):
TRUE - Enable
FALSE - Disable

bTimerIOEn Enable/disable use of DIO pins for timer (see above):
TRUE - Enable
FALSE - Disable

eClockType Clock (internal or external) and its polarity (normal or inverted):
E_JPI_TIMER_CLOCK_INTERNAL_NORMAL
E_JPI_TIMER_CLOCK_INTERNAL_INVERTED
E_JPI_TIMER_CLOCK_EXTERNAL_NORMAL
E_JPI_TIMER_CLOCK_EXTERNAL_INVERTED

Returns
None
JN-RM-2035 v1.8 © Jennic 2010 105

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_TimerDisable

Description
This function disables the specified timer. As well as stopping the timer from running,
the clock to the timer block is turned off in order to reduce power consumption. This
means that any subsequent attempt to access the timer will be unsuccessful until
vJPI_TimerEnable() is called to re-enable the block.

Parameters
eTimer Identity of timer:

E_JPI_TIMER_0
E_JPI_TIMER_1
E_JPI_TIMER_2 (JN5148 Only)

Returns
None

void vJPI_TimerDisable(teJPI_Timer eTimer);

Caution: An attempt to access the timer while it is disabled
will result in an exception.
106 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vJPI_TimerStart

Description
This function starts the specified timer in Timer/PWM mode or Delta-Sigma mode.

Timer mode: During one pulse cycle of this mode, the timer signal starts off low and
then goes high. The output goes low until u16HighPeriod clock periods have passed,
after which it goes high until u16LowPeriod clock periods since the timer was started. If
timer interrupts have been enabled using vJPI_TimerEnable(), an interrupt will be
triggered at the low-high transition and/or at the high-low transition.
This mode is available in ‘single-shot’ and ‘repeat’ versions:

Single-shot mode produces one pulse cycle and stops
Repeat mode produces a train of pulses until the timer is stopped

PWM (Pulse Width Modulation) mode is simply one of the above Timer modes with the
timer output enabled on the appropriate DIO (see below).
Delta-Sigma mode: This mode allows the timer to be used as a low-rate DAC with the
output on the appropriate DIO (see below). An output waveform is produced consisting
of a series of high and low clock cycles that are pseudo-randomly spaced in time. The
number of high clock cycles (u16HighPeriod) within the total period of the waveform
(comprising 65536 clock cycles) should be set to a value which is proportional to the
value to be converted. Placing a Resistor-Capacitor (RC) circuit on the output pin will
then produce an averaged analogue voltage.
This mode is available in ‘normal’ and ‘RTZ’ versions:

Normal Delta-Sigma mode operates as described above.
RTZ (Return-to-Zero) Delta-Sigma mode operates as normal Delta-Sigma mode
but a low clock cycle is inserted after every clock cycle (thus, there are 131072
clock cycles in the total period). Note that this does not affect the setting of
u16HighPeriod.

If the timer signal is to be output (as in the case of PWM and Delta-Sigma modes),
use DIO10 for Timer 0, DIO13 for Timer 1, DIO11 for Timer 2. These DIOs must be
enabled for output in vJPI_TimerEnable(). For Delta-Sigma modes, an RC circuit
must be inserted between the output pin and Ground

Note that the timer is started in Capture mode using a separate function,
vJPI_TimerStartCapture().
For more information on timer operation, refer to the Jenie API User Guide
(JN-UG-3042).

Parameters
eTimer Identity of timer:

E_JPI_TIMER_0
E_JPI_TIMER_1
E_JPI_TIMER_2 (JN5148 only)

void vJPI_TimerStart(teJPI_Timer eTimer,
teJPI_TimerMode eTimerMode,
uint16 u16HighPeriod,
uint16 u16LowPeriod);
JN-RM-2035 v1.8 © Jennic 2010 107

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

eTimerMode Mode of operation:

E_JPI_TIMER_MODE_SINGLESHOT (Single-shot)
E_JPI_TIMER_MODE_REPEATING (Repeat)
E_JPI_TIMER_MODE_DELTASIGMA (Delta-Sigma)
E_JPI_TIMER_MODE_DELTASIGMARTZ (Return-to-Zero)

u16HighPeriod Number of clock periods after starting a timer before the
output goes high (Timer mode) or number of high clock cycles
representing value to be converted (Delta-Sigma mode)

u16LowPeriod Number of clock periods after starting a timer before the
output goes low in Timer mode (but parameter ignored in
Delta-Sigma mode)

Returns
None
108 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vJPI_TimerStop

Description
This function stops the specified timer if it has been started in Timer/PWM mode or
Delta-Sigma mode using vJPI_TimerStart().

Parameters
eTimer Identity of timer:

E_JPI_TIMER_0
E_JPI_TIMER_1
E_JPI_TIMER_2 (JN5148 only)

Returns
None

void vJPI_TimerStop(teJPI_Timer eTimer);
JN-RM-2035 v1.8 © Jennic 2010 109

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_TimerStartCapture

Description
This function starts the specified timer in Capture mode.

An input signal must be provided on pin DIO9 for Timer 0 or DIO12 for Timer 1
(Capture mode is not available on Timer 2 of the JN5148 device). The incoming
signal is timed and the captured measurements are:

number of clock cycles to the last low-to-high transition of the input signal
number of clock cycles to the last high-to-low transition of the input signal

These values are placed in registers to be read later using the function
vJPI_TimerReadCapture(). They allow the input pulse width to be determined.

Parameters
eTimer Identity of timer:

E_JPI_TIMER_0
E_JPI_TIMER_1

Returns
None

void vJPI_TimerStartCapture(teJPI_Timer eTimer);
110 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
u32JPI_TimerReadCapture

Description
This function stops the timer and provides the results from a 'capture' started using
vJPI_TimerStartCapture().
The values returned are offsets from when the capture was originally started, as
follows:

number of clock cycles to the last low-to-high transition of the input signal
number of clock cycles to the last high-to-low transition of the input signal

The width of the last pulse can be calculated from the difference of these results,
provided that the results were requested during a low period. However, since it is not
possible to be sure of this, the results obtained from this function may not always be
valid for calculating the pulse width.

Parameters
eTimer Identity of timer:

E_JPI_TIMER_0
E_JPI_TIMER_1

Returns
32-bit value in which:

The upper 16 bits (bits 31-16) represent the number of clock cycles up to the last
low-to-high transition.
The lower 16 bits (bits 15-0) represent the number of clock cycles up to the last
high-to-low transition.

uint32 u32JPI_TimerReadCapture(teJPI_Timer eTimer);
JN-RM-2035 v1.8 © Jennic 2010 111

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

u8JPI_TimerFired

Description
This function obtains the interrupt status of the specified timer. The function also
clears interrupt status after reading it.

Parameters
eTimer Identity of timer:

E_JPI_TIMER_0
E_JPI_TIMER_1
E_JPI_TIMER_2 (JN5148 only)

Returns
Bitmap:

Returned value logical ANDed with E_JPI_TIMER_INT_PERIOD - will be
non-zero if interrupt for high-to-low transition (end of period) has been set
Returned value logical ANDed with E_JPI_TIMER_INT_RISE - will be
non-zero if interrupt for low-to-high transition (output rising) has been set

uint8 u8JPI_TimerFired(teJPI_Timer eTimer);
112 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vJPI_Timer0RegisterCallback

Description
This function registers an application callback that will be called when the Timer 0
interrupt is triggered.

Interrupt handling is described in Appendix E.

Parameters
prTimer0Callback Pointer to function that is to be called when Timer 0 interrupt

occurs

Returns
None

void vJPI_Timer0RegisterCallback(
PR_HWINT_APPCALLBACK PrTimer0Callback);
JN-RM-2035 v1.8 © Jennic 2010 113

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_Timer1RegisterCallback

Description
This function registers an application callback that will be called when the Timer 1
interrupt is triggered.

Interrupt handling is described in Appendix E.

Parameters
prTimer1Callback Pointer to function that is to be called when Timer 1 interrupt

occurs

Returns
None

void vJPI_Timer1RegisterCallback(
PR_HWINT_APPCALLBACK PrTimer1Callback);
114 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vJPI_Timer2RegisterCallback (JN5148 Only)

Description
This function registers an application callback that will be called when the Timer 2
interrupt is triggered on a JN5148 device.

Interrupt handling is described in Appendix E.

Parameters
prTimer2Callback Pointer to function that is to be called when Timer 2 interrupt

occurs

Returns
None

void vJPI_Timer2RegisterCallback(
PR_HWINT_APPCALLBACK PrTimer2Callback);
JN-RM-2035 v1.8 © Jennic 2010 115

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

3.6 Wake Timers

This section details the functions for controlling the wake timers. The JN5139/JN5148
device includes two wake timers, denoted Wake Timer 0 and Wake Timer 1. These
are 32-bit timers on the JN5139 device and 35-bit timers on the JN5148 device, but
the 35-bit timers operate only as 32-bit timers with the JPI library.

The wake timers are normally used to time sleep periods and can be programmed to
generate interrupts when the timeout period is reached. They can also be used while
the CPU is running (but there is another set of timers with more functionality that can
operate only while the CPU is running - see Section 3.5).

Wake Timer Calibration
The wake timers run at a nominal 32 kHz but to minimise complexity and hence power
consumption, they may run at up to 30% fast or slow depending on temperature,
supply voltage and manufacturing tolerance. A self-calibration facility is provided to
time the 32-kHz clock against the 16-MHz clock if accurate timing is required.

Wake Timer Events
When a sleeping End Device is woken by a wake timer, this event is not presented to
the user application either by the vJenie_CbHwEvent() callback function or by the
callback function that is registered through vJPI_SysCtrlRegisterCallback().
However, since all other wake sources (DIO and comparator) do generate an event,
it is possible to determine whether a wake timer caused the wake-up by a process of
elimination.

The ‘wake timer fired’ status is cleared by the stack upon waking, so it is not possible
to use the u8JPI_WakeTimerFiredStatus() function to determine whether the wake
timer caused the wake-up. However, the wake timer value is not cleared by the stack
and can be read with the u32JPI_WakeTimerRead() function. Thus, if the wake timer
has fired, this function will return a high value, as the timer will have rolled over from
0 (if this value is greater than 0x80000000 then the wake is likely to be due to the timer
firing).

Note: If you wish to use the full 35-bit wake timers on
the JN5148 device, you should use the functions of the
Integrated Peripherals API described in the Integrated
Peripherals API Reference Manual (JN-RM-2001).
116 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
The functions are listed below, along with their page references:

Function Page
vJPI_WakeTimerEnable 118
vJPI_WakeTimerStart 119
vJPI_WakeTimerStop 120
u32JPI_WakeTimerRead 121
u8JPI_WakeTimerStatus 122
u8JPI_WakeTimerFiredStatus 123
u32JPI_WakeTimerCalibrate 124
JN-RM-2035 v1.8 © Jennic 2010 117

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_WakeTimerEnable

Description
This function allows the wake timer interrupt (which is generated when the timer fires)
to be enabled/disabled. If this function is called for a wake timer that is already
running, it will stop the wake timer.

The wake timer can be subsequently started using vJPI_WakeTimerStart().
Wake timer interrupts are handled by the System Controller callback function,
registered using the function vJPI_SysCtrlRegisterCallback().

Parameters
u8Timer Identity of timer:

E_JPI_WAKE_TIMER_0
E_JPI_WAKE_TIMER_1

bIntEnable Interrupt enable/disable:
TRUE to enable interrupt when wake timer fires
FALSE to disable interrupt

Returns
None

void vJPI_WakeTimerEnable(uint8 u8Timer,
bool_t bIntEnable);
118 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vJPI_WakeTimerStart

Description
This function starts the specified wake timer with the specified count value. The wake
timer will count down from this value, which is set according to the desired timer
duration. On reaching zero, the timer ‘fires’, rolls over and continues to count down.

The count value, u32Count, is set as the required number of 32-kHz periods. Thus:

Timer duration (in seconds) = u32Count / 32000

Note that the 32-kHz internal clock, which drives the wake timer, may be running up
to 30% fast or slow. For accurate timings, you are advised to first calibrate the clock
using the function u32JPI_WakeTimerCalibrate() and adjust the specified count
value accordingly.

If you wish to enable interrupts for the wake timer, you must call
vJPI_WakeTimerEnable() before calling vJPI_WakeTimerStart(). The wake timer
can be subsequently stopped using vJPI_WakeTimerStop() and can be read using
u32JPI_WakeTimerRead(). Stopping the timer does not affect interrupts that have
been set using vJPI_WakeTimerEnable().

Parameters
u8Timer Identity of timer:

E_JPI_WAKE_TIMER_0
E_JPI_WAKE_TIMER_1

u32Count Count value in 32-kHz periods, i.e. 32 is 1 millisecond

Returns
None

void vJPI_WakeTimerStart(uint8 u8Timer,
uint32 u32Count);
JN-RM-2035 v1.8 © Jennic 2010 119

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_WakeTimerStop

Description
This function stops the specified wake timer.

Note that no interrupt will be generated.

Parameters
u8Timer Identity of timer:

E_JPI_WAKE_TIMER_0
E_JPI_WAKE_TIMER_1

Returns
None

void vJPI_WakeTimerStop(uint8 u8Timer);
120 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
u32JPI_WakeTimerRead

Description
This function obtains the current value of the specified wake timer counter (which
counts down), without stopping the counter.

Note that on reaching zero, the timer ‘fires’, rolls over to 0xFFFFFFFF and continues
to count down. The count value obtained using this function then allows the
application to calculate the time that has elapsed since the wake timer fired.

Parameters
u8Timer Identity of timer:

E_JPI_WAKE_TIMER_0
E_JPI_WAKE_TIMER_1

Returns
Current value of wake timer counter.

uint32 u32JPI_WakeTimerRead(uint8 u8Timer);
JN-RM-2035 v1.8 © Jennic 2010 121

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

u8JPI_WakeTimerStatus

Description
This function determines which wake timers are active. It is possible to have more
than one wake timer active at the same time. The function returns a bitmap where
the relevant bits are set to show which wake timers are active.

Note that a timer remains active after its countdown has reached zero (when the
timer rolls over and continues to count down).

Parameters
None

Returns
Bitmap:

Returned value logical ANDed with E_JPI_WAKE_TIMER_MASK_0 will be
non-zero if Wake Timer 0 is active
Returned value logical ANDed with E_JPI_WAKE_TIMER_MASK_1 will be
non-zero if Wake Timer 1 is active

uint8 u8JPI_WakeTimerStatus(void);
122 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
u8JPI_WakeTimerFiredStatus

Description
This function determines which wake timers have fired (by having passed zero). The
function returns a bitmap where the relevant bits are set to show which timers have
fired. Any fired timer status is cleared as a result of this call.

Parameters
None

Returns
Bitmap:

Returned value logical ANDed with E_JPI_WAKE_TIMER_MASK_0 will be
non-zero if Wake Timer 0 has fired
Returned value logical ANDed with E_JPI_WAKE_TIMER_MASK_1 will be
non-zero if Wake Timer 1 has fired

uint8 u8JPI_WakeTimerFiredStatus(void);

Note: If you wish to use this function to check whether a wake
timer caused a wake-up event, you must call it before
u32JPI_Init(). Alternatively, you can determine the wake
source as part of your System Controller callback function.
For more information, refer to Appendix E.2.
JN-RM-2035 v1.8 © Jennic 2010 123

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

u32JPI_WakeTimerCalibrate

Description
This function requests a calibration of the 32-kHz internal clock (on which the wake
timers run) against the more accurate 16-MHz system clock. Note that the 32-kHz
clock has a tolerance of ±30%.

Wake Timer 0 is used in this calibration and must first be disabled, if necessary.

The returned result, n, is interpreted as follows:

n = 10000 ⇒ clock running at 32 kHz
n > 10000 ⇒ clock running slower than 32 kHz
n < 10000 ⇒ clock running faster than 32 kHz

The returned value can be used to adjust the time interval value used to program a
wake timer. If the required timer duration is T seconds, the count value N that must
be specified in vJPI_WakeTimerStart() is given by N = (10000/n) x 32000 x T.

Note that before calling the calibration function, both wake timers (0 and 1) must be
cleared using the function u8JPI_WakeTimerFiredStatus(), otherwise an incorrect
result will be returned.

Parameters
None

Returns
Calibration measurement, n (see above)

uint32 u32JPI_WakeTimerCalibrate(void);
124 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
3.7 Serial Peripheral Interface (SPI)
This section details the functions for controlling the Serial Peripheral Interface (SPI)
on the JN5139/JN5148 device. The SPI allows high-speed synchronous data transfer
between the JN5139/JN5148 and peripheral devices. The JN5139/JN5148 operates
as a master on the SPI bus and all other devices connected to the SPI are expected
to be slave devices under the control of the master’s CPU.

The SPI master can be used to communicate with up to five attached peripherals,
including the Flash memory. It can transfer 8, 16 or 32 bits without software
intervention and can keep the slave select lines asserted between transfers, when
required, to allow longer transfers to be performed.

As well as dedicated pins for Data In, Data Out, Clock and Slave Select 0, the SPI
master can be configured to enable up to 4 more slave select lines which appear on
DIO0 to DIO3. Slave-select 0 is assumed to be connected to Flash memory and is
read during the boot sequence.

The functions are listed below, along with their page references:

Function Page
vJPI_SpiConfigure 126
vJPI_SpiReadConfiguration 128
vJPI_SpiRestoreConfiguration 129
vJPI_SpiSelect 130
vJPI_SpiStop 131
vJPI_SpiStartTransfer32 132
u32JPI_SpiReadTransfer32 133
vJPI_SpiStartTransfer16 134
u16JPI_SpiReadTransfer16 135
vJPI_SpiStartTransfer8 136
u8JPI_SpiReadTransfer8 137
bJPI_SpiPollBusy 138
vJPI_SpiWaitBusy 139
vJPI_SpiRegisterCallback 140
JN-RM-2035 v1.8 © Jennic 2010 125

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_SpiConfigure

Description
This function configures and enables the SPI master.

The function allows the number of extra SPI slaves (of the master) to be set. By
default, there is one SPI slave (the Flash memory) with a dedicated IO pin for its
select line. Depending on how many additional slaves are enabled, up to four more
select lines can be set, which use DIO pins 0 to 3. For example, if two additional
slaves are enabled, DIO 0 and 1 will be assigned. Note that once reserved for SPI
use, DIO lines cannot be subsequently released by calling this function again (and
specifying a smaller number of SPI slaves).

The following features are also configurable using this function:

Data transfer order - whether the least significant bit is transferred first or last
Clock polarity and phase, which together determine the SPI mode (0, 1, 2 or 3) and
therefore the clock edge on which data is latched (for more information on SPI modes,
refer to the Jenie API User Guide (JN-UG-3042)):

SPI Mode 0: polarity=0, phase=0
SPI Mode 1: polarity=0, phase=1
SPI Mode 2: polarity=1, phase=0
SPI Mode 3: polarity=1, phase=1

Clock divisor - the value (in the range 1 to 63) used to derive the SPI clock from the
16-MHz base clock (the 16-MHz clock is divided by twice the specified value)
SPI interrupt - generated when an API transfer has completed (SPI interrupts are
handled by a callback function registered using vJPI_SpiRegisterCallback()). Note
that interrupts are only worth using if the SPI clock frequency is much less than 16 MHz
Automatic slave selection - enable the programmed slave-select line or lines (see
vJPI_SpiSelect()) to be automatically asserted at the start of a transfer and
de-asserted when the transfer completes. If not enabled, the slave-select lines will
reflect the value set by vJPI_SpiSelect() directly.

Parameters
u8SlaveEnable Number of extra SPI slaves to control. Valid values are 0 to 4

- higher values are truncated to 4
bLsbFirst Enable/disable data transfer with the least significant bit (LSB)

transferred first:
TRUE - enable
FALSE - disable

void vJPI_SpiConfigure(uint8 u8SlaveEnable,
bool_t bLsbFirst,
bool_t bPolarity,
bool_t bPhase,
uint8 u8ClockDivider,
bool_t bInterruptEnable,
bool_t bAutoSlaveSelect);
126 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
bPolarity Clock polarity:
TRUE - inverted
FALSE - unchanged

bPhase Phase:
TRUE - latch on trailing edge of clock
FALSE - latch on leading edge of clock

u8ClockDivider Clock divisor in the range 0 to 63 - 16-MHz clock is divided by
2 x u8ClockDivider, but 0 is a special value used when no
clock division is required (to obtain a 16-MHz SPI bus clock)

bInterruptEnable Enable/disable interrupt when an SPI transfer has completed:
TRUE - enable
FALSE - disable

bAutoSlaveSelect Enable/disable automatic slave selection:
TRUE - enable
FALSE - disable

Note that bPolarity and bPhase are named differently in the library header file JPI.h.

Returns
None
JN-RM-2035 v1.8 © Jennic 2010 127

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_SpiReadConfiguration

Description
This function obtains the current configuration of the SPI bus.

This function is intended to be used in a system where the SPI bus is used in multiple
configurations to allow the state to be restored later using the function
vJPI_SpiRestoreConfiguration(). Therefore, no knowledge is needed of the
configuration details.

Parameters
*ptConfiguration Pointer to location to receive obtained SPI configuration

Returns
None

void vJPI_SpiReadConfiguration(
tSpiConfiguration *ptConfiguration);
128 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vJPI_SpiRestoreConfiguration

Description
This function restores the SPI bus configuration using the configuration previously
obtained using vJPI_SpiReadConfiguration().

Parameters
*ptConfiguration Pointer to SPI configuration to be restored

Returns
None

void vJPI_SpiRestoreConfiguration(
tSpiConfiguration *ptConfiguration);
JN-RM-2035 v1.8 © Jennic 2010 129

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_SpiSelect

Description
This function sets the active slave-select line(s) to use.

The slave-select lines are asserted immediately if “Automatic Slave Selection” is
disabled, or otherwise only during data transfers. The number of valid bits in
u8SlaveMask depends on the setting of u8SlaveEnable in a previous call to
vJPI_SpiConfigure(), as follows:

Parameters
u8SlaveMask Bitmap - one bit per slave-select line

Returns
None

void vJPI_SpiSelect(uint8 u8SlaveMask);

u8SlaveEnable Valid bits in u8SlaveMask

0 Bit 0

1 Bits 0, 1

2 Bits 0, 1, 2

3 Bits 0, 1, 2, 3

4 Bits 0, 1, 2, 3, 4
130 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vJPI_SpiStop

Description
This function clears any active slave-select lines. It has the same effect as
vJPI_SpiSelect(0).

Parameters
None

Returns
None

void vJPI_SpiStop(void);
JN-RM-2035 v1.8 © Jennic 2010 131

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_SpiStartTransfer32

Description
This function starts a 32-bit data transfer to/from the selected slave(s).

It is assumed that vJPI_SpiSelect() has been called to set the slave(s) to
communicate with. If interrupts are enabled for the SPI master, an interrupt will be
generated when the transfer has completed.

Parameters
u32Out 32 bits of data to transmit

Returns
None

void vJPI_SpiStartTransfer32(uint32 u32Out);
132 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
u32JPI_SpiReadTransfer32

Description
This function obtains the received data after a 32-bit SPI transfer has completed.

Parameters
None

Returns
Received data (32 bits)

uint32 u32JPI_SpiReadTransfer32(void);
JN-RM-2035 v1.8 © Jennic 2010 133

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_SpiStartTransfer16

Description
This function starts a 16-bit data transfer to/from the selected slave(s).

It is assumed that vJPI_SpiSelect() has been called to set the slave(s) to
communicate with. If interrupts are enabled for the SPI master, an interrupt will be
generated when the transfer has completed.

Parameters
u16Out 16 bits of data to transmit

Returns
None

void vJPI_SpiStartTransfer16(uint16 u16Out);
134 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
u16JPI_SpiReadTransfer16

Description
This function obtains the received data after a 16-bit SPI transfer has completed.

Parameters
None

Returns
Received data (16 bits)

uint16 u16JPI_SpiReadTransfer16(void);
JN-RM-2035 v1.8 © Jennic 2010 135

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_SpiStartTransfer8

Description
This function starts an 8-bit transfer to/from the selected slaves(s).

It is assumed that vJPI_SpiSelect() has been called to set the slave(s) to
communicate with. If interrupts are enabled for the SPI master, an interrupt will be
generated when the transfer has completed.

Parameters
u8Out 8 bits of data to transmit

Returns
None

void vJPI_SpiStartTransfer8(uint8 u8Out);
136 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
u8JPI_SpiReadTransfer8

Description
This function obtains the received data after a 8-bit SPI transfer has completed.

Parameters
None

Returns
Received data (8 bits)

uint8 u8JPI_SpiReadTransfer8(void);
JN-RM-2035 v1.8 © Jennic 2010 137

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

bJPI_SpiPollBusy

Description
This function polls the SPI master to determine whether it is currently busy
performing a data transfer.

Parameters
None

Returns
TRUE if the SPI master is performing a transfer, FALSE otherwise

bool_t bJPI_SpiPollBusy(void);
138 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vJPI_SpiWaitBusy

Description
This function waits for the SPI master to complete a transfer and then returns.

Parameters
None

Returns
None

void vJPI_SpiWaitBusy(void);
JN-RM-2035 v1.8 © Jennic 2010 139

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_SpiRegisterCallback

Description
This function registers an application callback that will be called when the SPI
interrupt is triggered.

The registered callback function is only preserved during sleep with memory held. If
RAM is powered off during sleep and interrupts are required, the callback function
must be re-registered before calling u32JPI_Init() on waking.

Interrupt handling is described in Appendix E.

Parameters
prSpiCallback Pointer to function to be called when SPI interrupt occurs

Returns
None

void vJPI_SpiRegisterCallback(
PR_HWINT_APPCALLBACK prSpiCallback);
140 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
3.8 Serial Interface (2-Wire)
This section details the functions for controlling the 2-Wire Serial Interface (SI) master
on the JN5139/JN5148 device. The Serial Interface is logic-compatible with similar
interfaces such as I2C and SMbus.

The SI master on the JN5139/JN5148 can implement bi-directional communication
with a slave device on the SI bus. Note that the SI bus on the JN5148 device can have
more than one master, but multiple masters cannot use the bus at the same time - to
avoid this, an arbitration scheme is provided.

When enabled, this interface uses DIO14 as a clock and DIO15 as a bi-directional data
line. The clock is scaled from the 16-MHz system clock.

The functions are listed below, along with their page references:

Function Page
vJPI_SiConfigure 142
vJPI_SiSetCmdReg 143
vJPI_SiWriteData8 145
vJPI_SiWriteSlaveAddr 146
u8JPI_SiReadData8 147
bJPI_SiPollBusy 148
bJPI_SiPollTransferInProgress 149
bJPI_SiPollRxNack 150
bJPI_SiPollArbitrationLost 151
vJPI_SiRegisterCallback 152

Note: Before implementing data transfers on the SI bus,
you are strongly advised to study the protocol detailed in
the I2C Specification (available from www.nxp.com).
JN-RM-2035 v1.8 © Jennic 2010 141

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_SiConfigure

Description
This function is used to enable/disable and configure the 2-wire Serial Interface (SI)
master on the JN5139/JN5148 device. This function must be called to enable the SI
block before any other SI master function is called.

The operating frequency, derived from the 16-MHz system clock using the specified
prescaler u16PreScaler, is given by:

Operating frequency = 16/[(PreScaler + 1) x 5] MHz

SI interrupts are handled by a callback function registered using the function
vJPI_SiRegisterCallback().

Parameters
bSiEnable Enable Serial Interface (master):

TRUE - enable
FALSE - disable

bInterruptEnable Enable Serial interface interrupt:
TRUE - enable
FALSE - disable

u16PreScaler 16-bit clock prescaler (see above)

Returns
None

void vJPI_SiConfigure(bool_t bSiEnable,
bool_t bInterruptEnable,
uint16 u16PreScaler);
142 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vJPI_SiSetCmdReg

Description
This function configures the combination of I2C-protocol commands for a transfer on
the SI bus and starts the transfer of the data held in the SI master’s transmit buffer.

Up to four commands can be used to perform an I2C-protocol transfer - Start, Stop,
Write, Read. This function allows these commands to be combined to form a
complete or partial transfer sequence. The valid command combinations that can be
specified are summarised below.

The above command combinations will result in the function returning TRUE, while
command combinations that are not in the above list are invalid and will result in a
FALSE return code.

The function must be called immediately after vJPI_SiWriteSlaveAddr(), which puts
the destination slave address (for the subsequent data transfer) into the transmit
buffer. It must then be called immediately after vJPI_SiWriteData8() to start the
transfer of data (from the transmit buffer).

To implement a data transfer on the SI bus, you must follow the process described
in the I2C Specification.

void vJPI_SiSetCmdReg(bool_t bSetSTA,
bool_t bSetSTO,
bool_t bSetRD,
bool_t bSetWR,
bool_t bSetAckCtrl,
bool_t bSetIACK);

Start Stop Read Write Resulting Instruction to SI Bus

0 0 0 0 No active command (idle)

1 0 0 1 Start followed by Write

1 1 0 1 Start followed by Write followed by Stop

0 1 1 0 Read followed by Stop

0 1 0 1 Write followed by Stop

0 0 0 1 Write only

0 0 1 0 Read only

0 1 0 0 Stop only
JN-RM-2035 v1.8 © Jennic 2010 143

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

Parameters

bSetSTA Generate START bit to gain control of the SI bus (must not be
enabled with STOP bit):
E_JPI_SI_START_BIT
E_JPI_SI_NO_START_BIT

bSetSTO Generate STOP bit to release control of the SI bus (must not
be enabled with START bit):
E_JPI_SI_STOP_BIT
E_JPI_SI_NO_STOP_BIT

bSetRD Read from slave (cannot be enabled with slave write):
E_JPI_SI_SLAVE_READ
E_JPI_SI_NO_SLAVE_READ

bSetWR Write to slave (cannot be enabled with slave read):
E_JPI_SI_SLAVE_WRITE
E_JPI_SI_NO_SLAVE_WRITE

bSetAckCtrl Send ACK or NACK to slave after each byte read:
E_JPI_SI_SEND_ACK (to indicate ready for next byte)
E_JPI_SI_SEND_NACK (to indicate no more data required)

bSetIACK Generate interrupt acknowledge (set to clear pending
interrupt):
E_JPI_SI_IRQ_ACK
E_JPI_SI_NO_IRQ_ACK

Returns
None
144 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vJPI_SiWriteData8

Description
This function writes a single data byte to the Transmit register of the Serial Interface.

The contents of the transmit buffer will not be transmitted on the SI bus until the
function vJPI_SiSetCmdReg() is called.

Parameters
u8Out 8 bits of data to transmit

Returns
None

void vJPI_SiWriteData8(uint8 u8Out);
JN-RM-2035 v1.8 © Jennic 2010 145

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_SiWriteSlaveAddr

Description
This function is used in setting up communication with a slave device. In this function,
you must specify the address of the slave (see below) and the operation (read or
write) to be performed on the slave. The function puts this information in the SI
master’s transmit buffer, but the information will be not transmitted on the SI bus until
the function vJPI_SiSetCmdReg() is called.

You must specify a 7-bit slave address and the operation (read or write) to be
performed on the slave. To implement a data transfer on the SI bus, you must follow
the process described in the I2C Specification.

Parameters
u8SlaveAddress 7-bit slave address
bReadStatus Operation to perform on slave (read or write):

TRUE to configure a read
FALSE to configure a write

Returns
None

void vJPI_SiWriteSlaveAddr(uint8 u8SlaveAddress,
bool_t bReadStatus);
146 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
u8JPI_SiReadData8

Description
This function obtains 8-bit data received over the Serial Interface bus.

Parameters
None

Returns
Data read from receive buffer of SI master

uint8 u8JPI_SiReadData8(void);
JN-RM-2035 v1.8 © Jennic 2010 147

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

bJPI_SiPollBusy

Description
This function checks whether the SI bus is busy (could be in use by another master).

Parameters
None

Returns
TRUE if busy, FALSE otherwise

bool_t bJPI_SiPollBusy(void);
148 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
bJPI_SiPollTransferInProgress

Description
This function checks whether a transfer is in progress on the SI bus.

Parameters
None

Returns
TRUE if a transfer is in progress, FALSE otherwise

bool_t bJPI_SiPollTransferInProgress(void);
JN-RM-2035 v1.8 © Jennic 2010 149

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

bJPI_SiPollRxNack

Description
This function checks whether a NACK or an ACK has been received from the slave
device. If a NACK has been received, this indicates that the SI master should stop
sending data to the slave.

Parameters
None

Returns
TRUE if NACK has occurred
FALSE if ACK has occurred

bool_t bJPI_SiPollRxNack(void);
150 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
bJPI_SiPollArbitrationLost

Description
This function checks whether arbitration has been lost (by the local master) on the SI
bus.

Parameters
None

Returns
TRUE if arbitration loss has occurred, FALSE otherwise

bool_t bJPI_SiPollArbitrationLost(void);
JN-RM-2035 v1.8 © Jennic 2010 151

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_SiRegisterCallback

Description
This function registers a user-defined callback function that will be called when a
Serial Interface interrupt is triggered on the SI master.

Note that this function can be used to register the callback function for a SI slave as
well as for the SI master. The SI interrupt handler will determine whether a SI
interrupt has been generated on a master or slave, and then invoke the relevant
callback function.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32JPI_Init() on waking.

Interrupt handling is described in Appendix E.

Parameters
prSiCallback Pointer to function to be called when Serial Interface interrupt

occurs

Returns
None

void vJPI_SiRegisterCallback(
PR_HWINT_APPCALLBACK prSiCallback);
152 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
3.9 Intelligent Peripheral Interface
This section details the functions for controlling the Intelligent Peripheral (IP) interface
of the JN5139/JN5148 device.

The Intelligent Peripheral interface is a SPI slave interface and uses pins shared with
Digital IO signals DIO14-18. The interface is designed to allow message passing and
data transfer. Data received and transmitted on the IP interface is copied directly to
and from a dedicated area of memory without intervention from the CPU. This memory
area, the Intelligent Peripheral memory block, contains receive and transmit buffers,
each comprising sixty-three 32-bit words.

For more details of the data message format, refer to the Jennic data sheet for the
relevant wireless microcontroller.

The functions are listed below, along with their page references:

Function Page
vJPI_IpEnable 154
bJPI_IpSendData 155
bJPI_IpReadData 156
bJPI_IpTxDone 157
bJPI_IpRxDataAvailable 158
vJPI_IpRegisterCallback 159
JN-RM-2035 v1.8 © Jennic 2010 153

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

vJPI_IpEnable

Description
This function initialises and enables the Intelligent Peripheral (IP) interface on the
JN5139/JN5148 device.

The function allows the clock edges to be selected on which receive data will be
sampled and transmit data will be changed (but see Caution below). It also allows
Intelligent Peripheral interrupts to be enabled/disabled.

The function also requires the byte order (Big or Little Endian) of the data for the IP
interface to be specified.

Parameters
bTxEdge Clock edge that transmit data is changed on (see Caution):

E_JPI_IP_TXPOS_EDGE
(data changed on +ve edge, to be sampled on -ve edge)
E_JPI_IP_TXNEG_EDGE
(data changed on -ve edge, to be sampled on +ve edge)

bRxEdge Clock edge that receive data is sampled on (see Caution):
E_JPI_IP_RXPOS_EDGE
(data sampled on +ve edge)
E_JPI_IP_RXNEG_EDGE
(data sampled on -ve edge)

bEndian Byte order (Big or Little Endian) of data over the IP interface:
E_JPI_IP_BIG_ENDIAN
E_JPI_IP_LITTLE_ENDIAN

Returns
None

void vJPI_IpEnable(bool_t bTxEdge,
bool_t bRxEdge,
bool_t bEndian);

Caution: Only one mode of the IP interface (SPI mode 0) is
supported, in which data is transmitted on a negative clock
edge and received on a positive clock edge. The parameters
bTxEdge and bRxEdge must be set accordingly (both to 0).
154 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
bJPI_IpSendData

Description
This function is used to indicate that data is ready to be transmitted across the IP
interface to the remote processor (the SPI master).

The function requires the data length to be specified, as well as a pointer to the buffer
containing the data. The data should be stored in the buffer according to the byte
order (Big or Little Endian) specified in the function vJPI_IpEnable().
The function copies the specified data to a local Transmit buffer, ready to be sent
when the master device initiates the transfer. The IP_INT pin is also asserted to
indicate to the master that data is ready to be sent.

The data length is transmitted in the first 32-bit word of the data payload. It is the
responsibility of the SPI master receiving the data to retrieve the data length from the
payload.

Parameters
u8Length Length of data to be sent (in 32-bit words)
*pau8Data Pointer to a buffer containing the data to be sent

Returns
TRUE if successful, FALSE if unable to send

bool_t bJPI_IpSendData(uint8 u8Length,
uint8 *pau8Data);
JN-RM-2035 v1.8 © Jennic 2010 155

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

bJPI_IpReadData

Description
This function is used to read data received from the remote processor (the SPI
master).

The function must provide a pointer to a buffer to receive the data and a pointer to a
buffer to receive the data length.

Data is stored in the specified buffer according to the specified byte order (Big or
Little Endian) specified in the function vJPI_IpEnable().
After the data has been read, the IP interface will indicate to the SPI master that the
interface is ready to receive more data.

Parameters
*pu8Length Pointer to length of buffer to receive data (in 32-bit words)
*pau8Data Pointer to buffer to receive data

Returns
TRUE if data read successfully, FALSE if unable to read

bool_t bJPI_IpReadData(uint8 *pu8Length,
uint8 *pau8Data);
156 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
bJPI_IpTxDone

Description
This function checks whether data copied to the local Transmit buffer has been sent
to the remote processor (the SPI master).

Parameters
None

Returns
TRUE if data sent, FALSE if incomplete

bool_t bJPI_IpTxDone(void);
JN-RM-2035 v1.8 © Jennic 2010 157

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic

bJPI_IpRxDataAvailable

Description
This function checks whether data from the remote processor (the SPI master) has
been received in the local Receive buffer.

Parameters
None

Returns
TRUE if Receive buffer contains data, FALSE otherwise

bool_t bJPI_IpRxDataAvailable(void);
158 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vJPI_IpRegisterCallback

Description
This function registers an application callback that will be called when the Intelligent
Peripheral interrupt is triggered. The Interrupt is triggered when either a transmit or
receive transaction has completed.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32JPI_Init() on waking.

Interrupt handling is described in Appendix E.

Parameters
prIpCallback Pointer to function to be called when Intelligent Peripheral

interrupt occurs

Returns
None

void vJPI_IpRegisterCallback(
PR_HWINT_APPCALLBACK prIpCallback);
JN-RM-2035 v1.8 © Jennic 2010 159

Chapter 3
Jenie Peripherals Interface (JPI)

 Jennic
160 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
Appendices
The appendices contains all the ancillary information that you need in order to use the
functions of the Jenie API. This information includes global parameters, enumerations,
data types, structures, events and interrupts. In addition, functions and network
parameters of the JenNet layer (which sits below Jenie in the stack) are described.

A. Global Network Parameters
This appendix details the global network parameters that can be set in the
vJenie_CbConfigureNetwork() callback function (otherwise their default values will
be used). For further information on using some of these variables, refer to the
relevant appendix of the Jenie API User Guide (JN-UG-3042).

Parameter Name Description Default
Value Range

gJenie_PanID 16-bit PAN ID to identify network (if no
existing network with same PAN ID).
Co-ordinator only

0xAAAA 0-0xFFFE

gJenie_NetworkApplicationID 32-bit Network Application ID used to
identify and form network.

0xAAAA
AAAA

0-0xFFFFFFFF

gJenie_Channel The 2.4-GHz channel to be used by
the network, or auto-scan (see
gJenie_ScanChannels below).
Co-ordinator only

0 0: Auto-scan
11-26: Channel

gJenie_ScanChannels Bitmap (32 bits) of the set of channels
to consider when performing an auto-
scan of the 2.4-GHz band for a suita-
ble channel to use. The Co-ordinator
will select the quietest channel from
those available (auto-scan must have
been enabled via gJenie_Channel.).
Other node types will scan the possi-
ble channels to search for network.

0x07FFF800
(all channels)

0x00000800 -
0x07FFF800

(Bit 11 set ⇒ Ch 11,
Bit 12 set ⇒ Ch 12,...)

gJenie_MaxChildren Maximum number of children the
node can have.
Co-ordinator and Routers only

10 0-16

gJenie_MaxSleepingChildren Maximum number of children that can
be End Devices (nodes capable of
sleeping). This value must be less
than or equal to gJenie_MaxChildren.
The remaining child nodes are
reserved exclusively for Routers,
although any number of children can
be Routers.
Co-ordinator and Routers only

8 0-
gJenie_MaxChildren

Table 1: Global Network Parameters
JN-RM-2035 v1.8 © Jennic 2010 161

Appendices Jennic

gJenie_MaxBcastTTL Determines the maximum number of

hops that a broadcast message sent
from the local node can make. Set
this value to one less than the desired
maximum (so the value 0 corre-
sponds to one hop).

5 0-255

gJenie_MaxFailedPkts Number of missed communications
(MAC acknowledgments) before
parent considered to be lost (and
node must try to find a new parent).

5 0-255
Zero value disables
the feature

gJenie_RoutingEnabled Enables/disables routing capability of
the node (must be disabled for End
Devices).

0 0: Disable routing
1: Enable routing
For End Devices,
always set to 0

gJenie_RoutingTableSize Number of elements in array used to
store the Routing table. Should be set
to a value slightly larger than the
maximum number of network nodes,
to allow for nodes leaving and joining.
Co-ordinator and Routers only

- 0-1000
Note that the upper
limit may be restricted
by the amount of
available RAM. Each
Routing table entry
uses 12 bytes.

gJenie_RoutingTableSpace Pointer to the Routing table array in
memory. The Routing table is an
array of structures of type
tsJenieRoutingTable, where this
array is declared in the application.
Co-ordinator and Routers only

NULL -

gJenie_RouterPingPeriod Time between auto-pings generated
by a Router (to its parent). Set in units
of 100 ms. The same value should be
set in all routing nodes in the network.
Co-ordinator and Routers only

50
(5 seconds)

0-6553
Zero value disables
pings. Non-zero val-
ues below 50 are not
recommended

gJenie_EndDevicePingInterval Number of sleep cycles between
auto-pings generated by an End
Device (to its parent).
End Devices only

1 0-255
Zero value disables
pings

gJenie_EndDeviceScanSleep Amount of time following a failed scan
that an End Device waits (sleeps)
before starting another scan.
Set in milliseconds.
End Devices only

10000 or
0x2710
(10 seconds)

0xC8-0xFFFFFFEB
Values below 0x3E8
(1 second) are not
recommended for
large networks

gJenie_EndDevicePollPeriod Time between auto-poll data requests
sent from an End Device (while
awake) to its parent. Set in units of
100 ms.
End Devices only

50 or 0x32
(5 seconds)

0-0xFFFFFFFF
Zero value disables
auto-polling

Table 1: Global Network Parameters
162 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
gJenie_EndDeviceChildActivity
Timeout

Timeout period for communication
(excluding data polling) from an End
Device child. If no message is
received from the End Device within
this period, the child is assumed lost
and is removed from the Neighbour
table (and Routing tables higher in
the network).
Co-ordinator and Routers only

0
(Timeout
disabled)

0-0xFFFFFFFF
Timeout is value set
multiplied by 100 ms

0 disables the timeout
but this is not
advised, as child slots
may fill with inactive
End Devices, pre-
venting other devices
from joining.

gJenie_RecoverFromJpdm Indicates whether network context
data is to be recovered from external
non-volatile memory during a cold
start following power loss to the on-
chip memory. Data must have been
previously saved to external memory
using vJPDM_SaveContext().

0 0: Disable recovery
1: Enable recovery

gJenie_RecoverChildren
FromJpdm

Enables the recovery of child/neigh-
bour table when restoring context
data from non-volatile memory. Con-
text recovery must also be enabled
using gJenie_RecoverFromJpdm.
Co-ordinator and Routers only

1 0: Disable recovery
1: Enable recovery

gJpdmSector Number of sector where context will
be saved in external non-volatile
memory.

3 Positive integer

gJpdmSectorSize Size of sector where context data will
be saved in external non-volatile
memory.

32768 (32K) Size in bytes

gJpdmFlashType Type of Flash memory device used as
external non-volatile memory.

Auto-detect E_FL_CHIP_ST_M25P10_
A
E_FL_CHIP_SST_25VF010
E_FL_CHIP_ATMEL_AT25
F512
E_FL_CHIP_CUSTOM
E_FL_CHIP_AUTO

gJpdmFlashFuncTable Pointer to function table for custom
Flash memory device.

NULL -

Table 1: Global Network Parameters
JN-RM-2035 v1.8 © Jennic 2010 163

Appendices Jennic

B. Enumerated Types and Defines

The following enumerated types and defines are used by the Jenie API functions.
They are presented as those relevant to the core Jenie functions, included in the
header file Jenie.h and detailed in Chapter 2, and those relevant to the Jenie
Integrated Peripheral functions, included in the header file JPI.h and detailed in
Chapter 3.

B.1 For Core Jenie Functions

Return Status (teJenieStatusCode)
These status responses are returned by most Jenie API function calls.

typedef enum

{

E_JENIE_SUCCESS, /*0 Function successfully completed*/

E_JENIE_DEFERRED, /*1 Stack response deferred*/

E_JENIE_ERR_UNKNOWN, /*2 Unknown error*/

E_JENIE_ERR_INVLD_PARAM, /*3 Error - invalid parameter*/

E_JENIE_ERR_STACK_RSRC, /*4 Error - insufficient resources*/

E_JENIE_ERR_STACK_BUSY /*5 Error - stack too busy*/

} teJenieStatusCode;

Node Type (teJenieDeviceType)
typedef enum

{

 E_JENIE_COORDINATOR,

 E_JENIE_ROUTER,

 E_JENIE_END_DEVICE

} teJenieDeviceType;

Component (teJenieComponent)
typedef enum

{

E_JENIE_COMPONENT_JENIE, /*Jenie*/

E_JENIE_COMPONENT_NETWORK, /*Network level - JenNet*/

E_JENIE_COMPONENT_MAC, /*IEEE 802.15.4*/

E_JENIE_COMPONENT_CHIP /*JN513x chip*/

} teJenieComponent;
164 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
Radio Transceiver (teJenieRadioPower)
typedef enum

{

 E_JENIE_RADIO_ON = 20,

 E_JENIE_RADIO_OFF = 21

} teJenieRadioPower;

Poll Status (teJeniePollStatus)
typedef enum

{

 E_JENIE_POLL_NO_DATA, /* No data available */

 E_JENIE_POLL_DATA_READY, /* Data pending */

 E_JENIE_POLL_TIMEOUT /* Poll failed since no response */

}teJeniePollStatus;

Note that E_JENIE_POLL_TIMEOUT is returned if the poll-cycle fails to complete
within 200 ms (due to no acknowledgement from the poll target within this time).

TXOPTION #defines

Code Value Description

TXOPTION_ACKREQ 0x01 Requests an acknowledgement from the
destination node

TXOPTION_BDCAST 0x04 Sends a broadcast message to all Routers
in the network

TXOPTION_SILENT 0x08 Sends without packet sent/failed notification

Table 2: TXOPTION #defines
JN-RM-2035 v1.8 © Jennic 2010 165

Appendices Jennic

B.2 For Jenie Peripheral Interface Functions

Separate sets of JPI data types and enumerations are provided for the JN5139 and
JN5148 devices. These are detailed in the sub-sections below.

B.2.1 JN5139 Versions

Peripheral (teJPI_Device)
Device types, used to identify interrupt source:

typedef enum

{

 E_JPI_DEVICE_TICK_TIMER = 0, /* Tick timer */

 E_JPI_DEVICE_SYSCTRL = 2, /* System controller */

 E_JPI_DEVICE_BBC, /* Baseband controller */

 E_JPI_DEVICE_AES, /* Encryption engine */

 E_JPI_DEVICE_PHYCTRL, /* Phy controller */

 E_JPI_DEVICE_UART0, /* UART 0 */

 E_JPI_DEVICE_UART1, /* UART 1 */

 E_JPI_DEVICE_TIMER0, /* Timer 0 */

 E_JPI_DEVICE_TIMER1, /* Timer 1 */

 E_JPI_DEVICE_SI, /* Serial Interface (2 wire) */

 E_JPI_DEVICE_SPIM, /* SPI master */

 E_JPI_DEVICE_INTPER, /* Intelligent peripheral */

 E_JPI_DEVICE_ANALOGUE /* Analogue peripherals */

} teJPI_Device;

System Control Item (teJPI_Item)
Individual System Controller interrupts:

typedef enum

{

 E_JPI_SYSCTRL_WK0 = 26, /* Wake timer 0 */

 E_JPI_SYSCTRL_WK1 = 27, /* Wake timer 1 */

 E_JPI_SYSCTRL_COMP0 = 28, /* Comparator 0 */

 E_JPI_SYSCTRL_COMP1 = 29, /* Comparator 1 */

} teJPI_Item;

Analogue Peripheral (teJPI_AnalogueChannel)
typedef enum {

 E_JPI_ANALOGUE_DAC_0,

 E_JPI_ANALOGUE_DAC_1,

 E_JPI_ANALOGUE_ADC

} teJPI_AnalogueChannel;
166 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
Comparator (teJPI_Comparator)
typedef enum {

 E_JPI_COMPARATOR_0,

 E_JPI_COMPARATOR_1

} teJPI_Comparator;

Timer (teJPI_Timer)
typedef enum {

 E_JPI_TIMER_0,

 E_JPI_TIMER_1

} teJPI_Timer;

Timer Mode (teJPI_TimerMode)
typedef enum {

 E_JPI_TIMER_MODE_SINGLESHOT,

 E_JPI_TIMER_MODE_REPEATING,

 E_JPI_TIMER_MODE_DELTASIGMA,

 E_JPI_TIMER_MODE_DELTASIGMARTZ

} teJPI_TimerMode;

Timer Clock Type (teJPI_TimerClockType)
typedef enum {

 E_JPI_TIMER_CLOCK_INTERNAL_NORMAL,

 E_JPI_TIMER_CLOCK_INTERNAL_INVERTED,

 E_JPI_TIMER_CLOCK_EXTERNAL_NORMAL,

 E_JPI_TIMER_CLOCK_EXTERNAL_INVERTED

} teJPI_TimerClockType;
JN-RM-2035 v1.8 © Jennic 2010 167

Appendices Jennic

Analogue Peripheral (ADC and DACs) #defines

#define E_JPI_ADC_SRC_ADC_1 0

#define E_JPI_ADC_SRC_ADC_2 1

#define E_JPI_ADC_SRC_ADC_3 2

#define E_JPI_ADC_SRC_ADC_4 3

#define E_JPI_ADC_SRC_TEMP 4

#define E_JPI_ADC_SRC_VOLT 5

#define E_JPI_AP_REGULATOR_ENABLE TRUE

#define E_JPI_AP_REGULATOR_DISABLE FALSE

#define E_JPI_AP_SAMPLE_2 0

#define E_JPI_AP_SAMPLE_4 1

#define E_JPI_AP_SAMPLE_6 2

#define E_JPI_AP_SAMPLE_8 3

#define E_JPI_AP_CLOCKDIV_2MHZ 0

#define E_JPI_AP_CLOCKDIV_1MHZ 1

#define E_JPI_AP_CLOCKDIV_500KHZ 2

#define E_JPI_AP_CLOCKDIV_250KHZ 3

#define E_JPI_AP_INPUT_RANGE_2 TRUE

#define E_JPI_AP_INPUT_RANGE_1 FALSE

#define E_JPI_AP_GAIN_2 TRUE

#define E_JPI_AP_GAIN_1 FALSE

#define E_JPI_AP_EXTREF TRUE

#define E_JPI_AP_INTREF FALSE

#define E_JPI_ADC_CONVERT_ENABLE TRUE

#define E_JPI_ADC_CONVERT_DISABLE FALSE

#define E_JPI_ADC_CONTINUOUS TRUE

#define E_JPI_ADC_SINGLE_SHOT FALSE

#define E_JPI_AP_INT_ENABLE TRUE

#define E_JPI_AP_INT_DISABLE FALSE

#define E_JPI_DAC_RETAIN_ENABLE TRUE

#define E_JPI_DAC_RETAIN_DISABLE FALSE

Comparator #defines
#define E_JPI_COMP_HYSTERESIS_0MV 0

#define E_JPI_COMP_HYSTERESIS_5MV 1

#define E_JPI_COMP_HYSTERESIS_10MV 2

#define E_JPI_COMP_HYSTERESIS_20MV 3

#define E_JPI_AP_COMPARATOR_MASK_1 1

#define E_JPI_AP_COMPARATOR_MASK_2 2

#define E_JPI_COMP_SEL_EXT 0x00

#define E_JPI_COMP_SEL_DAC 0x01

#define E_JPI_COMP_SEL_BANDGAP 0x03
168 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
UART #defines
#define E_JPI_UART_0 0

#define E_JPI_UART_1 1

#define E_JPI_UART_RATE_4800 0

#define E_JPI_UART_RATE_9600 1

#define E_JPI_UART_RATE_19200 2

#define E_JPI_UART_RATE_38400 3

#define E_JPI_UART_RATE_76800 4

#define E_JPI_UART_RATE_115200 5

#define E_JPI_UART_WORD_LEN_5 0

#define E_JPI_UART_WORD_LEN_6 1

#define E_JPI_UART_WORD_LEN_7 2

#define E_JPI_UART_WORD_LEN_8 3

#define E_JPI_UART_FIFO_LEVEL_1 0

#define E_JPI_UART_FIFO_LEVEL_4 1

#define E_JPI_UART_FIFO_LEVEL_8 2

#define E_JPI_UART_FIFO_LEVEL_14 3

#define E_JPI_UART_LS_ERROR 0x80

#define E_JPI_UART_LS_TEMT 0x40

#define E_JPI_UART_LS_THRE 0x20

#define E_JPI_UART_LS_BI 0x10

#define E_JPI_UART_LS_FE 0x08

#define E_JPI_UART_LS_PE 0x04

#define E_JPI_UART_LS_OE 0x02

#define E_JPI_UART_LS_DR 0x01

#define E_JPI_UART_MS_DCTS 0x01

#define E_JPI_UART_INT_MODEM 0

#define E_JPI_UART_INT_TX 1

#define E_JPI_UART_INT_RXDATA 2

#define E_JPI_UART_INT_RXLINE 3

#define E_JPI_UART_INT_TIMEOUT 6

#define E_JPI_UART_TX_RESET TRUE

#define E_JPI_UART_RX_RESET TRUE

#define E_JPI_UART_TX_ENABLE FALSE

#define E_JPI_UART_RX_ENABLE FALSE

#define E_JPI_UART_EVEN_PARITY TRUE

#define E_JPI_UART_ODD_PARITY FALSE

#define E_JPI_UART_PARITY_ENABLE TRUE

#define E_JPI_UART_PARITY_DISABLE FALSE

#define E_JPI_UART_1_STOP_BIT TRUE

#define E_JPI_UART_2_STOP_BITS FALSE

#define E_JPI_UART_RTS_HIGH TRUE

#define E_JPI_UART_RTS_LOW FALSE
JN-RM-2035 v1.8 © Jennic 2010 169

Appendices Jennic

Timer #defines

#define E_JPI_TIMER_INT_PERIOD 1

#define E_JPI_TIMER_INT_RISE 2

#define E_JPI_TIMER_INTERRUPT_RISING (0U)

#define E_JPI_TIMER_INTERRUPT_COMPLETE (1U)

Wake Timer #defines
#define E_JPI_WAKE_TIMER_0 0

#define E_JPI_WAKE_TIMER_1 1

#define E_JPI_WAKE_TIMER_MASK_0 1

#define E_JPI_WAKE_TIMER_MASK_1 2

SPI #defines
#define E_JPI_SPIM_MSB_FIRST FALSE

#define E_JPI_SPIM_LSB_FIRST TRUE

#define E_JPI_SPIM_TXPOS_EDGE FALSE

#define E_JPI_SPIM_TXNEG_EDGE TRUE

#define E_JPI_SPIM_RXPOS_EDGE FALSE

#define E_JPI_SPIM_RXNEG_EDGE TRUE

#define E_JPI_SPIM_INT_ENABLE TRUE

#define E_JPI_SPIM_INT_DISABLE FALSE

#define E_JPI_SPIM_AUTOSLAVE_ENBL TRUE

#define E_JPI_SPIM_AUTOSLAVE_DSABL FALSE

#define E_JPI_SPIM_SLAVE_ENBLE_0 0x1

#define E_JPI_SPIM_SLAVE_ENBLE_1 0x2

#define E_JPI_SPIM_SLAVE_ENBLE_2 0x4

#define E_JPI_SPIM_SLAVE_ENBLE_3 0x8

Serial Interface (SI) #defines
#define E_JPI_SI_INT_AL 0x20

#define E_JPI_SI_SLAVE_RW_SET FALSE

#define E_JPI_SI_START_BIT TRUE

#define E_JPI_SI_NO_START_BIT FALSE

#define E_JPI_SI_STOP_BIT TRUE

#define E_JPI_SI_NO_STOP_BIT FALSE

#define E_JPI_SI_SLAVE_READ TRUE

#define E_JPI_SI_NO_SLAVE_READ FALSE

#define E_JPI_SI_SLAVE_WRITE TRUE

#define E_JPI_SI_NO_SLAVE_WRITE FALSE

#define E_JPI_SI_SEND_ACK FALSE

#define E_JPI_SI_SEND_NACK TRUE

#define E_JPI_SI_IRQ_ACK TRUE

#define E_JPI_SI_NO_IRQ_ACK FALSE
170 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
Intelligent Peripheral (IP) #defines
#define E_JPI_IP_MAX_MSG_SIZE 0x3F

#define E_JPI_IP_TXPOS_EDGE FALSE

#define E_JPI_IP_TXNEG_EDGE TRUE

#define E_JPI_IP_RXPOS_EDGE FALSE

#define E_JPI_IP_RXNEG_EDGE TRUE

#define E_JPI_IP_BIG_ENDIAN TRUE

#define E_JPI_IP_LITTLE_ENDIAN FALSE

DIO #defines
#define E_JPI_DIO0_INT 0x00000001

#define E_JPI_DIO1_INT 0x00000002

#define E_JPI_DIO2_INT 0x00000004

#define E_JPI_DIO3_INT 0x00000008

#define E_JPI_DIO4_INT 0x00000010

#define E_JPI_DIO5_INT 0x00000020

#define E_JPI_DIO6_INT 0x00000040

#define E_JPI_DIO7_INT 0x00000080

#define E_JPI_DIO8_INT 0x00000100

#define E_JPI_DIO9_INT 0x00000200

#define E_JPI_DIO10_INT 0x00000400

#define E_JPI_DIO11_INT 0x00000800

#define E_JPI_DIO12_INT 0x00001000

#define E_JPI_DIO13_INT 0x00002000

#define E_JPI_DIO14_INT 0x00004000

#define E_JPI_DIO15_INT 0x00008000

#define E_JPI_DIO16_INT 0x00010000

#define E_JPI_DIO17_INT 0x00020000

#define E_JPI_DIO18_INT 0x00040000

#define E_JPI_DIO19_INT 0x00080000

#define E_JPI_DIO20_INT 0x00100000
JN-RM-2035 v1.8 © Jennic 2010 171

Appendices Jennic

B.2.2 JN5148 Versions

Peripheral (teJPI_Device)
Device types, used to identify interrupt source:

typedef enum

{

 E_JPI_DEVICE_AUDIOFIFO = 0, /* Sample FIFO */

 E_JPI_DEVICE_I2S = 1, /* 4-wire DAI */

 E_JPI_DEVICE_SYSCTRL = 2, /* System controller */

 E_JPI_DEVICE_BBC = 3, /* Baseband controller */

 E_JPI_DEVICE_AES = 4, /* Encryption engine */

 E_JPI_DEVICE_PHYCTRL = 5, /* Phy controller */

 E_JPI_DEVICE_UART0 = 6, /* UART 0 */

 E_JPI_DEVICE_UART1 = 7, /* UART 1 */

 E_JPI_DEVICE_TIMER0 = 8, /* Timer 0 */

 E_JPI_DEVICE_TIMER1 = 9, /* Timer 1 */

 E_JPI_DEVICE_SI = 10, /* 2-wire SI */

 E_JPI_DEVICE_SPIM = 11, /* SPI master */

 E_JPI_DEVICE_INTPER = 12, /* Intelligent peripheral */

 E_JPI_DEVICE_ANALOGUE = 13, /* Analogue peripherals */

 E_JPI_DEVICE_TIMER2 = 14, /* Timer 2 */

 E_JPI_DEVICE_TICK_TIMER = 15 /* Tick timer */

} teJPI_Device;

System Control Item (teJPI_Item)
Individual System Controller interrupts:

typedef enum

{

 E_JPI_SYSCTRL_PC0 = 22, /* Pulse Counter 0 */

 E_JPI_SYSCTRL_PC1 = 23, /* Pulse Counter 1 */

 E_JPI_SYSCTRL_VFES = 24, /* VBO Falling */

 E_JPI_SYSCTRL_VRES = 25, /* VBO Rising */

 E_JPI_SYSCTRL_WK0 = 26, /* Wake timer 0 */

 E_JPI_SYSCTRL_WK1 = 27, /* Wake timer 1 */

 E_JPI_SYSCTRL_COMP0 = 28, /* Comparator 0 */

 E_JPI_SYSCTRL_COMP1 = 29, /* Comparator 1 */

 E_JPI_SYSCTRL_RNDES = 30, /* Random number generator */

 E_JPI_SYSCTRL_CKES = 31 /* Clock change */

} teJPI_Item;
172 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
Analogue Peripheral (teJPI_AnalogueChannel)
typedef enum {

 E_JPI_ANALOGUE_DAC_0,

 E_JPI_ANALOGUE_DAC_1,

 E_JPI_ANALOGUE_ADC

} teJPI_AnalogueChannel;

Comparator (teJPI_Comparator)
typedef enum {

 E_JPI_COMPARATOR_0,

 E_JPI_COMPARATOR_1

} teJPI_Comparator;

Timer (teJPI_Timer)
typedef enum {

 E_JPI_TIMER_0,

 E_JPI_TIMER_1,

 E_JPI_TIMER_2

} teJPI_Timer;

Timer Mode (teJPI_TimerMode)
typedef enum {

 E_JPI_TIMER_MODE_SINGLESHOT,

 E_JPI_TIMER_MODE_REPEATING,

 E_JPI_TIMER_MODE_DELTASIGMA,

 E_JPI_TIMER_MODE_DELTASIGMARTZ

} teJPI_TimerMode;

Timer Clock Type (teJPI_TimerClockType)
typedef enum {

 E_JPI_TIMER_CLOCK_INTERNAL_NORMAL,

 E_JPI_TIMER_CLOCK_INTERNAL_INVERTED,

 E_JPI_TIMER_CLOCK_EXTERNAL_NORMAL,

 E_JPI_TIMER_CLOCK_EXTERNAL_INVERTED

} teJPI_TimerClockType;
JN-RM-2035 v1.8 © Jennic 2010 173

Appendices Jennic

Analogue Peripheral (ADC and DACs) #defines

#define E_JPI_ADC_SRC_ADC_1 0

#define E_JPI_ADC_SRC_ADC_2 1

#define E_JPI_ADC_SRC_ADC_3 2

#define E_JPI_ADC_SRC_ADC_4 3

#define E_JPI_ADC_SRC_TEMP 4

#define E_JPI_ADC_SRC_VOLT 5

#define E_JPI_AP_REGULATOR_ENABLE TRUE

#define E_JPI_AP_REGULATOR_DISABLE FALSE

#define E_JPI_AP_SAMPLE_2 0

#define E_JPI_AP_SAMPLE_4 1

#define E_JPI_AP_SAMPLE_6 2

#define E_JPI_AP_SAMPLE_8 3

#define E_JPI_AP_CLOCKDIV_2MHZ 0

#define E_JPI_AP_CLOCKDIV_1MHZ 1

#define E_JPI_AP_CLOCKDIV_500KHZ 2

#define E_JPI_AP_CLOCKDIV_250KHZ 3

#define E_JPI_AP_INPUT_RANGE_2 TRUE

#define E_JPI_AP_INPUT_RANGE_1 FALSE

#define E_JPI_AP_GAIN_2 TRUE

#define E_JPI_AP_GAIN_1 FALSE

#define E_JPI_AP_EXTREF TRUE

#define E_JPI_AP_INTREF FALSE

#define E_JPI_ADC_CONVERT_ENABLE TRUE

#define E_JPI_ADC_CONVERT_DISABLE FALSE

#define E_JPI_ADC_CONTINUOUS TRUE

#define E_JPI_ADC_SINGLE_SHOT FALSE

#define E_JPI_AP_CAPT_INT_ENABLE 0x1U

#define E_JPI_AP_INT_ENABLE TRUE

#define E_JPI_AP_INT_DISABLE FALSE

#define E_JPI_DAC_RETAIN_ENABLE TRUE

#define E_JPI_DAC_RETAIN_DISABLE FALSE

Comparator #defines
#define E_JPI_COMP_HYSTERESIS_0MV 0

#define E_JPI_COMP_HYSTERESIS_10MV 1

#define E_JPI_COMP_HYSTERESIS_20MV 2

#define E_JPI_COMP_HYSTERESIS_40MV 3

#define E_JPI_AP_COMPARATOR_MASK_1 1

#define E_JPI_AP_COMPARATOR_MASK_2 2

#define E_JPI_COMP_SEL_EXT 0x00

#define E_JPI_COMP_SEL_DAC 0x01

#define E_JPI_COMP_SEL_BANDGAP 0x03
174 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
UART #defines
#define E_JPI_UART_RATE_4800 0

#define E_JPI_UART_RATE_9600 1

#define E_JPI_UART_RATE_19200 2

#define E_JPI_UART_RATE_38400 3

#define E_JPI_UART_RATE_76800 4

#define E_JPI_UART_RATE_115200 5

#define E_JPI_UART_WORD_LEN_5 0

#define E_JPI_UART_WORD_LEN_6 1

#define E_JPI_UART_WORD_LEN_7 2

#define E_JPI_UART_WORD_LEN_8 3

#define E_JPI_UART_FIFO_LEVEL_1 0

#define E_JPI_UART_FIFO_LEVEL_4 1

#define E_JPI_UART_FIFO_LEVEL_8 2

#define E_JPI_UART_FIFO_LEVEL_14 3

#define E_JPI_UART_LS_ERROR 0x80

#define E_JPI_UART_LS_TEMT 0x40

#define E_JPI_UART_LS_THRE 0x20

#define E_JPI_UART_LS_BI 0x10

#define E_JPI_UART_LS_FE 0x08

#define E_JPI_UART_LS_PE 0x04

#define E_JPI_UART_LS_OE 0x02

#define E_JPI_UART_LS_DR 0x01

#define E_JPI_UART_MS_CTS 0x10

#define E_JPI_UART_MS_DCTS 0x01

#define E_JPI_UART_INT_MODEM 0

#define E_JPI_UART_INT_TX 1

#define E_JPI_UART_INT_RXDATA 2

#define E_JPI_UART_INT_RXLINE 3

#define E_JPI_UART_INT_TIMEOUT 6

#define E_JPI_UART_TX_RESET TRUE

#define E_JPI_UART_RX_RESET TRUE

#define E_JPI_UART_TX_ENABLE FALSE

#define E_JPI_UART_RX_ENABLE FALSE

#define E_JPI_UART_EVEN_PARITY TRUE

#define E_JPI_UART_ODD_PARITY FALSE

#define E_JPI_UART_PARITY_ENABLE TRUE

#define E_JPI_UART_PARITY_DISABLE FALSE

#define E_JPI_UART_1_STOP_BIT TRUE

#define E_JPI_UART_2_STOP_BITS FALSE

#define E_JPI_UART_RTS_HIGH TRUE

#define E_JPI_UART_RTS_LOW FALSE
JN-RM-2035 v1.8 © Jennic 2010 175

Appendices Jennic

Timer #defines

#define E_JPI_TIMER_INT_PERIOD 1

#define E_JPI_TIMER_INT_RISE 2

#define E_JPI_TIMER_INTERRUPT_RISING (1U)

#define E_JPI_TIMER_INTERRUPT_COMPLETE (2U)

Wake Timer #defines
#define E_JPI_WAKE_TIMER_0 0

#define E_JPI_WAKE_TIMER_1 1

SPI #defines
#define E_JPI_SPIM_MSB_FIRST FALSE

#define E_JPI_SPIM_LSB_FIRST TRUE

#define E_JPI_SPIM_TXPOS_EDGE FALSE

#define E_JPI_SPIM_TXNEG_EDGE TRUE

#define E_JPI_SPIM_RXPOS_EDGE FALSE

#define E_JPI_SPIM_RXNEG_EDGE TRUE

#define E_JPI_SPIM_INT_ENABLE TRUE

#define E_JPI_SPIM_INT_DISABLE FALSE

#define E_JPI_SPIM_AUTOSLAVE_ENBL TRUE

#define E_JPI_SPIM_AUTOSLAVE_DSABL FALSE

#define E_JPI_SPIM_SLAVE_ENBLE_0 0x1

#define E_JPI_SPIM_SLAVE_ENBLE_1 0x2

#define E_JPI_SPIM_SLAVE_ENBLE_2 0x4

#define E_JPI_SPIM_SLAVE_ENBLE_3 0x8

Serial Interface (SI) #defines
#define E_JPI_SI_INT_AL 0x20

#define E_JPI_SI_SLAVE_RW_SET FALSE

#define E_JPI_SI_START_BIT TRUE

#define E_JPI_SI_NO_START_BIT FALSE

#define E_JPI_SI_STOP_BIT TRUE

#define E_JPI_SI_NO_STOP_BIT FALSE

#define E_JPI_SI_SLAVE_READ TRUE

#define E_JPI_SI_NO_SLAVE_READ FALSE

#define E_JPI_SI_SLAVE_WRITE TRUE

#define E_JPI_SI_NO_SLAVE_WRITE FALSE

#define E_JPI_SI_SEND_ACK FALSE

#define E_JPI_SI_SEND_NACK TRUE

#define E_JPI_SI_IRQ_ACK TRUE

#define E_JPI_SI_NO_IRQ_ACK FALSE
176 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
Intelligent Peripheral (IP) #defines
#define E_JPI_IP_MAX_MSG_SIZE 0x3E

#define E_JPI_IP_TXPOS_EDGE FALSE

#define E_JPI_IP_TXNEG_EDGE TRUE

#define E_JPI_IP_RXPOS_EDGE FALSE

#define E_JPI_IP_RXNEG_EDGE TRUE

#define E_JPI_IP_BIG_ENDIAN TRUE

#define E_JPI_IP_LITTLE_ENDIAN FALSE

DIO #defines
#define E_JPI_DIO0_INT 0x00000001

#define E_JPI_DIO1_INT 0x00000002

#define E_JPI_DIO2_INT 0x00000004

#define E_JPI_DIO3_INT 0x00000008

#define E_JPI_DIO4_INT 0x00000010

#define E_JPI_DIO5_INT 0x00000020

#define E_JPI_DIO6_INT 0x00000040

#define E_JPI_DIO7_INT 0x00000080

#define E_JPI_DIO8_INT 0x00000100

#define E_JPI_DIO9_INT 0x00000200

#define E_JPI_DIO10_INT 0x00000400

#define E_JPI_DIO11_INT 0x00000800

#define E_JPI_DIO12_INT 0x00001000

#define E_JPI_DIO13_INT 0x00002000

#define E_JPI_DIO14_INT 0x00004000

#define E_JPI_DIO15_INT 0x00008000

#define E_JPI_DIO16_INT 0x00010000

#define E_JPI_DIO17_INT 0x00020000

#define E_JPI_DIO18_INT 0x00040000

#define E_JPI_DIO19_INT 0x00080000

#define E_JPI_DIO20_INT 0x00100000
JN-RM-2035 v1.8 © Jennic 2010 177

Appendices Jennic

C. Data Types

The following data types are used by the Jenie API.

tsJenieSecKey (Security Key)
typedef struct

{

 uint32 u32register0;

 uint32 u32register1;

 uint32 u32register2;

 uint32 u32register3;

} tsJenieSecKey;

tsJenie_RoutingEntry (Routing Table Entry)
typedef struct

{

 uint16 u16EntryNum; // Entry number

 uint16 u16TotalEntries; // Total number of entries in table

 uint64 u64DestAddr; // Destination address

 uint64 u64NextHopAddr; // Next hop address

}tsJenie_RoutingEntry;

tsJenie_NeighbourEntry (Neighbour Table Entry)
typedef struct

{

 uint8 u8EntryNum; // Entry number

 uint8 u8TotalEntries; // Total number of entries in table

 uint64 u64Addr; // Address of neighbouring node

 bool_t bSleepingED; // If device is a sleeping node

 uint32 u32Services; // Services provided by the node

 uint8 u8LinkQuality; // Last received link quality info

 uint16 u16PktsLost; // Sent packets not acknowledged

 uint16 u16PktsSent; // Sent packets acknowledged

 uint16 u16PktsRcvd; // Packets received from node

}tsJenie_NeighbourEntry;

Note: u8LinkQuality is a Link Quality Indication
(LQI) value in the range 0-255. For more information on
the LQI value, including an approximate relationship
between the LQI value and detected power in dBm, see
Appendix G.
178 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
tsScanElement (Scan Results)
This structure is used by the JenNet API, described in Appendix F. It contains
information about a remote node - for example, properties reported as the result of an
energy scan.

typedef struct

{

 MAC_ExtAddr_s sExtAddr; // MAC address of remote node

 uint16 u16PanId; // PAN ID of host network

 uint16 u16Depth; // Depth of node in network

 uint8 u8Channel; // Channel number (11-26)

 uint8 u8LinkQuality; // Link quality to node

 uint8 u8NumChildren; // Number of child nodes

 uint16 u16UserDefined; // User-defined value

}tsScanElement;

For more information on u8LinkQuality, refer to the Note on page 178.
JN-RM-2035 v1.8 © Jennic 2010 179

Appendices Jennic

D. Stack Events

The sub-sections below detail the stack events (management and data) that can be
handled by the Jenie API callback functions described in Section 2.2.

D.1 Stack Management Events
The table below lists and describes the stack management events that can be handled
by the callback function vJenie_CbStackMgmtEvent().

Note: Hardware events for the JN5139/JN5148
integrated peripherals are described in Appendix E.

Stack Event Description Structure Type

E_JENIE_REG_SVC_RSP To register the services of an End Device requires
communication with the parent. In this case, the return
value of the call to eJenie_RegisterServices()
indicates a deferred response. This event is generated
when the registration is complete.

NULL

E_JENIE_SVC_REQ_RSP Indicates a response to a service request has been
received from a remote node.

tsSvcReqRsp

E_JENIE_POLL_CMPLT Indicates that the End Device has finished polling the
parent node for data.
End Devices only

tsPollCmplt

E_JENIE_PACKET_SENT Indicates that a packet has been successfully sent (to
the next node).

NULL

E_JENIE_PACKET_FAILED Indicates that a packet send (to the next node) has
failed.

NULL

E_JENIE_NETWORK_UP Indicates that the network is up and running. tsNwkStartUp

E_JENIE_STACK_RESET Indicates that the stack is going to reset, normally
because the node has left the network or lost its
parent.

NULL

E_JENIE_CHILD_JOINED Indicates that a child has joined a Router/Co-ordinator. tsChildJoined

E_JENIE_CHILD_LEAVE Indicates that a child has left a Router/Co-ordinator. tsChildLeave

E_JENIE_CHILD_REJECTED Indicates that a request by a node to join a network
has been rejected by the Co-ordinator (normally due to
lack of space in the Co-ordinator’s routing table).

tsChildRejected

Table 3: Stack Management Events
180 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vJenie_CbStackMgmtEvent() has two parameters, the first being the stack event as
described above. The second parameter is a pointer to a data structure that contains
additional information fields. If the additional data is not necessary, the second
parameter is simply a NULL pointer. If a pointer to the primitive is sent, it must be cast
to the appropriate type described below.

tsSvcReqRsp
typedef struct

{

 uint64 u64SrcAddress; /* Address of responding node */

 uint32 u32Services; /* Services available on node */

} tsSvcReqRsp;

u32Services is a 32-bit value in which each bit position represents a network service
- the bit representations are as in the network’s Service Profile, defined in the header
file Jenie.h. In u32services, ‘1’ indicates that the responding node supports the
corresponding service and ‘0’ indicates that the service is not supported by the node.

tsPollCmplt
typedef struct

{

 teJeniePollStatus ePollStatus;

}tsPollCmplt;

For details of the enumerated type teJeniePollStatus, refer to Appendix B.1.

tsChildJoined
typedef struct

{

 uint64 u64SrcAddress; /* Address of node that has joined */

} tsChildJoined;

tsChildLeave
typedef struct

{

 uint64 u64SrcAddress; /* Address of node that has left */

} tsChildLeave;

Note: In the descriptions below, each of
u64SrcAddress and u64ParentAddress is a 64-bit
IEEE/MAC address.
JN-RM-2035 v1.8 © Jennic 2010 181

Appendices Jennic

tsChildRejected

typedef struct

{

 uint64 u64SrcAddress; /* Address of rejected node */

} tsChildRejected;

tsNwkStartUp
typedef struct{

 uint64 u64ParentAddress; /*Address of parent node*/

 uint64 u64LocalAddress; /*Address of local node*/

 uint16 u16Depth; /*Depth of node in the network*/

 uint16 u16PanID; /*PAN ID of the network*/

 uint8 u8Channel; /*Operating channel */

}tsNwkStartUp

D.2 Data Events
The table below lists and describes the data events that can be handled by the
callback function vJenie_CbStackDataEvent().

vJenie_CbStackDataEvent() has two parameters, the first being the stack event as
described above. The second parameter is a pointer to a data structure that contains
additional information fields. The pointer must be cast to an appropriate type
described below.

Stack Event Description Structure Type

E_JENIE_DATA Indicates that data has been received from
another node. Event contains the data.

tsData

E_JENIE_DATA_TO_SERVICE Indicates that data has been received from
another node, destined for a particular serv-
ice on the local node. Event contains the
data.

tsDataToService

E_JENIE_DATA_ACK Indicates that a response has been received
from a remote node, acknowledging receipt
of data previously sent from the local node.

tsDataAck

E_JENIE_DATA_TO_SERVICE_ACK Indicates that a response has been received
from a remote node, acknowledging receipt
of data previously sent from the local node to
a particular service on the remote node.

tsDataToServiceAck

Table 4: Data Events

Note: In the descriptions below, u64SrcAddress is a
64-bit IEEE/MAC address.
182 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
tsData
typedef struct

{

 uint64 u64SrcAddress; /* Address of message source */

 uint8 u8MsgFlags; /* Flags reserved for future use */

 uint16 u16Length; /* Length of data payload, in bytes */

 uint8 *pau8Data; /* Pointer to data payload */

}tsData;

tsDataToService
typedef struct

{

 uint64 u64SrcAddress; /* Address of message source */

 uint8 u8SrcService; /* Service on sending node */

 uint8 u8DestService; /* Service on receiving node */

 uint8 u8MsgFlags; /* Flags reserved for future use */

 uint16 u16Length; /* Length of data payload, in bytes */

 uint8 *pau8Data; /* Pointer to data payload */

}tsDataToService;

tsDataAck
typedef struct

{

 uint64 u64SrcAddress; /* Address of acknowledgement source */

}tsDataAck;

tsDataToServiceAck
typedef struct

{

 uint64 u64SrcAddress; /* Address of sending node */

}tsDataToServiceAck;
JN-RM-2035 v1.8 © Jennic 2010 183

Appendices Jennic

E. Integrated Peripheral Interrupt Handling

Interrupts from the JN5139/JN5148 integrated peripherals are handled by a set of
peripheral-specific callback functions. These callbacks are user-defined and can be
registered using the corresponding callback registration functions from the Jenie API.
The callback registration functions for the different peripherals are specified in the
table below (which also gives the page of the function description in this manual).

For example, you can define your own UART interrupt handler and register this
callback function using the vJPI_Uart0RegisterCallback() function (for UART0).

E.1 Callback Function Prototype and Parameters
All peripheral-specific callback functions must have the following prototype:

where

u32DeviceId is an enumerated value indicating the peripheral that generated
the interrupt - see Appendix E.1.1 below
u32ItemBitmap is a 32-bit bitmask indicating the individual interrupt source
within the peripheral (except for the UARTs, for which the parameter returns an
enumerated value) - see Appendix E.1.2 below

Before calling the callback function, the library clears the source of the interrupt, so
there is no possibility of the processor entering a state of permanently trying to handle
the same interrupt due to a malformed callback function. This also means that it is
possible to have a NULL callback function.

Peripheral Registration Function and Page

Comparator, DIO, WakeTimer “vJPI_SysCtrlRegisterCallback” on page 60

ADC, DAC “vJPI_APRegisterCallback” on page 65

UART0 “vJPI_Uart0RegisterCallback” on page 100

UART1 “vJPI_Uart1RegisterCallback” on page 101

Timer0 “vJPI_Timer0RegisterCallback” on page 113

Timer1 “vJPI_Timer1RegisterCallback” on page 114

Timer2 (JN5148 only) “vJPI_Timer2RegisterCallback (JN5148 Only)” on page 115

SPI Master “vJPI_SpiRegisterCallback” on page 140

2-wire Serial Interface (SI) “vJPI_SiRegisterCallback” on page 152

Intelligent Peripheral Interface “vJPI_IpRegisterCallback” on page 159

Table 5: Peripherals and Callback Registration Functions

PRIVATE void vHwDeviceIntCallback(uint32 u32DeviceId,
uint32 u32ItemBitmap);
184 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
The UARTs are the exception to this rule - when generating a 'receive data available'
or 'timeout indication' interrupt, the UARTs will only clear the interrupt when the data
is read from the UART receive buffer. It is therefore vital that (if UART interrupts are
to be enabled) the callback function handles the 'receive data available' and 'timeout
indication' interrupts by reading the data from the UART before returning.

E.1.1 Peripheral Interrupt Enumerations (u32DeviceId)

The parameter u32DeviceID in the user-defined interrupt handler identifies the on-chip
peripheral that has generated the interrupt. A set of enumerations are provided for this
purpose, as detailed in the table below.

* JN5148 features not supported by JPI library

Note: If the Jennic Application Queue API is being
used, the issue with UART interrupts is handled by this
API, so the application does not have to cope with it. For
more information about the Application Queue API, refer
to the Application Queue API Reference Manual
(JN-RM-2025).

Enumeration Value
(JN5139)

Value
(JN5148) Interrupt Source

E_JPI_DEVICE_AUDIOFIFO - 0 Sample FIFO *

E_JPI_DEVICE_I2S - 1 Digital Audio Interface (DAI) *

E_JPI_DEVICE_SYSCTRL 2 2 System Controller
(comparator, DIO or wake timer)

E_JPI_DEVICE_BBC 3 3 Baseband Controller

E_JPI_DEVICE_AES 4 4 Encryption Engine

E_JPI_DEVICE_PHYCTRL 5 5 PHY Controller

E_JPI_DEVICE_UART0 6 6 UART0

E_JPI_DEVICE_UART1 7 7 UART1

E_JPI_DEVICE_TIMER0 8 8 Timer 0

E_JPI_DEVICE_TIMER1 9 9 Timer 1

E_JPI_DEVICE_SI 10 10 2-Wire Serial Interface

E_JPI_DEVICE_SPIM 11 11 SPI Master

E_JPI_DEVICE_INTPER 12 12 Intelligent Peripheral Interface

E_JPI_DEVICE_ANALOGUE 13 13 Analogue Peripherals (ADC or DAC)

E_JPI_DEVICE_TIMER2 - 14 Timer 2 (JN5148 only)

E_JPI_DEVICE_TICK_TIMER 0 15 Tick Timer

Table 6: Enumerations for u32DeviceID
JN-RM-2035 v1.8 © Jennic 2010 185

Appendices Jennic

E.1.2 Peripheral Interrupt Sources (u32ItemBitmap)

The parameter u32ItemBitmap is a 32-bit bitmask indicating the individual interrupt
source within the peripheral (except for the UARTs, for which the parameter returns
an enumerated value). The bits and their meanings are detailed in the tables below.

System Controller

Analogue Peripherals

Timers
These values are identical for the two timers.

SPI Master

Mask Bit Description

E_JPI_SYSCTRL_COMP0_MASK
E_JPI_SYSCTRL_COMP1_MASK

28
29

Comparator 0 event
Comparator 1 event

E_JPI_SYSCTRL_WK0_MASK
E_JPI_SYSCTRL_WK1_MASK

26
27

Wake Timer 0 event
Wake Timer 1 event

E_JPI_DIO0_INT
E_JPI_DIO1_INT
E_JPI_DIO2_INT
:
E_JPI_DIO20_INT

0
1
2
:

20

DIO0 event
DIO1 event
DIO2 event
:
DIO20 event

Mask Bit Description

E_JPI_AP_INT_STATUS_MASK 0 Asserted to indicate capture com-
plete or new sample ready

Mask Bit Description

E_JPI_TIMER_RISE_MASK 1 Interrupt status, generated on timer
rising edge, end of low period - will
be non-zero if interrupt for timer
‘output going high’ has been set

E_JPI_TIMER_PERIOD_MASK 0 Interrupt status, generated on timer
falling edge, end of period - will be
non-zero if interrupt for timer ‘period
complete’ has been set

Mask Bit Description

E_JPI_SPIM_TX_MASK 1 Asserted to indicate transfer has
completed
186 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
Serial Interface (SI)

Intelligent Peripheral (IP) Interface

Mask Bit Description

E_JPI_SI_RXACK_MASK 7 Asserted if no acknowledgement is
received from the addressed slave

E_JPI_SI_BUSY_MASK 6 • Asserted if a START signal is
detected

• Cleared if a STOP signal is
detected

E_JPI_SI_AL_MASK 5 Asserted to indicate loss of
arbitration

E_JPI_SI_ACK_CTRL_MASK 2 Acknowledgement control:
• 0 indicates sent ACK
• 1 indicates sent NACK

E_JPI_SI_TIP_MASK 1 Asserted to indicate transfer in
progress

E_JPI_SI_INT_STATUS_MASK 0 Interrupt status - interrupt indicates
loss of arbitration or that byte trans-
fer has completed

Mask Bit Description

E_JPI_IP_INT_STATUS_MASK 6 Asserted to indicate transaction has
completed, i.e. Slave Select gone
high, and TXGO or RXGO gone low

E_JPI_IP_TXGO_MASK 1 • Asserted when Transmit data is
copied to the internal buffer

• Cleared when it has been
transmitted

E_JPI_IP_RXGO_MASK 0 • Asserted when device is in ‘ready
to receive’ state

• Cleared when data receive is
complete
JN-RM-2035 v1.8 © Jennic 2010 187

Appendices Jennic

UARTs

For the UART interrupts, u32ItemBitmap returns the following enumerated values.

These values are identical for the two UARTs:

* When this interrupt occurs, the received data byte is passed to the application via bits 15-8 of
the u32Bitmap parameter of the vJenie_CbHwEvent() callback function. In the case of an
E_JPI_UART_INT_RXDATA interrupt, any other bytes remaining in the UART's FIFO can be
detected by checking the E_JPI_UART_LS_DR bit using the u8JPI_UartReadLineStatus()
function, and then read from the UART using the u8JPI_UartReadData() function.

E.2 Handling Wake Interrupts
The JN5139/JN5148 wireless microcontroller can be woken from sleep by any of the
following sources:

Wake timer
DIO
Comparator

The above wake sources are outlined in Appendix E.2.1, Appendix E.2.2 and
Appendix E.2.3.

For the device to be woken by one of the above wake sources, interrupts must be
enabled for that source at some point before the device goes to sleep. The handling
of these interrupts is described below.

DIO and Comparator Interrupts
Interrupts from the DIOs and comparators are handled by the user-defined System
Controller callback function which is registered using the function
vJPI_SysCtrlRegisterCallback(). The callback function must be registered before
the device goes to sleep. If the device wakes from sleep with memory held and there
are any System Controller interrupts pending, the Jenie restart will result in the
callback function being invoked and the interrupts being cleared. An interrupt bitmask
u32ItemBitmap is passed into the callback function and the particular source of the
interrupt (DIO or comparator) can be obtained from this bitmask by logical ANDing it
with the masks for the System Controller detailed in Appendix E.1.2.

Enumeration Value Description

E_JPI_UART_INT_TIMEOUT 6 Timeout indication *

E_JPI_UART_INT_RXLINE 3 Receive line status

E_JPI_UART_INT_RXDATA 2 Receive data available *

E_JPI_UART_INT_TX 1 Transmit FIFO empty

E_JPI_UART_INT_MODEM 0 Modem status
188 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
Wake Timer Interrupts
When a sleeping End Device is woken by a wake timer, this event is not presented to
the user application either by the vJenie_CbHwEvent() callback function or by the
callback function that is registered through vJPI_SysCtrlRegisterCallback().
However, since the other wake sources (DIO and comparator) do generate interrupts
that are handled by the System Controller callback function (see above), it is possible
to determine whether a wake timer caused the wake-up by a process of elimination.

The ‘wake timer fired’ status is cleared by the stack upon waking, so it is not possible
to use the u8JPI_WakeTimerFiredStatus() function to determine whether the wake
timer caused the wake-up. However, the wake timer value is not cleared by the stack
and can be read with the u32JPI_WakeTimerRead() function. Thus, if the wake timer
has fired, this function will return a high value, as the timer will have rolled over from
0 (if this value is greater than 0x80000000 then the wake is likely to be due to the timer
firing).

E.2.1 Wake Timer

There are two wake timers (0 and 1) on the JN5139/JN5148 wireless microcontroller.
These timers run at a nominal 32 kHz and are able to operate during sleep periods.
When a running wake timer expires during sleep, an interrupt can be generated which
wakes the device. The functions for controlling the wake timers are detailed in Section
3.6.

Interrupts for a wake timer can be enabled using the function
vJPI_WakeTimerEnable(). The timed period for a wake timer is set when the wake
timer is started.

E.2.2 DIO

There are 21 DIO lines (0-20) on the JN5139/JN5148 wireless microcontroller. The
device can be woken from sleep on the change of state of any DIOs that have been
configured as inputs and as wake sources. The functions for controlling the DIOs are
detailed in Section 3.3.

The directions of the DIOs (input or output) are configured using the function
vJPI_DioSetDirection(). Wake interrupts can then be enabled on DIO inputs using
the function vJPI_DioSetOutput().

Caution: During sleep without memory held, the
registered callback function is lost. It must therefore be
re-registered on waking, but will not be available in time
to process the interrupt that woke the device. Therefore,
the identity of this wake source will be lost.
JN-RM-2035 v1.8 © Jennic 2010 189

Appendices Jennic

E.2.3 Comparator

There are two comparators (1 and 2) on the JN5139/JN5148 wireless microcontroller.
The device can be woken from sleep by a comparator interrupt when either of the
following comparator events occurs:

The comparator’s input voltage rises above the reference voltage.
The comparator’s input voltage falls below the reference voltage.

The functions for controlling the comparators are detailed in Section 3.2.

Interrupts for a comparator are configured and enabled using the function
vJPI_ComparatorEnable().
190 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
F. JenNet API
This appendix details the functions and network parameters of the JenNet API, which
may be used in conjunction with the Jenie API to access features provided by the
underlying JenNet stack layer. The JenNet functions provide additional control over
how nodes join a network, inter-network communication and the operation of the
Jenie/JenNet stack.

If using the JenNet API, your project must include the JenNet header file
SDK\Jenie\Include\JenNetApi.h, as well as SDK\Common\Include\mac_sap.h for
the declarations of the structures MAC_Addr_s and MAC_ExtAddr_s, shown below:

MAC_Addr_s
typedef struct

{

uint8 u8AddrMode; /* Address mode: 2 for short, 3 for extended */

uint16 u16PanId; /* PAN ID */

MAC_Addr_u uAddr; /* Address */

} MAC_Addr_s;

MAC_ExtAddr_s
typedef struct

{

uint32 u32L; /* Low word */

uint32 u32H; /* High word */

} MAC_ExtAddr_s;

All other structures used are declared in JenNetApi.h.

Note: The JenNet API is intended for advanced users
who require more control over the network than is
available through the Jenie API. The JenNet API is not
normally needed in a Jenie wireless network
application.
JN-RM-2035 v1.8 © Jennic 2010 191

Appendices Jennic

F.1 JenNet Functions

The JenNet API functions are listed below, along with their page references:

Function Page
eApi_SendDataToExtNwk 193
vNwk_DeleteChild 194
vApi_SetScanSleep 195
vApi_SetBcastTTL 196
vApi_SetPurgeRoute 197
vApi_SetPurgeInterval 198
vNwk_SetBeaconCalming 199
vApi_SetUserBeaconBits 200
u16Api_GetUserBeaconBits 201
u8Api_GetLastPktLqi 202
u16Api_GetDepth 203
u8Api_GetStackState 204
u32Api_GetVersion 205
vApi_RegBeaconNotifyCallback 206
vApi_RegLocalAuthoriseCallback 207
vApi_RegNwkAuthoriseCallback 208
vApi_RegScanSortCallback 209
192 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
eApi_SendDataToExtNwk

Description
This function is used to request the transmission of a data frame to another node that
is not necessarily in the same network (not necessarily having the same PAN ID).

The destination address is specified using the MAC_Addr_s structure (shown on
page 191), which allows the application to specify the destination PAN ID and either
a 64-bit extended address (IEEE/MAC address) or a 16-bit short address (as used in
IEEE 802.15.4).

If a broadcast short address and a broadcast PAN ID are used, the packet will be
sent to all nodes within radio range, irrespective of which network they are in.

The JenNet parameter bPermitExtNwkPkts is set to FALSE by default. Setting this to
TRUE for the local node enables the reception of external network packets (packets
for which the source PAN ID is not the same as the local PAN ID).

Parameters
*psDestAddr Pointer to address of the destination node

Note that the MAC_Addr_s structure contains the PAN ID and
either a 16-bit short or 64-bit extended address

*pu8Payload Pointer to the data to be sent
u8Length Length of the data to be sent, in bytes

Returns
E_JENNET_DEFERRED

The node successfully passed the packet to the IEEE 802.15.4 MAC layer
E_JENNET_ERROR

The node was not able to pass the request into the IEEE 802.15.4 MAC layer

teJenNetStatusCode eApi_SendDataToExtNwk(
MAC_Addr_s *psDestAddr,
uint8 *pu8Payload,
uint8 u8Length);
JN-RM-2035 v1.8 © Jennic 2010 193

Appendices Jennic

vNwk_DeleteChild

Description
This function is used on a parent node to force an immediate child to leave the
network by deleting its entry in the local Neighbour table. The node to be removed is
specified using its 64-bit IEEE/MAC address in the MAC_ExtAddr_s structure
(shown on page 191).

There will be a delay before the child node attempts to rejoin a network, as its ‘failed
packet threshold’ must first be exceeded.

Note that vNwk_DeleteChild() is called on the parent node. In contrast, the Jenie
function eJenie_Leave() can be called on a child node to remove itself from the
network.

Parameters
*psNodeAddr Pointer to the IEEE/MAC address of the node to remove

Returns
None

void vNwk_DeleteChild(MAC_ExtAddr_s *psNodeAddr);
194 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vApi_SetScanSleep

Description
This function allows the application to set the scan sleep duration at run-time. It only
applies to End Devices since Routers/Co-ordinators are not able to sleep.

The scan sleep period is the amount of time for which the End Device sleeps
between channel scans when trying to join the network - that is, if the device fails to
join the network after one scan, it will sleep for this period before scanning again.
Increasing this period will help to preserve battery life in the End Device.

Obtaining no results in the scan sort callback function (registered using
vApi_RegScanSortCallback()) or a STACK_RESET event are useful points at
which to change the scan sleep period.

Parameters
u32ScanSleepDuration Time, in milliseconds, to sleep after scan timeout

Returns
None

void vApi_SetScanSleep(uint32 u32ScanSleepDuration);
JN-RM-2035 v1.8 © Jennic 2010 195

Appendices Jennic

vApi_SetBcastTTL

Description
This function allows the application to modify the TTL (Time To Live) of broadcast
packets that originate from the local node. The TTL value is defined as the maximum
number of hops of a broadcast message. To allow broadcast packets to propagate
all the way through the network, this value should be set to at least the expected
depth of the network. In fact, the parameter u8MaxTTL should be set as follows:

u8MaxTTL = Desired maximum number of broadcast hops - 1

Parameters
u8MaxTTL Maximum number of hops - 1

Therefore, for a single hop, set this value to 0

Returns
None

void vApi_SetBcastTTL(uint8 u8MaxTTL);
196 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vApi_SetPurgeRoute

Description
This function is used to tailor the route maintenance behaviour by allowing route
purging to be enabled/disabled.

By default, all Routers and the Coordinator will periodically check all entries in their
Routing tables for possible stale routes. A stale route is one that has not carried any
traffic in a given period of time. In long thin network topologies, this policy may be
inefficient, as the same routes will be purged by each Router. It may be more efficient
and less traffic intensive to disable this feature on Routers and just leave it enabled
on the Coordinator.

Route maintenance is also configured using the function vApi_SetPurgeInterval().

Parameters
bPurge Enable/disable route purging:

TRUE - enable (default)
FALSE - disable

Returns
None

void vApi_SetPurgeRoute(bool_t bPurge);
JN-RM-2035 v1.8 © Jennic 2010 197

Appendices Jennic

vApi_SetPurgeInterval

Description
This function is used together with vApi_SetPurgeRoute() to tailor the automatic
route maintenance. The function can be used to adjust the route maintenance cycle
- it sets the period of time between each route maintenance activity.

The default period is one second, which means that a Routing table entry is
examined every second (even if the entry is not used). The length of time taken to
process the whole Routing table is determined by the table size, which is user-
defined at build time - for example, a Routing table comprising 100 entries will take
100 seconds to process (even if only one of the entries is actually used). Routes will
be interrogated if they have not been used in two cycles, e.g. 200 seconds.

Setting a smaller period will improve clean-up time after network reconfiguration due
to node failure, but will generate more traffic travelling down the tree which could
cause contention with user data flowing up the tree. Setting a larger value will extend
the time taken to clean-up.

This feature may not be required if there is regular traffic generated from all the
network nodes.

Parameters
u32Interval Route maintenance period in units of 100 ms

Returns
None

void vApi_SetPurgeInterval(uint32 u32Interval);
198 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vNwk_SetBeaconCalming

Description
This function enables/disables ‘beacon calming’.

When a large, dense network attempts to recover from a major failure, large numbers
of beacons are generated which can slow the flow of essential network management
messages. Enabling beacon calming suppresses beacons generated by Routers
that are statistically less able to accept associations. Hence, the speed of network
recovery increases.

Parameters
bState Enable/disable beacon calming:

TRUE - enable
FALSE - disable (default)

Returns
None

void vNwk_SetBeaconCalming(bool bState);
JN-RM-2035 v1.8 © Jennic 2010 199

Appendices Jennic

vApi_SetUserBeaconBits

Description
This function is used to set the user-defined part of the beacon payload. This can
then be used to control network formation.

The function must be called after the network has started, otherwise the bits will be
cleared.

Parameters
u16Bits 16 bits of user data to be inserted in the beacon payload

Returns
None

void vApi_SetUserBeaconBits(uint16 u16Bits);
200 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
u16Api_GetUserBeaconBits

Description
This function is used to read the 16-bit user-defined part of a beacon payload. These
user-defined bits can be used for any application functionality, such as to control
network formation.

The contents of beacons received using vApi_RegBeaconNotifyCallback() can be
inspected for the user bits, and beacons accepted or discarded on the basis of these
bits.

Parameters
None

Returns
16 bits of user data read from the beacon payload

uint16 u16Api_GetUserBeaconBits(void);
JN-RM-2035 v1.8 © Jennic 2010 201

Appendices Jennic

u8Api_GetLastPktLqi

Description
This function returns the LQI value (detected radio signal strength) of the last packet
received, and must be called in the data event handler vJenie_CbStackDataEvent()
in response to a data event. This guarantees that the returned LQI value applies to
the packet which is going to be processed. Calling the function at any other time will
return the LQI value of the last packet processed, which may be one that was routed
or may be a network management packet.

This is the LQI value of the last hop to its destination node.

For further information on the LQI value, including an approximate relationship
between the LQI value and the detected power in dBm, refer to Appendix G.

Parameters
None

Returns
The LQI value of the last packet received

uint8 u8Api_GetLastPktLqi(void);
202 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
u16Api_GetDepth

Description
This function is used to return the number of hops of the local node from the Co-
ordinator. Since a JenNet network employs a Tree topology, the result is the depth
of the local node in the network.

Parameters
None

Returns
Number of hops from Co-ordinator

uint16 u16Api_GetDepth(void);
JN-RM-2035 v1.8 © Jennic 2010 203

Appendices Jennic

u8Api_GetStackState

Description
This function returns the current state of the JenNet stack and provides a mechanism
for determining the current operation of the stack.

Parameters
None

Returns
The state of the JenNet stack, one of:
E_JENNET_IDLE (0x00)
E_JENNET_ENERGY_SCAN (0x01)
E_JENNET_WAITING_FOR_ENERGY_SCAN (0x02)
E_JENNET_ACTIVE_SCAN (0x03)
E_JENNET_WAITING_FOR_ACTIVE_SCAN (0x04)
E_JENNET_ASSOCIATE (0x05)
E_JENNET_ASSOCIATE_SKIP_ESTABLISH_ROUTE (0x06)
E_JENNET_WAITING_FOR_ASSOCIATE (0x07)
E_JENNET_WAITING_FOR_ASSOCIATE_SKIP_ESTABLISH_ROUTE (0x08)
E_JENNET_START_COORD (0x09)
E_JENNET_START_COORD_SKIP_ESTABLISH_ROUTE (0x0A)
E_JENNET_ESTABLISH_ROUTE (0x0B)
E_JENNET_WAITING_FOR_ESTABLISH_ROUTE (0x0C)
E_JENNET_RUNNING (0x0D)
E_JENNET_WAITING_FOR_BACKOFF (0x0E)
E_JENNET_SLEEP (0x0F)

uint8 u8Api_GetStackState(void);
204 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
u32Api_GetVersion

Description
This allows a stack version text string to be obtained.

The Jenie function u32Jenie_GetVersion() is used to gather information on the
stack versions. An extra text string of the version is available through
u32Api_GetVersion().

Parameters
eComponent Set to NETWORK_VERSION to return version data
psVersionInfo Pointer to structure which, if allocated, will hold the

supplementary version string

Returns
None

uint32 u32Api_GetVersion(teJenNetComponent eComponent,
tsVersionInfo* psVersionInfo);
JN-RM-2035 v1.8 © Jennic 2010 205

Appendices Jennic

vApi_RegBeaconNotifyCallback

Description
This function registers a user-defined callback function that will be invoked when a
beacon is received. This provides an opportunity for the application to either collect
information about other nodes in the vicinity or prevent the stack from joining
particular parents (by ignoring selected beacons).

The prototype for the callback function is detailed below.

Parameters
prCallback Pointer to callback function

Returns
None

Callback Function

Description
This user-defined callback function is invoked on receipt of a beacon. It can delete the beacon
and extract data from it. If forcing the shape of the network, only beacons from target parents
should be accepted. The beacons can also be saved for possible load balancing activity later.

The execution time of this function should be kept to a minimum.

Parameters
*psBeaconInfo Pointer to the received beacon - for tsScanElement structure, see

Appendix C.
 u32NetworkID Network Application ID from beacon
 u16ProtocolVersion Stack version from beacon

Returns
TRUE Accept the beacon for sorting
FALSEDelete the beacon

void vApi_RegBeaconNotifyCallback(
trBeaconNotifyCallback prCallback);

typedef bool_t (*trBeaconNotifyCallback)(
tsScanElement *psBeaconInfo,
uint32 u32NetworkID,
uint16 u16ProtocolVersion);
206 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vApi_RegLocalAuthoriseCallback

Description
This function registers a user-defined callback function that will be invoked when a
node attempts to join the Co-ordinator or a Router. The function provides an
opportunity for the application to prevent potential child nodes from accessing the
network and can be used to force nodes onto other adjacent parents or networks.

Parameters
prCallback Pointer to callback function

Returns
None

Callback Function

Description
This user-defined callback function provides the opportunity to block nodes with specific IEEE/
MAC addresses from joining as children. The passed IEEE/MAC address can be compared
with a list of permitted or forbidden addresses, and then accepted or rejected accordingly. A
rejected node will then attempt to join the network again, until it finds a parent node which
accepts its join request.

Parameters
*psAddr Pointer to IEEE/MAC address

Returns
TRUE Joining process continues
FALSEJoining is denied

void vApi_RegLocalAuthoriseCallback(
trAuthoriseCallback prCallback);

typedef bool_t (*trAuthoriseCallback)(MAC_ExtAddr_s *psAddr);
JN-RM-2035 v1.8 © Jennic 2010 207

Appendices Jennic

vApi_RegNwkAuthoriseCallback

Description
This function registers a user-defined callback function that will be invoked when a
node attempts to join the network. This event only occurs on the Co-ordinator and
provides an opportunity for the application to prevent the joining node from accessing
the network. This mechanism can be used to force nodes onto other adjacent
networks.

Parameters
prCallback Pointer to callback function

Returns
None

Callback Function

Description
This user-defined callback function provides the opportunity to block nodes with specific IEEE/
MAC addresses from joining the network. The Co-ordinator receives the passed IEEE/MAC
address which can be compared with a list of permitted or forbidden addresses, and then
accepted or rejected accordingly. The rejected node will then attempt to join a network again,
until it finds a network which accepts its join request.

Parameters
*psAddr Pointer to the IEEE/MAC address

Returns
TRUE Joining process continues
FALSEJoining is denied

void vApi_RegNwkAuthoriseCallback(
trAuthoriseCallback prCallback);

typedef bool_t (*trAuthoriseCallback)(MAC_ExtAddr_s *psAddr);
208 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
vApi_RegScanSortCallback

Description
This function registers a user-defined callback function that will be invoked when a
network scan completes. Access to the scan list is provided so that the application
can change the order in which the stack attempts to associate with potential parents.

Parameters
prCallback Pointer to callback function

Returns
None

Callback Function

Description
This user-defined callback function provides the opportunity to over-ride the default operation
of the stack and customise the beacon sort algorithm to obain a preferred order of association
attempts. The function is called on completion of an active scan. The stack attempts to
associate with the first entry in the list then steps through the list until an association is
successful. If none are successful, the active scan is re-started.

To delete beacons, use the vApi_RegBeaconNotifyCallback() function and return FALSE to
ignore specific beacons.

The execution time of this function should be kept to a minimum.

Parameters
*pasScanResult Pointer to (input) array of scan results containing suitable parents -

for tsScanElement structure, see Appendix C.
u8ScanListSize Number of suitable parents in the scan results array
*pau8ScanListOrder Pointer to (output) array of uint8 indicating the sorted order of

potential parents from most desirable to least desirable parent
(e.g. 3, 4, 1, 6, 0, 2, 5, 7) - the integers correspond to the positions of
the parents in the initial scan results (*pasScanResult)

Returns
TRUE Control returned to application and scanning process stopped
FALSEControl returned to stack and scan process resumed

The function should normally return FALSE unless the scan process is to be aborted.

void vApi_RegScanSortCallback(
trSortScanCallback prCallback);

typedef bool_t (*trSortScanCallback)(
tsScanElement *pasScanResult,
uint8 u8ScanListSize,
uint8 *pau8ScanListOrder);
JN-RM-2035 v1.8 © Jennic 2010 209

Appendices Jennic

F.2 JenNet Network Parameters

This section describes certain JenNet network parameters. Some of these parameters
are duplicated in the Jenie network parameters, detailed in Appendix A. The Jenie
values are loaded into the JenNet parameters by vJenie_CbConfigureNetwork(),
which occurs once at the program start.

The JenNet parameters are detailed in the tables below, according to the node type(s)
to which they apply.

Co-ordinator Parameters

Important: Setting a duplicate Jenie parameter through
vJenie_CbConfigureNetwork() automatically sets the
equivalent JenNet parameter, but directly setting the
JenNet parameter does not automatically set the
equivalent Jenie parameter. Therefore, where a
parameter is duplicated, you are strongly advised to set
the Jenie version rather than the JenNet version.

Parameter Name Description Default Value Range

gChannel The 2.4-GHz channel to be used by
the network, or an auto-scan (stack
will automatically select a channel).

0 0: Auto-scan
11-26: Channel

gPanID PAN ID used to form the network, if
no pre-existing network found with
the same PAN ID.

0xAAAA 0-0xFFFE

Table 7: Co-ordinator Parameters
210 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
General Parameters

Parameter Name Description Default Value Range

gInternalTimer The timer to be used as an internal
timer: Timer 0, Timer 1 or the Tick
Timer. The valid values are shown to
the right and defined in the header
file AppHardwareApi.h.

E_AHI_DEVICE
_TICK_TIMER

E_AHI_DEVICE_TICK_TIMER
E_AHI_DEVICE_TIMER0
E_AHI_DEVICE_TIMER1

gMaxBcastTTL Determines the maximum number of
hops that a broadcast message sent
from the local node can make. Set
this value to one less than the
desired maximum (so the value 0
corresponds to one hop).

5 0-255

gMaxFailedPkts Number of missed communications
(MAC acknowledgments) before
parent considered to be lost (and
node must try to find a new parent).

5 1-255

gMinBeaconLQI Minimum valid radio signal strength
(as an LQI value) of a beacon - the
stack rejects beacons with signal
strength less than this value.

0 0-255

For information on LQI values,
refer to Appendix G.

gNetworkID 32-bit Network Application ID used
to identify an individual application/
network.

0xAAAAAAAA 0-0xFFFFFFFF

gScanChannels Bitmap (32 bits) of the set of chan-
nels to consider when performing an
auto-scan of the 2.4-GHz band for a
suitable channel to use. The Co-
ordinator will select the quietest
channel from those available (auto-
scan must have been enabled via
gChannel.). Other node types will
scan the possible channels to
search for network.

0x07FFF800
(All Channels)

0x00000800 -0x07FFF800

(Bit 11 set ⇒ Ch 11,
Bit 12 set ⇒ Ch 12,...)

Table 8: General Parameters
JN-RM-2035 v1.8 © Jennic 2010 211

Appendices Jennic

Co-ordinator/Router Parameters

Parameter Name Description Default Value Range

gEDChildActivityTimeout * Timeout period for communication
(excluding data polling) from an End
Device child. If no message is
received from the End Device within
this period, the child is assumed lost
and is removed from the Neighbour
table (and Routing tables higher in
the network), provided End Device
purging has been enabled through
gRouterPurgeInactiveED.

0 0-0xFFFFFFFF
Timeout is value set multi-
plied by 100 ms

gMaxChildren Maximum number of children that the
node can have.

10 0-16

gMaxSleepingChildren Maximum number of children that
can be End Devices (nodes capable
of sleeping). This value must be less
than or equal to gMaxChildren. The
remaining child nodes are reserved
exclusively for Routers, although any
number of children can be Routers.

8 1-gMaxChildren

bPermitExtNwkPkts Enables/disables reception of pack-
ets from external networks.
Do not configure in
vJenie_CbConfigureNetwork().

FALSE
(disabled)

TRUE - enable
FALSE - disable

gRouteImport Enables/disables the ability of routing
nodes to import routes from child
nodes that have children.

TRUE
(enabled)

TRUE - enable
FALSE - disable

gRouterEnableAutoPurge Enables/disables the auto-purge
facility which removes inactive nodes
from the network.

TRUE
(enabled)

TRUE - enable
FALSE - disable

gRoutingTableSize Number of elements in array used to
store the Routing table. Should be
set to a value slightly larger than the
maximum number of network nodes,
to allow for nodes leaving and join-
ing. Set 0 for End Devices.

0 0-1000
Note that the upper limit
may be restricted by the
amount of available RAM.
Each Routing table entry
uses 12 bytes.

gRouterPingPeriod ** Time between auto-pings generated
by a Router (to its parent). Set in
units of 10 ms. The same value
should be set in all routing nodes in
the network.

500
(5 seconds)

500-65535

gRouterPurgeInactiveED * Enable/disable the timeout on End
Device activity - see the parameter
gEDChildActivityTimeout.

FALSE
(disabled)

TRUE - enable
FALSE - disable

Table 9: Co-ordinator/Router Parameters
212 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
* The JenNet parameters gRouterPurgeInactiveED and gEDChildActivityTimeout are combined
into a single Jenie parameter, gJenie_EndDeviceChildActivityTimeout, detailed in Appendix A.

** The JenNet parameter gRouterPingPeriod and the Jenie parameter gJenie_RouterPingPeriod
control the same feature but have different units (10 ms and 100 ms, respectively).

End Device Parameters

gpvRoutingTableSpace Pointer to space allocated for the
Routing table. This space must be
equal to [sizeof(tsJenieRoutingTa-
ble) x gRoutingTableSize], or NULL
in the case of an End Device.

NULL Pointer

Parameter Name Description Default Value Range

gEndDevicePingInterval Number of sleep cycles between
auto-pings generated by an End
Device (to its parent).

1 0-255
Zero value disables pings

gEndDevicePollPeriod Time between auto-poll data
requests sent from an End Device
(while awake) to its parent. Set in
units of 100 ms.

50 or 0x32
(5 seconds)

0-0x FFFFFFFF
Zero value disables auto-
polling.

gEndDeviceScanSleep Amount of time following a failed
scan that an End Device waits
(sleeps) before starting another
scan. Set in milliseconds.

10000 or
0x2710
(10 seconds)

0xC8-0xFFFFFFEB
Values below 0x3E8 (1 sec-
ond) are not recommended
for large networks

Table 10: End Device Parameters

Parameter Name Description Default Value Range

Table 9: Co-ordinator/Router Parameters
JN-RM-2035 v1.8 © Jennic 2010 213

Appendices Jennic

G. Link Quality Indication (LQI)

The apparent radio signal strength of a received data packet is measured by the
receiving node and this information can be accessed by the application. The signal
strength is measured in terms of a Link Quality Indication (LQI) value, which is an
integer in the range 0-255 where 255 represents the strongest signal.

The relationships between the LQI value and the detected power, P, in dBm for the
JN5139 and JN5148 devices are approximately given by the formulae below.

For the JN5139 device:
P = (LQI - 305)/3

For the JN5148 device:
P = (7 x LQI - 1970)/20

The above formulae are valid for 0 ≤ LQI ≤ 255.

Caution: The relationships saturate at the LQI values of
0 and 255, and so power measurements obtained from
these extreme LQI values are not reliable (the power
obtained from an LQI value of 0 can only be considered
as the maximum possible power detected, while the
power obtained from an LQI value of 255 can only be
considered as the minimum possible power detected).
214 © Jennic 2010 JN-RM-2035 v1.8

Jennic Jenie API
Reference Manual
Revision History

Version Date Comments

1.0 29-Nov-2007 First release

1.1 21-Feb-2008 JPI function lists inserted and minor modifications made

1.2 07-Mar-2008 Updated for Jenie v1.2 - Statistics functions added

1.3 09-July-2008 Updated for Jenie v1.3

1.4 25-Sep-2008 Updated with minor corrections

1.5 04-Dec-2008 Updated for Jenie v1.4 - gJenie_MaxChildren variable modified

1.6 05-June-2009 Updated with JenNet API and other minor corrections

1.7 27-Aug-2009 Updated with minor corrections and new LQI appendix

1.8 17-Mar-2010 Modified for JN5148, JPI function descriptions modified/updated and
various other updates/corrections made
JN-RM-2035 v1.8 © Jennic 2010 215

Jenie API
Reference Manual

 Jennic

Important Notice

Jennic reserves the right to make corrections, modifications, enhancements, improvements and other changes to its
products and services at any time, and to discontinue any product or service without notice. Customers should obtain
the latest relevant information before placing orders, and should verify that such information is current and complete.
All products are sold subject to Jennic's terms and conditions of sale, supplied at the time of order acknowledgment.
Information relating to device applications, and the like, is intended as suggestion only and may be superseded by
updates. It is the customer's responsibility to ensure that their application meets their own specifications. Jennic makes
no representation and gives no warranty relating to advice, support or customer product design.
Jennic assumes no responsibility or liability for the use of any of its products, conveys no license or title under any
patent, copyright or mask work rights to these products, and makes no representations or warranties that these
products are free from patent, copyright or mask work infringement, unless otherwise specified.
Jennic products are not intended for use in life support systems/appliances or any systems where product malfunction
can reasonably be expected to result in personal injury, death, severe property damage or environmental damage.
Jennic customers using or selling Jennic products for use in such applications do so at their own risk and agree to fully
indemnify Jennic for any damages resulting from such use.
All trademarks are the property of their respective owners.

Jennic Ltd
Furnival Street

Sheffield
S1 4QT

United Kingdom

Tel: +44 (0)114 281 2655
Fax: +44 (0)114 281 2951
E-mail: info@jennic.com

For the contact details of your local Jennic office or distributor, refer to the Jennic web site:
216 © Jennic 2010 JN-RM-2035 v1.8

	Contents
	About this Manual
	Organisation
	Conventions
	Acronyms and Abbreviations
	Related Documents
	Feedback Address

	1. Jenie Overview
	1.1 Core Functionality
	1.2 Hardware Functionality

	2. Jenie Functions
	2.1 “Application to Stack” Functions
	2.1.1 Network Management Functions
	eJenie_Start
	eJenie_Leave
	eJenie_RegisterServices
	eJenie_RequestServices
	eJenie_BindService
	eJenie_UnBindService
	eJenie_SetPermitJoin
	bJenie_GetPermitJoin
	eJenie_SetSecurityKey

	2.1.2 Data Transfer Functions
	eJenie_SendData
	eJenie_SendDataToBoundService
	eJenie_PollParent

	2.1.3 System Functions
	vJPDM_SaveContext
	eJPDM_RestoreContext
	vJPDM_EraseAllContext
	eJenie_SetSleepPeriod
	eJenie_Sleep
	eJenie_RadioPower
	u32Jenie_GetVersion

	2.1.4 Statistics Functions
	u16Jenie_GetRoutingTableSize
	eJenie_GetRoutingTableEntry
	u8Jenie_GetNeighbourTableSize
	eJenie_GetNeighbourTableEntry
	eJenie_ResetNeighbourStats

	2.2 “Stack to Application” Functions
	vJenie_CbConfigureNetwork
	vJenie_CbInit
	vJenie_CbMain
	vJenie_CbStackMgmtEvent
	vJenie_CbStackDataEvent
	vJenie_CbHwEvent

	3. Jenie Peripherals Interface (JPI)
	3.1 General
	u32JPI_Init
	u8JPI_PowerStatus
	vJPI_SwReset
	vJPI_DriveResetOut
	vJPI_HighPowerModuleEnable
	vJPI_SysCtrlRegisterCallback

	3.2 Analogue Peripherals
	vJPI_AnalogueConfigure
	vJPI_AnalogueEnable
	vJPI_AnalogueDisable
	vJPI_APRegisterCallback
	bJPI_APRegulatorEnabled
	vJPI_AnalogueStartSample
	u16JPI_AnalogueAdcRead
	bJPI_AdcPoll
	vJPI_AnalogueDacOutput
	bJPI_DacPoll
	vJPI_ComparatorEnable
	vJPI_ComparatorDisable
	bJPI_ComparatorStatus
	vJPI_ComparatorIntEnable
	bJPI_ComparatorWakeStatus

	3.3 Digital I/O
	vJPI_DioSetDirection
	vJPI_DioSetOutput
	vJPI_DioSetPullup
	u32JPI_DioReadInput
	vJPI_DioWake
	u32JPI_DioWakeStatus

	3.4 UARTs
	vJPI_UartEnable
	vJPI_UartDisable
	vJPI_UartSetClockDivisor
	vJPI_UartSetBaudDivisor
	vJPI_UartSetControl
	vJPI_UartSetInterrupt
	vJPI_UartSetRTSCTS
	vJPI_UartReset
	u8JPI_UartReadLineStatus
	u8JPI_UartReadModemStatus
	u8JPI_UartReadInterruptStatus
	vJPI_UartWriteData
	u8JPI_UartReadData
	vJPI_Uart0RegisterCallback
	vJPI_Uart1RegisterCallback

	3.5 Timers
	vJPI_TimerEnable
	vJPI_TimerDisable
	vJPI_TimerStart
	vJPI_TimerStop
	vJPI_TimerStartCapture
	u32JPI_TimerReadCapture
	u8JPI_TimerFired
	vJPI_Timer0RegisterCallback
	vJPI_Timer1RegisterCallback
	vJPI_Timer2RegisterCallback (JN5148 Only)

	3.6 Wake Timers
	vJPI_WakeTimerEnable
	vJPI_WakeTimerStart
	vJPI_WakeTimerStop
	u32JPI_WakeTimerRead
	u8JPI_WakeTimerStatus
	u8JPI_WakeTimerFiredStatus
	u32JPI_WakeTimerCalibrate

	3.7 Serial Peripheral Interface (SPI)
	vJPI_SpiConfigure
	vJPI_SpiReadConfiguration
	vJPI_SpiRestoreConfiguration
	vJPI_SpiSelect
	vJPI_SpiStop
	vJPI_SpiStartTransfer32
	u32JPI_SpiReadTransfer32
	vJPI_SpiStartTransfer16
	u16JPI_SpiReadTransfer16
	vJPI_SpiStartTransfer8
	u8JPI_SpiReadTransfer8
	bJPI_SpiPollBusy
	vJPI_SpiWaitBusy
	vJPI_SpiRegisterCallback

	3.8 Serial Interface (2-Wire)
	vJPI_SiConfigure
	vJPI_SiSetCmdReg
	vJPI_SiWriteData8
	vJPI_SiWriteSlaveAddr
	u8JPI_SiReadData8
	bJPI_SiPollBusy
	bJPI_SiPollTransferInProgress
	bJPI_SiPollRxNack
	bJPI_SiPollArbitrationLost
	vJPI_SiRegisterCallback

	3.9 Intelligent Peripheral Interface
	vJPI_IpEnable
	bJPI_IpSendData
	bJPI_IpReadData
	bJPI_IpTxDone
	bJPI_IpRxDataAvailable
	vJPI_IpRegisterCallback

	Appendices
	A. Global Network Parameters
	B. Enumerated Types and Defines
	B.1 For Core Jenie Functions
	B.2 For Jenie Peripheral Interface Functions
	B.2.1 JN5139 Versions
	B.2.2 JN5148 Versions

	C. Data Types
	D. Stack Events
	D.1 Stack Management Events
	D.2 Data Events

	E. Integrated Peripheral Interrupt Handling
	E.1 Callback Function Prototype and Parameters
	E.1.1 Peripheral Interrupt Enumerations (u32DeviceId)
	E.1.2 Peripheral Interrupt Sources (u32ItemBitmap)

	E.2 Handling Wake Interrupts
	E.2.1 Wake Timer
	E.2.2 DIO
	E.2.3 Comparator

	F. JenNet API
	F.1 JenNet Functions
	eApi_SendDataToExtNwk
	vNwk_DeleteChild
	vApi_SetScanSleep
	vApi_SetBcastTTL
	vApi_SetPurgeRoute
	vApi_SetPurgeInterval
	vNwk_SetBeaconCalming
	vApi_SetUserBeaconBits
	u16Api_GetUserBeaconBits
	u8Api_GetLastPktLqi
	u16Api_GetDepth
	u8Api_GetStackState
	u32Api_GetVersion
	vApi_RegBeaconNotifyCallback
	vApi_RegLocalAuthoriseCallback
	vApi_RegNwkAuthoriseCallback
	vApi_RegScanSortCallback

	F.2 JenNet Network Parameters

	G. Link Quality Indication (LQI)

