
JN51xx Integrated Peripherals API
User Guide

JN-UG-3066
Revision 2.0

24 November 2010

JN51xx Integrated Peripherals API
User Guide

2 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
Contents

About this Manual 15
Organisation 15
Conventions 17
Acronyms and Abbreviations 18
Related Documents 18
Feedback Address 19

Part I: Concept and Operational Information

1. Overview 23
1.1 JN5148/JN5139 Integrated Peripherals 23
1.2 JN51xx Integrated Peripherals API 26
1.3 Using this Manual 26

2. General Functions 27
2.1 API Initialisation 27
2.2 Radio Configuration 27

2.2.1 Radio Transmission Power 27
2.2.2 High-Power Modules 28
2.2.3 Over-Air Transmission Properties (JN5148 Only) 29

2.3 Random Number Generator (JN5148 Only) 29

3. System Controller 31
3.1 Clock Management 31

3.1.1 System Clock Selection (JN5148 Only) 32
3.1.2 CPU Clock Frequency Selection (JN5148 Only) 32
3.1.3 System Clock Start-up following Sleep (JN5148 Only) 32
3.1.4 32-kHz Clock Selection 33

3.2 Power Management 34
3.2.1 Power Domains 34
3.2.2 Digital Logic Domain Clock 35
3.2.3 Low-Power Modes 36
3.2.4 Power Status 37

3.3 Voltage Brownout (JN5148 Only) 38
3.3.1 Configuring Brownout Detection 38
3.3.2 Monitoring Brownout 39

3.4 Resets 39
3.5 System Controller Interrupts 40
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 3

Contents
4. Analogue Peripherals 41
4.1 ADC 41

4.1.1 Single-Shot Mode 44
4.1.2 Continuous Mode 44
4.1.3 Accumulation Mode (JN5148 Only) 45

4.2 DACs 46
4.3 Comparators 48

4.3.1 Comparator Interrupts and Wake-up 50
4.3.2 Comparator Low-Power Mode 50

4.4 Analogue Peripheral Interrupts 51

5. Digital Inputs/Outputs (DIOs) 53
5.1 Using the DIOs 53

5.1.1 Setting the Directions of the DIOs 53
5.1.2 Setting DIO Outputs 54
5.1.3 Setting DIO Pull-ups 54
5.1.4 Reading the DIOs 54

5.2 DIO Interrupts and Wake-up 55
5.2.1 DIO Interrupts 55
5.2.2 DIO Wake-up 56

6. UARTs 57
6.1 UART Signals and Pins 57
6.2 UART Operation 58

6.2.1 2-wire Mode 58
6.2.2 4-wire Mode (with Flow Control) 58

6.3 Configuring the UARTs 60
6.3.1 Enabling a UART 60
6.3.2 Setting the Baud-rate 60
6.3.3 Setting Other UART Properties 61
6.3.4 Enabling Interrupts 61

6.4 Transferring Serial Data in 2-wire Mode 62
6.4.1 Transmitting Data (2-wire Mode) 62
6.4.2 Receiving Data (2-wire Mode) 63

6.5 Transferring Serial Data in 4-wire Mode 64
6.5.1 Transmitting Data (4-wire Mode, Manual Flow Control) 64
6.5.2 Receiving Data (4-wire Mode, Manual Flow Control) 65
6.5.3 Automatic Flow Control (4-wire Mode) [JN5148 Only] 66

6.6 Break Condition (JN5148 Only) 67
6.7 UART Interrupt Handling 68
4 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
7. Timers 69
7.1 Modes of Timer Operation 70
7.2 Setting up a Timer 71

7.2.1 Selecting DIOs 71
7.2.2 Enabling a Timer 72
7.2.3 Selecting the Clock 73

7.3 Starting and Operating a Timer 73
7.3.1 Timer and PWM Modes 74
7.3.2 Delta-Sigma Mode (NRZ and RTZ) 75
7.3.3 Capture Mode 76
7.3.4 Counter Mode (JN5148 Only) 77

7.4 Timer Interrupts 78

8. Wake Timers 79
8.1 Using a Wake Timer 79

8.1.1 Enabling and Starting a Wake Timer 79
8.1.2 Stopping a Wake Timer 80
8.1.3 Reading a Wake Timer 80
8.1.4 Obtaining Wake Timer Status 80

8.2 Clock Calibration 81

9. Tick Timer 83
9.1 Tick Timer Operation 83
9.2 Using the Tick Timer 83

9.2.1 Setting Up the Tick Timer 83
9.2.2 Running the Tick Timer 84

9.3 Tick Timer Interrupts 84

10. Watchdog Timer (JN5148 Only) 85
10.1 Watchdog Operation 85
10.2 Using the Watchdog Timer 85

10.2.1 Starting the Timer 85
10.2.2 Resetting the Timer 86

11. Pulse Counters (JN5148 Only) 87
11.1 Pulse Counter Operation 87
11.2 Using a Pulse Counter 88

11.2.1 Configuring a Pulse Counter 88
11.2.2 Starting and Stopping a Pulse Counter 88
11.2.3 Monitoring a Pulse Counter 89

11.3 Pulse Counter Interrupts 89
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 5

Contents
12. Serial Interface (SI) 91
12.1 SI Master 91

12.1.1 Enabling the SI Master 92
12.1.2 Writing Data to SI Slave 93
12.1.3 Reading Data from SI Slave 94
12.1.4 Waiting for Completion 96

12.2 SI Slave (JN5148 Only) 97
12.2.1 Enabling the SI Slave and its Interrupts 97
12.2.2 Receiving Data from the SI Master 98
12.2.3 Sending Data to the SI Master 98

13. Serial Peripheral Interface (SPI Master) 99
13.1 SPI Modes 99
13.2 Slave Selection 100
13.3 Using the Serial Peripheral Interface 100

13.3.1 Performing a Data Transfer 100
13.3.2 Performing a Continuous Transfer (JN5148 Only) 101

13.4 SPI Interrupts 102

14. Intelligent Peripheral Interface (SPI Slave) 103
14.1 IP Interface Operation 103
14.2 Using the IP Interface 104
14.3 IP Interrupts 105

15. Digital Audio Interface (DAI) [JN5148 Only] 107
15.1 DAI Operation 107

15.1.1 DAI Signals and DIOs 107
15.1.2 Audio Data Format 108
15.1.3 Data Transfer Modes 108

15.2 Using the DAI 111
15.2.1 Enabling the DAI 111
15.2.2 Configuring the Bit Clock 111
15.2.3 Configuring the Data Format 111
15.2.4 Enabling DAI Interrupts 112
15.2.5 Transferring Data 112

15.3 Using the DAI with the Sample FIFO Interface 114

16. Sample FIFO Interface (JN5148 Only) 115
16.1 Sample FIFO Operation 115
16.2 Using the Sample FIFO Interface 117

16.2.1 Enabling the Interface 117
16.2.2 Configuring and Enabling Interrupts 117
6 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
16.2.3 Configuring and Starting the Timer 118
16.2.4 Buffering Data 119

16.3 Example FIFO Operation 120

17. External Flash Memory 123
17.1 Flash Memory Organisation and Types 123
17.2 Function Types 124
17.3 Operating on Flash Memory 124

17.3.1 Erasing Data from Flash Memory 124
17.3.2 Reading Data from Flash Memory 125
17.3.3 Writing Data to Flash Memory 125

17.4 Controlling Power to Flash Memory 126

Part II: Reference Information

18.General Functions 129
u32AHI_Init 130
bAHI_PhyRadioSetPower 131
vAppApiSetBoostMode (JN5139 Only) 132
vAHI_HighPowerModuleEnable 133
vAHI_ETSIHighPowerModuleEnable (JN5148 Only) 134
vAHI_AntennaDiversityOutputEnable 135
vAHI_BbcSetHigherDataRate (JN5148 Only) 136
vAHI_BbcSetInterFrameGap (JN5148 Only) 137
vAHI_StartRandomNumberGenerator (JN5148 Only) 138
vAHI_StopRandomNumberGenerator (JN5148 Only) 139
u16AHI_ReadRandomNumber (JN5148 Only) 140
bAHI_RndNumPoll (JN5148 Only) 141
vAHI_SetStackOverflow (JN5148 Only) 142

19.System Controller Functions 143
u8AHI_PowerStatus 144
vAHI_CpuDoze 145
vAHI_Sleep 146
vAHI_ProtocolPower 148
vAHI_ExternalClockEnable (JN5139 Only) 149
bAHI_Set32KhzClockMode (JN5148 Only) 150
vAHI_SelectClockSource (JN5148 Only) 151
bAHI_GetClkSource (JN5148 Only) 152
bAHI_SetClockRate (JN5148 Only) 153
u8AHI_GetSystemClkRate (JN5148 Only) 154
vAHI_EnableFastStartUp (JN5148 Only) 155
vAHI_PowerXTAL (JN5148 Only) 156
vAHI_BrownOutConfigure (JN5148 Only) 157
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 7

Contents
bAHI_BrownOutStatus (JN5148 Only) 159
bAHI_BrownOutEventResetStatus (JN5148 Only) 160
u32AHI_BrownOutPoll (JN5148 Only) 161
vAHI_SwReset 162
vAHI_DriveResetOut 163
vAHI_ClearSystemEventStatus 164
vAHI_SysCtrlRegisterCallback 165

20.Analogue Peripheral Functions 167
20.1 Common Analogue Peripheral Functions 167

vAHI_ApConfigure 168
vAHI_ApSetBandGap 169
bAHI_APRegulatorEnabled 170
vAHI_APRegisterCallback 171

20.2 ADC Functions 172
vAHI_AdcEnable 173
vAHI_AdcStartSample 174
vAHI_AdcStartAccumulateSamples (JN5148 Only) 175
bAHI_AdcPoll 176
u16AHI_AdcRead 177
vAHI_AdcDisable 178

20.3 DAC Functions 179
vAHI_DacEnable 180
vAHI_DacOutput 181
bAHI_DacPoll 182
vAHI_DacDisable 183

20.4 Comparator Functions 184
vAHI_ComparatorEnable 185
vAHI_ComparatorDisable 186
vAHI_ComparatorLowPowerMode 187
vAHI_ComparatorIntEnable 188
u8AHI_ComparatorStatus 189
u8AHI_ComparatorWakeStatus 190

21.DIO Functions 191
vAHI_DioSetDirection 192
vAHI_DioSetOutput 193
u32AHI_DioReadInput 194
vAHI_DioSetPullup 195
vAHI_DioSetByte (JN5148 Only) 196
u8AHI_DioReadByte (JN5148 Only) 197
vAHI_DioInterruptEnable 198
vAHI_DioInterruptEdge 199
u32AHI_DioInterruptStatus 200
vAHI_DioWakeEnable 201
8 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_DioWakeEdge 202
u32AHI_DioWakeStatus 203

22.UART Functions 205
vAHI_UartEnable 206
vAHI_UartDisable 207
vAHI_UartSetBaudRate 208
vAHI_UartSetBaudDivisor 209
vAHI_UartSetClocksPerBit (JN5148 Only) 210
vAHI_UartSetControl 211
vAHI_UartSetInterrupt 212
vAHI_UartSetRTSCTS 213
vAHI_UartSetRTS (JN5148 Only) 214
vAHI_UartSetAutoFlowCtrl (JN5148 Only) 215
vAHI_UartSetBreak (JN5148 Only) 217
vAHI_UartReset 218
u8AHI_UartReadRxFifoLevel (JN5148 Only) 219
u8AHI_UartReadTxFifoLevel (JN5148 Only) 220
u8AHI_UartReadLineStatus 221
u8AHI_UartReadModemStatus 222
u8AHI_UartReadInterruptStatus 223
vAHI_UartWriteData 224
u8AHI_UartReadData 225
vAHI_Uart0RegisterCallback 226
vAHI_Uart1RegisterCallback 227

23.Timer Functions 229
vAHI_TimerEnable 230
vAHI_TimerClockSelect (JN5148 Only) 232
vAHI_TimerConfigureOutputs (JN5148 Only) 233
vAHI_TimerConfigureInputs (JN5148 Only) 234
vAHI_TimerStartSingleShot 235
vAHI_TimerStartRepeat 236
vAHI_TimerStartCapture 237
vAHI_TimerStartDeltaSigma 238
u16AHI_TimerReadCount 240
vAHI_TimerReadCapture 241
vAHI_TimerReadCaptureFreeRunning 242
vAHI_TimerStop 243
vAHI_TimerDisable 244
vAHI_TimerDIOControl 245
vAHI_TimerFineGrainDIOControl (JN5148 Only) 246
u8AHI_TimerFired 247
vAHI_Timer0RegisterCallback 248
vAHI_Timer1RegisterCallback 249
vAHI_Timer2RegisterCallback (JN5148 Only) 250
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 9

Contents
24.Wake Timer Functions 251
vAHI_WakeTimerEnable 252
vAHI_WakeTimerStart (JN5139 Only) 253
vAHI_WakeTimerStartLarge (JN5148 Only) 254
vAHI_WakeTimerStop 255
u32AHI_WakeTimerRead (JN5139 Only) 256
u64AHI_WakeTimerReadLarge (JN5148 Only) 257
u8AHI_WakeTimerStatus 258
u8AHI_WakeTimerFiredStatus 259
u32AHI_WakeTimerCalibrate 260

25.Tick Timer Functions 261
vAHI_TickTimerConfigure 262
vAHI_TickTimerInterval 263
vAHI_TickTimerWrite 264
u32AHI_TickTimerRead 265
vAHI_TickTimerIntEnable 266
bAHI_TickTimerIntStatus 267
vAHI_TickTimerIntPendClr 268
vAHI_TickTimerInit (JN5139 Only) 269
vAHI_TickTimerRegisterCallback (JN5148 Only) 270

26.Watchdog Timer Functions (JN5148 Only) 271
vAHI_WatchdogStart (JN5148 Only) 272
vAHI_WatchdogStop (JN5148 Only) 273
vAHI_WatchdogRestart (JN5148 Only) 274
u16AHI_WatchdogReadValue (JN5148 Only) 275
bAHI_WatchdogResetEvent (JN5148 Only) 276

27.Pulse Counter Functions (JN5148 Only) 277
bAHI_PulseCounterConfigure (JN5148 Only) 278
bAHI_SetPulseCounterRef (JN5148 Only) 280
bAHI_StartPulseCounter (JN5148 Only) 281
bAHI_StopPulseCounter (JN5148 Only) 282
u32AHI_PulseCounterStatus (JN5148 Only) 283
bAHI_Read16BitCounter (JN5148 Only) 284
bAHI_Read32BitCounter (JN5148 Only) 285
bAHI_Clear16BitPulseCounter (JN5148 Only) 286
bAHI_Clear32BitPulseCounter (JN5148 Only) 287
10 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
28.Serial Interface (2-wire) Functions 289
28.1 SI Master Functions 290

vAHI_SiConfigure (JN5139 Only) 291
vAHI_SiMasterConfigure (JN5148 Only) 292
vAHI_SiMasterDisable (JN5148 Only) 293
bAHI_SiMasterSetCmdReg 294
vAHI_SiMasterWriteSlaveAddr 296
vAHI_SiMasterWriteData8 297
u8AHI_SiMasterReadData8 298
bAHI_SiMasterPollBusy 299
bAHI_SiMasterPollTransferInProgress 300
bAHI_SiMasterCheckRxNack 301
bAHI_SiMasterPollArbitrationLost 302
vAHI_SiRegisterCallback 303

28.2 SI Slave Functions (JN5148 Only) 304
vAHI_SiSlaveConfigure (JN5148 Only) 305
vAHI_SiSlaveDisable (JN5148 Only) 307
vAHI_SiSlaveWriteData8 (JN5148 Only) 308
u8AHI_SiSlaveReadData8 (JN5148 Only) 309
vAHI_SiRegisterCallback 310

29.SPI Master Functions 311
vAHI_SpiConfigure 312
vAHI_SpiReadConfiguration 314
vAHI_SpiRestoreConfiguration 315
vAHI_SpiSelect 316
vAHI_SpiStop 317
vAHI_SpiStartTransfer (JN5148 Only) 318
vAHI_SpiStartTransfer32 (JN5139 Only) 319
u32AHI_SpiReadTransfer32 320
vAHI_SpiStartTransfer16 (JN5139 Only) 321
u16AHI_SpiReadTransfer16 322
vAHI_SpiStartTransfer8 (JN5139 Only) 323
u8AHI_SpiReadTransfer8 324
vAHI_SpiContinuous (JN5148 Only) 325
bAHI_SpiPollBusy 326
vAHI_SpiWaitBusy 327
vAHI_SetDelayReadEdge (JN5148 Only) 328
vAHI_SpiRegisterCallback 329

30. Intelligent Peripheral (SPI Slave) Functions 331
vAHI_IpEnable (JN5148 Version) 332
vAHI_IpEnable (JN5139 Version) 333
vAHI_IpDisable (JN5148 Only) 334
bAHI_IpSendData (JN5148 Version) 335
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 11

Contents
bAHI_IpSendData (JN5139 Version) 336
bAHI_IpReadData (JN5148 Version) 337
bAHI_IpReadData (JN5139 Version) 338
bAHI_IpTxDone 339
bAHI_IpRxDataAvailable 340
vAHI_IpReadyToReceive (JN5148 Only) 341
vAHI_IpRegisterCallback 342

31.DAI Functions (JN5148 Only) 343
vAHI_DaiEnable (JN5148 Only) 344
vAHI_DaiSetBitClock (JN5148 Only) 345
vAHI_DaiSetAudioData (JN5148 Only) 346
vAHI_DaiSetAudioFormat (JN5148 Only) 347
vAHI_DaiConnectToFIFO (JN5148 Only) 348
vAHI_DaiWriteAudioData (JN5148 Only) 349
vAHI_DaiReadAudioData (JN5148 Only) 350
vAHI_DaiStartTransaction (JN5148 Only) 351
bAHI_DaiPollBusy (JN5148 Only) 352
vAHI_DaiInterruptEnable (JN5148 Only) 353
vAHI_DaiRegisterCallback (JN5148 Only) 354

32.Sample FIFO Functions (JN5148 Only) 355
vAHI_FifoEnable (JN5148 Only) 356
bAHI_FifoRead (JN5148 Only) 357
vAHI_FifoWrite (JN5148 Only) 358
u8AHI_FifoReadRxLevel (JN5148 Only) 359
u8AHI_FifoReadTxLevel (JN5148 Only) 360
vAHI_FifoSetInterruptLevel (JN5148 Only) 361
vAHI_FifoEnableInterrupts (JN5148 Only) 362
vAHI_FifoRegisterCallback (JN5148 Only) 363

33.External Flash Memory Functions 365
bAHI_FlashInit 366
bAHI_FlashErase (JN5139 Only) 367
bAHI_FlashEraseSector 368
bAHI_FlashProgram (JN5139 Only) 369
bAHI_FullFlashProgram 370
bAHI_FlashRead (JN5139 Only) 371
bAHI_FullFlashRead 372
vAHI_FlashPowerDown 373
vAHI_FlashPowerUp 374
12 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
Part III: Appendices

A. Interrupt Handling 377
A.1 Callback Function Prototype and Parameters 378
A.2 Callback Behaviour 378
A.3 Handling Wake Interrupts 379

B. Interrupt Enumerations and Masks 381
B.1 Peripheral Interrupt Enumerations (u32DeviceId) 381
B.2 Peripheral Interrupt Sources (u32ItemBitmap) 382
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 13

Contents
14 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
About this Manual
This manual describes the use of the JN51xx Integrated Peripherals Application
Programming Interface (API) to interact with the peripherals on the NXP JN5148 and
JN5139 microcontrollers. The manual explains the basic operation of each peripheral
and indicates how to use the relevant API functions to control the peripheral from the
application which runs on the JN51xx device. The C functions and associated
resources of the API are fully detailed.

Organisation
This manual is divided into three parts:

Part I: Concept and Operational Information comprises 17 chapters:
Chapter 1 presents a functional overview of the JN51xx Integrated
Peripherals API.
Chapter 2 describes use of the General functions of the API, including
the API initialisation function.
Chapter 3 describes use of the System Controller functions, including
functions that configure the system clock and sleep operations.
Chapter 4 describes use of the Analogue Peripheral functions, used to
control the ADC, DACs and comparators.
Chapter 5 describes use of the DIO functions, used to control the 21
general-purpose digital input/output pins.
Chapter 6 describes use of the UART functions, used to control the two
16550-compatible UARTs.
Chapter 7 describes use of the Timer functions, used to control the
general-purpose timers.
Chapter 8 describes use of the Wake Timer functions, used to control the
wake timers that can be employed to time sleep periods.
Chapter 9 describes use of the Tick Timer functions, used to control the
high-precision hardware timer.
Chapter 10 describes use of the Watchdog Timer functions (JN5148
only), used to control the watchdog that allows software lock-ups to be
avoided.

Note 1: Not all of the peripherals described in this
manual are featured on both the JN5148 and JN5139
devices. Where a peripheral is restricted to one of these
devices, this will be indicated.

Note 2: This manual incorporates information from the
former Integrated Peripherals API Reference Manual
(JN-RM-2001).
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 15

About this Manual
Chapter 11 describes use of the Pulse Counter functions (JN5148 only),
used to control the two pulse counters.
Chapter 12 describes use of the Serial Interface (SI) functions, used to
control a 2-wire SI master (JN5139 and JN5148) and SI slave (JN5148
only).
Chapter 13 describes use of the Serial Peripheral Interface (SPI)
functions, used to control the master interface to the SPI bus.
Chapter 14 describes use of the Intelligent Peripheral (IP) Interface
functions, used to control the IP interface (acts as a SPI slave).
Chapter 15 describes use of the Digital Audio Interface (DAI) functions
(JN5148 only), used to control the interface to an external audio device.
Chapter 16 describes use of the Sample FIFO Interface functions
(JN5148 only), used to control the optional FIFO buffers between the CPU
and the DAI.
Chapter 17 describes use of the Flash Memory functions, used to
manage the external Flash memory.

Part II: Reference Information comprises 16 chapters:
Chapter 18 details the General functions of the API, including the API
initialisation function.
Chapter 19 details the System Controller functions, including functions
that configure the system clock and sleep operations.
Chapter 20 details the Analogue Peripheral functions, used to control
the ADC, DACs and comparators.
Chapter 21 details the DIO functions, used to control the 21 general-
purpose digital input/output pins.
Chapter 22 details the UART functions, used to control the two 16550-
compatible UARTs.
Chapter 23 details the Timer functions, used to control the general-
purpose. timers.
Chapter 24 details the Wake Timer functions, used to control the wake
timers that can be employed to time sleep periods.
Chapter 25 details the Tick Timer functions, used to control the high-
precision hardware timer.
Chapter 26 details the Watchdog Timer functions (JN5148 only), used
to control the watchdog that allows software lock-ups to be avoided.
Chapter 27 details the Pulse Counter functions (JN5148 only), used to
control the two pulse counters.
Chapter 28 details the Serial Interface (SI) functions, used to control a 2-
wire SI master (all chips) and SI slave (JN5148 only).
Chapter 29 details the Serial Peripheral Interface (SPI) functions, used
to control the master interface to the SPI bus.
Chapter 30 details the Intelligent Peripheral (IP) Interface functions,
used to control the IP interface (acts as a SPI slave).
16 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
Chapter 31 details the Digital Audio Interface (DAI) functions (JN5148
only), used to control the interface to an external audio device.
Chapter 32 details the Sample FIFO Interface functions (JN5148 only),
used to control the optional FIFO buffer between the CPU and the DAI.
Chapter 33 details the Flash Memory functions, used to manage the
external Flash memory.

Part III: Appendices provides information on handling interrupts from the
peripheral devices.

Conventions
Files, folders, functions and parameter types are represented in bold type.

Function parameters are represented in italics type.

Code fragments are represented in the Courier New typeface.

This is a Tip. It indicates useful or practical information.

This is a Note. It highlights important additional
information.

This is a Caution. It warns of situations that may result
in equipment malfunction or damage.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 17

About this Manual
Acronyms and Abbreviations
ADC Analogue-to-Digital Converter

AES Advanced Encryption Standard

AHI Application Hardware Interface

API Application Programming Interface

CPU Central Processing Unit

CTS Clear-To-Send

DAC Digital-to-Analogue Converter

DAI Digital Audio Interface

DIO Digital Input/Output

EIRP Equivalent Isotropically Radiated Power

FIFO First In, First Out (queue)

IFG Inter-Frame Gap

IP Intelligent Peripheral

LPRF Low-Power Radio Frequency

MAC Medium Access Control

NVM Non-Volatile Memory

PWM Pulse Width Modulation

RAM Random Access Memory

RTS Ready-To-Send

SI Serial Interface

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver-Transmitter

WS Word-Select

Related Documents
JN-DS-JN5148 JN5148 Data Sheet

JN-DS-JN5139 JN5139 Data Sheet
18 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
Feedback Address
If you wish to comment on this manual, please provide your feedback by writing to us
(quoting the manual reference number and version) at the following postal address or
e-mail address:

Applications
NXP Laboratories UK Ltd
Furnival Street
Sheffield S1 4QT
United Kingdom

doc@jennic.com
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 19

About this Manual
20 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
Part I:
Concept and Operational

Information
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 21

22 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
1. Overview
This chapter introduces the JN51xx Integrated Peripherals Application Programming
Interface (API) that is used to interact with peripherals on the NXP JN5148 and
JN5139 microcontrollers.

1.1 JN5148/JN5139 Integrated Peripherals
The JN5148 and JN5139 microcontrollers each feature a number of on-chip
peripherals that can be used by a user application which runs on the CPU of the
microcontroller. These ‘integrated peripherals’ are listed below. Not all of the listed
peripherals are included on both JN51xx devices - where a peripheral is featured only
on a certain device, this is indicated.

System Controller
Analogue Peripherals:

Analogue-to-Digital Converter (ADC)
Digital-to-Analogue Converters (DACs)
Comparators

Digital Inputs/Outputs (DIOs)
Universal Asynchronous Receiver-Transmitters (UARTs)
Timers
Wake Timers
Tick Timer
Watchdog Timer [JN5148 only]
Pulse Counters [JN5148 only]
Serial Interface (2-wire):

SI Master
SI Slave [JN5148 only]

Serial Peripheral Interface (SPI master)
Intelligent Peripheral (IP) Interface (SPI slave)
Digital Audio Interface (DAI) [JN5148 only]
Sample FIFO Interface [JN5148 only]
Interface to external Flash memory

The above peripherals are illustrated in Figure 1 for JN5148 and Figure 2 for JN5139.

For hardware details of these peripherals, refer to the relevant chip data sheet - the
JN5148 Data Sheet (JN-DS-JN5148) or the JN5139 Data Sheet (JN-DS-JN5139).
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 23

Chapter 1
Overview

Figure 1: JN5148 Block Diagram

32-bit RISC CPU

Reset

SPI
Master

MUX

UART0

UART1

Wakeup
Timer1

Wakeup
Timer0

Security
Coprocessor

DIO6/TXD0/JTAG_TDO
DIO7/RXD0/JTAG_TDI
DIO4/CTS0/JTAG_TCK
DIO5/RTS0/JTAG_TMS

DIO19/TXD1/JTAG_TDO

DIO17/CTS1/IP_SEL/DAI_SCK/
JTAG_TCK

DIO18/RTS1/IP_INT/DAI_SDOUT/
JTAG_TMS

 Digital
 Baseband

Radio

Programmable
Interrupt

Controller

Timer0

2-wire
Interf ace

Timer1

SPICLK

DIO10/TIM0OUT/32KXTALOUT

SPIMOSI
SPIMISO
SPISEL0
DIO0/SPISEL1
DIO3/SPISEL4/RFTX DIO2/SPISEL3/RFRX DIO1/SPISEL2/PC0

DIO9/TIM0CAP/32KXTALIN/32KIN DIO8/TIM0CK_GT/PC1

DIO13/TIM1OUT/ADE/DAI_SDIN
DIO11/TIM1CK_GT/TIM2OUT
DIO12/TIM1CAP/ADO/DAI_WS

DIO14/SIF_CLK/IP_CLK
DIO15/SIF_D/IP_DO
DIO16/RXD1/IP_DI/JTAG_TDI

From Peripherals

RESETN

Wireless
Transceiv er

32MHz Clock
Generator

XTAL_IN
XTAL_OUT

RF_IN
VCOTUNE

Tick Timer

Voltage
Regulators 1.8V VDD1

VDD2

Intelligent
Peripheral

IBAIS

VB_XX

Clock Divider
Multiplier

Timer2

SPISEL1
SPISEL2
SPISEL3
SPISEL4
TXD0
RXD0
RTS0
CTS0
TXD1
RXD1
RTS1
CTS1
TIM0CK_GT
TIM0CAP TIM0OUT
TIM1CK_GT
TIM1CAP TIM1OUT

TIM2OUT
SIF_D
SIF_CLK
IP_DO
IP_DI
IP_INT
IP_CLK
IP_SEL

4-wire
Digital
Audio

Interf ace

I2S_OUT
I2S_DIN
I2S_CLK
I2S_SYNC

Pulse
Counters

PC0
PC1

JTAG
Debug

JTAG_TDI
JTAG_TMS
JTAG_TCK
JTAG_TDO

RAM
128kB

ROM
128kB OTP

eFuse

32kHz
RC
Osc

32kHz Clock
Select 32KIN

32kHz
Clock
Gen

32KXTALIN
32KXTALOUT

Antenna
Div ersity

ADO
ADE

Time
Of

Flight

Sample
FIFO

DIO20/RXD1/JTAG_TDI

 24MHz
RC Osc

Comparator2 COMP2P
COMP2M

Comparator1 COMP1P/
EXT_PA_C
COMP1M/
EXT_PA_B

DAC1
DAC2

DAC1
DAC2

ADC
M
U
X ADC4

ADC1
ADC2
ADC3

Temperature
Sensor

Supply Monitor

CPU and 16MHz
System Clock

Watchdog
Timer

Brown-out
Detect

24 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
Figure 2: JN5139 Block Diagram

32-bit RISC CPU

RAM
96kB

ROM
192kB

Reset

SPI

M
U
X

UART0

UART1

32kHz
Osc

WT1

WT0

Wakeup

Security
Coprocessor

DIO6/TXD0
DIO7/RXD0

DIO4/CTS0
DIO5/RTS0

DIO19/TXD1
DIO20/RXD1

DIO17/CTS1/IP_SEL
DIO18/RTS1/IP_INT

Baseband
Controller

Modem

Radio

Programmable
Interrupt

Controller

Timer0

2-Wire
Serial

Interface

Timer1

DAC1

DAC2

ADC

Comparator2

SPICLK

DIO10/TIM0OUT

SPIMOSI
SPIMISO
SPISEL0

DIO0/SPISEL1

DIO3/SPISEL4/RFTX
DIO2/SPISEL3/RFRX
DIO1/SPISEL2

DIO9/TIM0CAP/CLK32K
DIO8/TIM0CK_GT

DIO13/TIM1OUT

DIO11/TIM1CK_GT
DIO12/TIM1CAP

DIO14/SIF_CLK/IP_CLK
DIO15/SIF_D/IP_DO

DIO16/IP_DI

From Peripherals

M
U
X

RESETN

Wireless
Transceiver

ADC4

ADC1
ADC2
ADC3

DAC1

DAC2

COMP2P
COMP2M

Clock
GeneratorXTALIN

XTALOUT

RFM
RFP

VCOTUNE

Tick Timer

Voltage
Regulators 1.8V

Temperature
Sensor

Supply
Monitor

VDD1

VDD2

Intelligent
Peripheral

IBIAS

VB_xx

OTP
eFuse
48-byte

Comparator1COMP1P
COMP1M
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 25

Chapter 1
Overview

1.2 JN51xx Integrated Peripherals API
The JN51xx Integrated Peripherals API is a collection of C functions that can be
incorporated in application code that runs on a JN5148 or JN5139 microcontroller in
order to control the on-chip peripherals listed in Section 1.1. This API (sometimes
referred to as the AHI) is defined in the header file AppHardwareApi.h, which is
included in the JN51xx SDK Libraries (JN-SW-4040 for JN5148, JN-SW-4030 for
JN5139). The software that is invoked by this API is located in the on-chip ROM.

This API provides a thin software layer above the on-chip registers used to control the
integrated peripherals. By encapsulating several register accesses into one function
call, the API simplifies use of the peripherals without the need for a detailed knowledge
of their operation.

Note that the Integrated Peripherals API does NOT include functions to control:

IEEE 802.15.4 MAC hardware built into the JN51xx device - this hardware is
controlled by the wireless network protocol stack software (which may be an
IEEE 802.15.4, ZigBee, JenNet or 6LoWPAN/JenNet stack), and APIs for this
purpose are provided with the appropriate stack software product.
resources of the JN51xx evaluation kit boards, such as sensors and display
panels (although the buttons and LEDs on the evaluation kit boards are
connected to the DIO pins of the JN51xx device) - a special function library,
called the LPRF Board API, is provided by NXP for this purpose and is
described in the LPRF Board API Reference Manual (JN-RM-2003).

1.3 Using this Manual
The remainder of this manual is largely organised as one chapter per peripheral block.
You should use the manual as follows:

1. First study Chapter 2 which describes the general functions that are not
associated with one particular peripheral block. This chapter explains how to
initialise the Integrated Peripherals API for use in your application code.

2. Next study Chapter 3 which describes the range of features associated with
the System Controller. You may need to use one or more of these features in
your application.

3. Then study those chapters in Part I: Concept and Operational Information
which correspond to the particular peripherals that you wish to use in your
application.

For full details of the referenced API functions, refer to Part II: Reference Information.
Also note that interrupt handling is described in Part III: Appendices.

Caution: The Integrated Peripherals API functions are
not re-entrant. A function must be allowed to complete
before the function is called again, otherwise
unexpected results may occur.
26 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
2. General Functions
This chapter describes use of the ‘general functions’ that are not associated with any
of the peripheral blocks but may be needed in your application code (the API
initialisation function will definitely be needed).

These functions cover the following areas:

API initialisation (Section 2.1)
Configuration of the radio transceiver (Section 2.2)
Use of the random number generator (Section 2.3)

A function for detecting a data-stack overflow is also provided.

2.1 API Initialisation
Before calling any other function from the Integrated Peripherals API, the function
u32AHI_Init() must be called to initialise the API. This function must be called after
every reset and wake-up (from sleep) of the JN51xx microcontroller.

2.2 Radio Configuration
The radio transceiver of a JN5148 or JN5139 microcontroller can be configured in a
number of ways, as described in the sub-sections below.

2.2.1 Radio Transmission Power
The radio transmission power of a JN5148 or JN5139 device can be varied, the exact
power range depending on the device type and, more critically, the module type
(standard or high-power) on which the device sits. As a general rule:

A standard module has a transmission power range of:
-32 to +2.5 dBm if JN5148-based
-30 to +1.5 dBm if JN5139-based

A high-power module has a transmission power range of:
-16.5 to +18 dBm if JN5148-based
-7 to +17.5 dBm if JN5139-based

Caution: If you are using JenOS (Jennic Operating
System), you must not call u32AHI_Init() explicitly in
your code, as this function is called internally by JenOS.
This applies principally to users who are developing
ZigBee PRO applications.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 27

Chapter 2
General Functions

The transmission power can be set using the function bAHI_PhyRadioSetPower().
This function allows you to set the power to one of four (JN5148) or six (JN5139)
possible levels in the power range - for details of these levels, refer to the function
description in Chapter 18.

Note that:

bAHI_PhyRadioSetPower() should only be called after the function
vAHI_ProtocolPower() has been called to enable the protocol power domain -
see Section 3.2.1.
The radio transceiver of a high-power module must be explicitly enabled before
it can be used - see Section 2.2.2.

2.2.2 High-Power Modules
If a JN5148 or JN5139 high-power module is to be used, its radio transceiver must be
enabled via the function vAHI_HighPowerModuleEnable() before attempting to
operate the module. Note that the receiver and transmitter parts must both be enabled
at the same time (even if you are only going to use one of them). The above function
sets the CCA (Clear Channel Assessment) threshold to suit the gain of the attached
high-power module.

The European Telecommunications Standards Institute (ETSI) dictates a power limit
for Europe of +10 dBm EIRP. You can operate a JN5148 high-power module close to
this power limit by calling the function vAHI_ETSIHighPowerModuleEnable() after
enabling the module.

Tip: The radio transmission power of a standard
JN5139 module can be increased by 1.5 dBm - this is
called Boost mode. Beware that this mode results in
increased current consumption. Boost mode can be
enabled using the function vAppApiSetBoostMode()
which, if used, must be the first function called in your
code since the setting takes effect only when the
JN5139 device is initialised.

Note: The radio transmission power of a high-power
module can be set using the function
bAHI_PhyRadioSetPower() - refer to Section 2.2.1.

Caution: A JN51xx high-power module cannot be used
in channel 26 of the 2.4-GHz band.
28 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
2.2.3 Over-Air Transmission Properties (JN5148 Only)
The Integrated Peripherals API contains functions for the JN5148 device that allow
certain over-air transmission characteristics to be deviated from the default settings
dictated by the IEEE 802.15.4 protocol standard:

vAHI_BbcSetHigherDataRate() can be used to increase the data-rate of over-
air transmissions from the default 250 kbps to 500 or 666 kbps. These
alternative rates allow on-demand burst transmissions between nodes, but
performance will be degraded by at least 3 dB. The data-rate set does not only
apply to data transmission but also to data reception - the device will only be
able to receive data sent at the configured rate and this must be taken into
account by the sending device.
vAHI_BbcSetInterFrameGap() can be used to set the long Inter-Frame Gap
(IFG) for the over-air radio transmission of IEEE 802.15.4 frames. The standard
long IFG is 640 µs. Reducing it may result in an increase in the throughput of
frames. The recommended minimum is 192 µs and the function allows a setting
no lower than 184 µs. If needed, this function must be called after the radio
section of the JN5148 chip has been initialised (which is done when the
protocol stack is started).

If used, the above functions must be called after vAHI_ProtocolPower() - refer to
Section 3.2.1.

Following the new data-rate and/or long IFG settings, data can be sent/received using
the normal method. To later revert to standard IEEE 802.15.4 behaviour, the data-rate
should be set back to 250 kbps and the long IFG should be set back to 640 µs.

2.3 Random Number Generator (JN5148 Only)
The JN5148 device features a random number generator which can produce 16-bit
random numbers in one of two modes:

Single-shot mode: The generator produces one random number and stops.
Continuous mode: The generator runs continuously and generates a new
random number every 256 µs.

The random number generator can be started in either of the above modes using the
function vAHI_StartRandomNumberGenerator(). This function also allows an
interrupt to be enabled which is produced when a random number becomes available
- this is handled as a System Controller interrupt by the callback function registered
using the function vAHI_SysCtrlRegisterCallback() (see Section 3.5).

A randomly generated value can subsequently be read using the function
u16AHI_ReadRandomNumber(). The availability of a new random number, and
therefore the need to call the ‘read’ function, can be determined using either of the
following methods:

Waiting for a random number generator interrupt, if enabled (see above)
Periodically calling the function bAHI_RndNumPoll() to poll for the availability
of a new random value
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 29

Chapter 2
General Functions

When running in Continuous mode, the random number generator can be stopped
using the function vAHI_StopRandomNumberGenerator().

Note: The random number generator uses the 32-kHz
clock domain (see Section 3.1) and will not operate
properly if a high-precision external 32-kHz clock source
is used. Therefore, if generating random numbers in
your application, you are advised to use the internal RC
oscillator or a low-precision external clock source.
30 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
3. System Controller
This chapter describes use of the functions that control features of the System
Controller.

These functions cover the following areas:

Clock management (Section 3.1)
Power management (Section 3.2)
Voltage brownout (Section 3.3)
Chip reset (Section 3.4)
Interrupts (Section 3.5)

3.1 Clock Management
The System Controller provides clocks to the JN51xx microcontroller and is divided
into two main blocks - a 16-MHz domain and a 32-kHz domain.

16-MHz Domain
The 16-MHz clock domain is used produce a system clock to run the CPU and most
peripherals when the chip is fully operational. The clock for this domain is sourced as
follows, dependent on the chip type:

JN5148: External 32-MHz crystal oscillator or internal 24-MHz RC oscillator
JN5139: External 16-MHz crystal oscillator

The crystal oscillators are driven from external crystals of the relevant frequencies
connected to pins 8 and 9 for JN5148, and pins 11 and 12 for JN5139.

The domain normally produces a 16-MHz system clock from this clock source.
However, for the JN5148 device, the system clock and CPU clock options are flexible.
System clock and CPU clock configuration for the JN5148 are described in Section
3.1.1 and Section 3.1.2 respectively.

32-kHz Domain
The 32-kHz clock domain is mainly used during low-power sleep states (but also for
the random number generator on the JN5148 device - see Section 2.3). While in Sleep
mode (see Section 3.2.3), the CPU does not run and relies on an interrupt to wake it.
The interrupt can be generated by an on-chip wake timer (see Chapter 8) or
alternatively from an external source via a DIO pin (see Chapter 5), an on-chip
comparator (see Section 4.3) or an on-chip pulse counter (JN5148 only - see Chapter
11). The wake timers are driven from the 32-kHz domain. The 32-kHz clock for this
domain can be sourced as follows, dependent on the chip type:

JN5148: Internal RC oscillator, external crystal or external clock module
JN5139: Internal RC oscillator or external clock module

Source clock selection for this domain is described in Section 3.1.4.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 31

Chapter 3
System Controller

For JN5148, the crystal oscillator is driven from an external 32-kHz crystal connected
to DIO9 and DIO10 (pins 50 and 51). For JN5148 and JN5139, the external clock
module is connected to DIO9 (pin 50).

The 32-kHz domain is still active when the chip is operating normally and can be
calibrated against the 16-MHz clock to improve timing accuracy - see Section 8.2.

3.1.1 System Clock Selection (JN5148 Only)
On the JN5148 device, the function vAHI_SelectClockSource() is used to select the
source for the system clock as either the 32-MHz crystal oscillator or the 24-MHz RC
oscillator. The source clock frequency is halved to produce a system clock of 16 MHz
or 12 MHz, although it is possible to configure other related frequencies (see Section
3.1.2). The above function also allows the crystal oscillator to be powered down when
the RC oscillator is selected, in order to save power. Note that the identity of the
current source clock can be obtained by calling the function bAHI_GetClkSource().
It is important to note the following limitations while using the RC oscillator:

The RC oscillator will produce a system clock of frequency 12 MHz to an
accuracy of ±30% (unless calibrated).
The full system cannot be run while using the RC oscillator - it is possible to
execute code but it is not possible to transmit or receive. Also, calculated baud
rates and timing intervals for the UARTs and timers must be based on 12 MHz.
Switching from the crystal oscillator to the RC oscillator is not recommended.

The RC oscillator is normally only used at device wake-up (from sleep) as a temporary
source clock until the crystal oscillator is properly up and running - see Section 3.1.3.

3.1.2 CPU Clock Frequency Selection (JN5148 Only)
On the JN5148 device, the default CPU clock frequency is 16 MHz or 12 MHz.
However, alternative CPU clock frequencies can be configured using the function
bAHI_SetClockRate(). A division factor (1, 2, 4 or 8) must be specified for dividing
down the system source clock (32-MHz or 24-MHz) to produce the CPU clock. Thus:

If the system clock is sourced from the 32-MHz crystal oscillator, the possible
CPU clock frequencies are 4, 8, 16 and 32 MHz.
If the system clock is sourced from the 24-MHz RC oscillator, the possible CPU
clock frequencies are 3, 6, 12 and 24 MHz.

3.1.3 System Clock Start-up following Sleep (JN5148 Only)
If the 32-MHz crystal oscillator is used as the system clock source for the JN5148
device, this clock source is powered down during sleep and takes some time to
become available again when the device wakes. A more rapid start-up from sleep can
be achieved by using the 24-MHz RC oscillator immediately on waking and then
switching to the crystal oscillator when it becomes available. This allows initial
processing at wake-up to proceed before the crystal oscillator is ready.
32 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
The function vAHI_EnableFastStartUp() can be called before going to sleep to
ensure that the RC oscillator will be used immediately on waking. The subsequent
switch to the crystal oscillator can be either automatic or manual:

Automatic switch: The crystal oscillator starts immediately on waking from
sleep, allowing it to warm up and stabilise while the boot code is running. This
oscillator is then automatically and seamlessly switched to when ready. The
function bAHI_GetClkSource() can be used to determine whether the switch
has taken place.
Manual switch: The switch to the crystal oscillator takes place at any time the
application chooses, using the function vAHI_SelectClockSource(). If the
crystal oscillator is not already running when this manual switch is initiated, this
oscillator will be automatically started. Depending on the oscillator’s progress
towards stabilisation at the time of the switch request, there may be a delay of
up to 1 ms before the crystal oscillator is stable and the switch takes place.

During the temporary period while the 24-MHz RC oscillator is being used, you should
not attempt to transmit or receive, and you can only use the JN5148 peripherals with
special care (see Section 3.1.1). You may wish to initially use the 24-MHz RC
oscillator on waking and then manually switch to the 32-MHz crystal oscillator only
when it becomes necessary to start transmitting/receiving.

3.1.4 32-kHz Clock Selection
As stated in the introduction to Section 3.1, a choice of source for the 32-kHz clock is
available on the JN5139 and JN5148 devices. The selection of this source clock is
detailed separately below for the two devices.

JN5139 Clock Selection
On the JN5139 device, the 32-kHz clock can be optionally sourced from an external
clock module. If this external clock source is required, the function
vAHI_ExternalClockEnable() must be called. This function should be called only
following device start-up/reset and not following wake-up from sleep. Once this
function has been called to enable an external clock input, you are not advised to
subsequently change back to the internal RC oscillator.

The external clock must be supplied on DIO9 (pin 50), with the other end tied to
ground. There is no need to explicitly configure DIO9 as an input, as this is done
automatically by vAHI_ExternalClockEnable(). However, you are advised to first
disable the pull-up on this DIO using the function vAHI_DioSetPullup().

Note: On both the JN5139 and JN5148 devices, the
default clock source is the internal 32-kHz RC oscillator.
The functions described below only need to be called if
an external 32-kHz clock source is required. Once an
external source has been selected, it is not possible to
switch back to the internal RC oscillator.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 33

Chapter 3
System Controller

JN5148 Clock Selection
On the JN5148 device, the 32-kHz clock can be optionally sourced from an external
clock module (RC circuit) or an external crystal oscillator. If one of these external clock
sources is required, the function bAHI_Set32KhzClockMode() must be called. If
required, this function should be called near the start of the application.

If selecting the external crystal oscillator then bAHI_Set32KhzClockMode() must be
called before Timers 0 and 1, and any Wake Timers are used by the application, since
these timers are used by the function when switching the clock source to the external
crystal. Note that the external crystal can take up to one second to start.

The connections to the external clock source must be made as follows:

The external clock module must be supplied on DIO9 (pin 50). You must first
disable the pull-up on DIO9 using the function vAHI_DioSetPullup().
The external crystal oscillator must be attached on DIO9 (pin 50) and DIO10
(pin 51). The pull-ups on DIO9 and DIO10 are disabled automatically.

Note that there is no need to explicitly configure DIO9 or DIO10 as an input, as this is
done automatically by bAHI_Set32KhzClockMode().

3.2 Power Management
This section describes how to control the power to a JN51xx microcontroller using the
Integrated Peripherals API. This includes control of the power regulator that supplies
certain on-chip peripherals and the management of low-power sleep modes.

3.2.1 Power Domains
A JN51xx microcontroller has a number of independent power domains, supplied by
separate voltage regulators, as follows:

Digital Logic domain: This domain supplies the CPU and digital peripherals
as well as the modem, encryption coprocessor and baseband controller. The
clock for this domain can be enabled/disabled by the application (see Section
3.2.2). The domain is always unpowered during sleep.
Analogue domain: This domain supplies the ADC and DACs. The regulator is
switched on when the function vAHI_ApConfigure() is called to configure the
analogue peripherals - see Chapter 4. The domain is always unpowered during
sleep.
RAM domain: This domain supplies the on-chip RAM. The domain may be
powered or unpowered during sleep.
Radio domain: This domain supplies the radio transceiver. The domain is
always unpowered during sleep.
VDD Supply domain: This domain supplies the wake timers, DIO blocks,
comparators and 32-kHz oscillators. The domain is driven from the external
supply (battery) and is always powered. However, the wake timers and 32-kHz
oscillators may be powered or unpowered during sleep.
34 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
The separate voltage regulators for the CPU (Digital Logic domain) and on-chip RAM
provide flexibility in implementing different low-power sleep modes, allowing the
memory to be either powered (and its contents maintained) or unpowered while the
CPU is powered down - for further information on sleep modes, refer to Section 3.2.3.

3.2.2 Digital Logic Domain Clock
The clock for the Digital Logic domain can be enabled/disabled using the function
vAHI_ProtocolPower(), but disabling this clock outside of a reset or sleep cycle must
be done with caution. The following points should be noted:

Disabling the Digital Logic domain clock leaves the clock powered but disabled
(gated).
Disabling the Digital Logic domain clock causes the IEEE 802.15.4 MAC
settings to be lost. Therefore, you must save the current MAC settings before
disabling the clock. On re-enabling clock, the MAC settings must be restored
from the saved settings. You can save and restore the MAC settings using
functions of the 802.15.4 Stack API, described in the IEEE 802.15.4 Stack User
Guide (JN-UG-3024):

To save the MAC settings, use the function vAppApiSaveMacSettings().
To restore the saved MAC settings, use the function
vAppApiRestoreMacSettings() - the Digital Logic domain clock is
automatically re-enabled, since this function calls vAHI_ProtocolPower().

Do not call vAHI_ProtocolPower() to disable the Digital Logic domain clock
while the 802.15.4 MAC layer is active, otherwise the microcontroller may
freeze.
While the Digital Logic domain clock is disabled, do not make any calls into the
stack, as this may result in the stack attempting to access the associated
hardware (which is disabled) and therefore cause an exception.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 35

Chapter 3
System Controller

3.2.3 Low-Power Modes
The JN51xx microcontrollers are able to enter a number of low-power modes in order
to conserve power during periods when the device does not need to be fully active.
Generally, there are two low-power modes, Sleep mode (including Deep Sleep) and
Doze mode, described below.

Sleep and Deep Sleep Modes
In Sleep mode, most of the internal chip functions are shut down to save power,
including the CPU and the majority of on-chip peripherals. However, the states of the
DIO pins are retained, including the output values and pull-up enables, which
preserves any interface to the outside world. In addition, the DAC outputs are put into
a high-impedance state. The on-chip RAM, the 32-kHz oscillator, the comparators and
the pulse counters (JN5148 only) can optionally remain active during sleep.

Sleep mode is started using the function vAHI_Sleep(), when one of four sleep modes
can be selected which depend on whether RAM and the 32-kHz oscillator are to be
powered off. The significance of the 32-kHz oscillator and RAM during sleep is
outlined below:

32-kHz Oscillator: The 32-kHz oscillator (internal RC, external clock or
external crystal) can be either left running or stopped for the duration of sleep.
This oscillator is used by the wake timers and must be left running if a wake
timer will be used to wake the device from sleep. Otherwise, the oscillator
should be switched off during sleep. However, if an external source is used for
this oscillator, it is not recommended that the oscillator is stopped on entering
sleep mode.

On-chip RAM: Power to on-chip RAM can be either maintained or removed
during sleep. The application program, stack context data and application data
are all held in on-chip RAM while the microcontroller is fully active, but are lost
if the power to RAM is switched off.

If the power to RAM is removed during sleep, the application is re-loaded
into RAM from external Non-Volatile Memory (NVM) on exiting sleep mode
- stack context and application data may also be re-loaded by the
application, if they were saved to NVM before entering sleep mode.
If the power to RAM is maintained during sleep, the application and data
will be preserved. This option is useful for short sleep periods, when the
time taken on waking to re-load the application and data from NVM to RAM
is significant compared with the sleep duration.

A further low-power option is Deep Sleep mode in which the CPU, RAM and both the
16-MHz and 32-kHz clock domains are powered down. In addition, external NVM is
also powered down during Deep Sleep mode. This option obviously provides a bigger
power saving than Sleep mode.

Note: On the JN5148 device, if a pulse counter is to be
run with debounce while the device is asleep, the
32-kHz oscillator must be left running - see Chapter 11.
36 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide

The microcontroller can subsequently be woken from Sleep mode by one of the
following:

DIO interrupt (see Chapter 5)
Wake timer interrupt (needs 32-kHz oscillator to be running - see Chapter 8)
Comparator interrupt (see Section 4.3)
Pulse counter interrupt (JN5148 only - see Chapter 11)

The device can only be woken from Deep Sleep mode by its reset line being pulled
low (all chips) or by an external event which triggers a change on a DIO pin.

When the device restarts, it will begin processing at the cold start or warm start entry
point, depending on the sleep mode from which the device is waking.

Doze Mode
Doze mode is a low-power mode in which the CPU, RAM, radio transceiver and digital
peripherals remain powered but the clock to the CPU is stopped (all other clocks
continue as normal). This mode provides less of a power saving than Sleep mode but
allows a quicker recovery back to full working mode. Doze mode is useful for very
short periods of low power consumption - for example, while waiting for a timer event
or for a transmission to complete.

The CPU can be put into Doze mode by calling the function vAHI_CpuDoze(). It is
subsequently brought out of Doze mode by almost any interrupt - note that a Tick
Timer interrupt can be used to bring the CPU out of Doze mode on the JN5148 device
but not on the JN5139 device.

3.2.4 Power Status
The power status of the JN51xx microcontroller can be obtained using the function
u8AHI_PowerStatus(). This function returns a bitmap in which the individual bits
indicate whether:

The device has completed a sleep-wake cycle
RAM contents were retained during sleep
The analogue power domain is switched on
The protocol logic is operational - clock is enabled

Note: External NVM is not powered down during normal
Sleep mode. If required, you can power down a Flash
memory device using vAHI_FlashPowerDown(), which
must be called before vAHI_Sleep(), provided you are
using a compatible Flash device. For full details, refer to
Section 17.4.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 37

Chapter 3
System Controller

3.3 Voltage Brownout (JN5148 Only)
A ‘brownout’ is a fall in the supply voltage to a device or system below a pre-defined
level, which may hinder or be harmful to the operation of the device/system. The
JN5148 microcontroller is equipped with a brownout detection feature which can be
configured and monitored through functions of the Integrated Peripherals API.

3.3.1 Configuring Brownout Detection
By default on the JN5148 device, brownout detection is automatically enabled and the
brownout voltage is set to 2.3V. On detection of a brownout, the chip will be
automatically be reset.

The above brownout settings can be changed by calling the function
vAHI_BrownOutConfigure(), which allows the configuration of the following:

Brownout detection: The brownout detection feature can be enabled/disabled
- if the configuration function is called and brownout detection is required, the
feature must be explicitly enabled in the function.
Brownout level: The brownout voltage level can be set to one of four values -
2.0V, 2.3V, 2.7V or 3.0V.
Reset on brownout: The automatic reset on the occurrence of a brownout can
be enabled/disabled.
Brownout interrupts: Two separate interrupts relating to brownout can be
enabled/disabled:

An interrupt can be generated when the device enters the brownout state
(supply voltage falls below the brownout voltage level).
An interrupt can be generated when the device leaves the brownout state
(supply voltage rises above the brownout voltage level).

After the return of the configuration function, there will be a delay of up the 30 µs
before the new settings take effect.

Note: Following a device reset or sleep, the default
brownout settings are re-instated.
38 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
3.3.2 Monitoring Brownout
Provided that brownout detection is enabled (see Section 3.3.1), the brownout status
of the JN5148 device can be monitored in one of three ways: automatic reset,
interrupts or polling. These options are described below.

Automatic Reset on Brownout
An automatic reset on a brownout is enabled by default, but can also be enabled/
disabled through the function vAHI_BrownOutConfigure(). Following a chip reset,
the application can check whether a brownout was the cause of the reset by calling
the function bAHI_BrownOutEventResetStatus().

Brownout Interrupts
Interrupts can be generated when the device enters the brownout state and/or when
it exits the brownout state. These two interrupts can be individually enabled/disabled
through the function vAHI_BrownOutConfigure(). Brownout interrupts are System
Controller interrupts and are handled by the callback function registered using the
function vAHI_SysCtrlRegisterCallback() - see Section 3.5.

Polling for Brownout
If brownout interrupts and automatic reset are disabled (but detection is still enabled),
the brownout state of the device can be obtained by manually polling via the function
u32AHI_BrownOutPoll(). This function will indicate whether the supply voltage is
currently above or below the brownout level.

3.4 Resets
The JN51xx microcontroller can be reset from the application using the function
vAHI_SwReset(). This function initiates the full reset sequence for the chip and is the
equivalent of pulling the external RESETN line low. Note that during a chip reset, the
contents of on-chip RAM are likely to be lost.

One or more external devices may also be connected to the RESETN line. This line
can be pulled low without resetting the chip by calling the function
vAHI_DriveResetOut(). This function allows you to specify the length of time for
which the line will be held low. Thus, any external devices connected to this line may
be affected.

Note: An external RC circuit can be connected to the
RESETN line in order to generate a reset. The required
resistance and capacitance values are specified in the
data sheet for your microcontroller.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 39

Chapter 3
System Controller

3.5 System Controller Interrupts
System Controller interrupts cover a number of on-chip peripherals that do not have
their own interrupts:

Comparators
DIOs
Wake Timers
Pulse Counter (JN5148 only)
Random Number Generator (JN5148 only)
Brownout detector (JN5148 only)

Interrupts for these peripherals can be individually enabled using their own functions
from the Integrated Peripherals API.

The handling of interrupts from these sources must be incorporated in a user-defined
callback function, registered using the function vAHI_SysCtrlRegisterCallback().
The registered callback function is automatically invoked when an interrupt of the type
E_AHI_DEVICE_SYSCTRL occurs. The exact source of the interrupt (from the
peripherals listed above) can then be identified from a bitmap that is passed into the
function. Note that the interrupt will be automatically cleared before the callback
function is invoked.

Note: The callback function prototype is detailed in
Appendix A.1. The interrupt source information is
provided in Appendix B.

Caution: The registered callback function is only
preserved during sleep modes in which RAM remains
powered. If RAM is powered off during sleep and
interrupts are required, the callback function must be re-
registered before calling u32AHI_Init() on waking.
40 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
4. Analogue Peripherals
This chapter describes control of the analogue peripherals using functions of the
Integrated Peripherals API.

The are three categories of analogue peripheral on the JN51xx microcontrollers:

Analogue-to-Digital Converter [ADC] (Section 4.1)
Digital-to-Analogue Converter [DAC] (Section 4.2)
Comparator (Section 4.3)

Analogue peripheral interrupts are described in Section 4.4.

4.1 ADC
The JN51xx microcontrollers each include a 12-bit Analogue-to-Digital Converter
(ADC). This device samples an analogue input signal to produce a 12-bit digital
representation of the input voltage. The ADC samples the input voltage at one instant
in time and holds this voltage (in a capacitor) while converting it to a 12-bit binary value
- the total sample/convert duration is called the conversion time.

The ADC may sample periodically to produce a sequence of 12-bit values
representing the behaviour of the input voltage over time. The rate at which the
sampling events take place is called the sampling frequency. According to the Nyquist
sampling theorem, the sampling frequency must be at least twice the highest
frequency to be measured in the input signal. If the input signal contains frequencies
of more than half the sampling frequency, these frequencies will be aliased. To
prevent aliasing, a low-pass filter should be applied to the ADC input in order to
remove frequencies greater than half the sampling frequency.

The ADC can take its analogue input from an external source, an on-chip temperature
sensor and an internal voltage monitor (see below). The input voltage range is also
selectable as between zero and a reference voltage, or between zero and twice this
reference voltage (see below).

Note: The ADC and DACs are located in the same
peripheral block. They can be used independently of
each other or in any combination. When used
concurrently, they operate to common timings.

Note: The function vAHI_ApConfigure(), referred to
below, is used to configure properties that apply to the
ADC and DACs.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 41

Chapter 4
Analogue Peripherals

When using the ADC, the first analogue peripheral function to be called must be
vAHI_ApConfigure(), which allows the following properties to be configured:

Clock:
The clock input for the ADC is provided by the 16-MHz on-chip clock, which is
divided down. The target frequency is selected using vAHI_ApConfigure() (this
clock output is shared with the DACs). The recommended target frequency for
the ADC is 500 kHz.
Sampling interval and conversion time:
The sampling interval determines the time over which the ADC will integrate the
analogue input voltage before performing the conversion - in fact, the integration
occurs over three times this interval (see Figure 3). This interval is set as a
multiple of the ADC clock period (2x, 4x, 6x or 8x), where this multiple is
selected using vAHI_ApConfigure(). Normally, it should be set to 2x - for
details, refer to the data sheet for your microcontroller.
The time allowed to perform the subsequent conversion is 14 clock periods.
Thus, the total time to sample and convert (the conversion time) is given by:

[(3 x sampling interval) + 14] x clock period
For a visual illustration, refer to Figure 3.
Reference voltage:
The permissible range for the analogue input voltage is defined relative to a
reference voltage Vref, which can be sourced internally or externally. The source
of Vref is selected using vAHI_ApConfigure().
The input voltage range can be selected as either 0-Vref or 0-2Vref, which is
selected the vAHI_AdcEnable() function - see later.
Voltage regulator:
In order to minimise the amount of digital noise in the ADC, the device is
powered (along with the DACs) from a separate voltage regulator, sourced from
the analogue supply VDD1. The regulator (and therefore power) can be
enabled/disabled using vAHI_ApConfigure(). Once enabled, it is necessary to
wait for the regulator to stabilise - the function bAHI_APRegulatorEnabled()
can be used to check whether the regulator is ready.
Interrupt:
Interrupts can be enabled such that an interrupt (of the type
E_AHI_DEVICE_ANALOGUE) is generated after each individual conversion.
This is particularly useful for ADC continuous (periodic) conversion. Interrupts
can be enabled/disabled using vAHI_ApConfigure(). Analogue peripheral
interrupt handling is described in Section 4.4.

The ADC must then be further configured and enabled (but not started) using the
function vAHI_AdcEnable(). This function allows the following properties to be
configured.

Input source:
The ADC can take its input from one of six multiplexed sources, comprising four
external pins (DIOs), an on-chip temperature sensor and an internal voltage
monitor. The input is selected using vAHI_AdcEnable().
42 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
Input voltage range:
The permissible range for the analogue input voltage is defined relative to the
reference voltage Vref. The input voltage range can be selected as either 0-Vref
or 0-2Vref (an input voltage outside this range results in a saturated digital
output). The analogue voltage range is selected using vAHI_AdcEnable().
Conversion mode:
The ADC can be configured to perform conversions in the following modes:

Single-shot: A single conversion is performed (see Section 4.1.1).
Continuous: Conversions are performed repeatedly (see Section 4.1.2).
Accumulation (JN5148 only): A fixed number of conversions are
performed and the results are added together (see Section 4.1.3).

Single-shot mode or continuous mode can be selected using
vAHI_AdcEnable(). In all three cases, the conversion time for an individual
conversion is given by [(3 x sampling interval) + 14] x clock period, as illustrated
in Figure 3. In the cases of continuous mode and accumulation mode, after this
time the next conversion will start and the sampling frequency will be
the reciprocal of the conversion time.

Once the ADC has been configured using first vAHI_ApConfigure() and then
vAHI_AdcEnable(), conversion can be started in one of the available modes.
Operation of the ADC in these modes is described in the subsections below:

Single-shot mode: Section 4.1.1
Continuous mode: Section 4.1.2
Accumulation mode (JN5148 only): Section 4.1.3

Note that only the ADC can generate analogue peripheral interrupts (of the type
E_AHI_DEVICE_ANALOGUE) - these interrupts are handled by a user-defined
callback function registered via vAHI_APRegisterCallback(). Refer to Section 4.4 for
more information on analogue peripheral interrupt handling.

Figure 3: ADC Sampling

3 x
sampling
interval *

14 x
clock
cycles

ADC captures
analogue input
during this time

ADC uses this time to
perform the conversion

* Sampling interval is defined as
 2, 4, 6 or 8 clock cycles
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 43

Chapter 4
Analogue Peripherals

4.1.1 Single-Shot Mode
In single-shot mode, the ADC performs one conversion and then stops. To operate in
this way, single-shot mode must have been selected when the ADC was enabled
using vAHI_AdcEnable(). The conversion can then be started using the function
vAHI_AdcStartSample().
Completion of the conversion can be detected in one of two ways:

An interrupt can be generated on completion - in this case, analogue peripheral
interrupts must have been enabled in the function vAHI_ApConfigure().
The function bAHI_AdcPoll() can be used to check whether the conversion
has completed.

Once the conversion has been performed, the 12-bit result can be obtained using the
function u16AHI_AdcRead().

4.1.2 Continuous Mode
In continuous mode, the ADC performs repeated conversions indefinitely (until
stopped). To operate in this way, continuous mode must have been selected when the
ADC was enabled using vAHI_AdcEnable(). The conversions can then be started
using the function vAHI_AdcStartSample().
The sampling frequency in continuous mode is given by the reciprocal of the
conversion time, where:

Conversion time = [(3 x sampling interval) + 14] x clock period

Completion of an individual conversion can be detected in one of two ways:

An interrupt can be generated on completion - in this case, analogue peripheral
interrupts must have been enabled in the function vAHI_ApConfigure().
The function bAHI_AdcPoll() can be used to check whether the conversion
has completed.

Once an individual conversion has been performed, the 12-bit result can be obtained
using the function u16AHI_AdcRead(). The result remains available to be read by this
function until the next conversion has completed.

The conversions can be stopped using the function vAHI_AdcDisable().

Caution: The ADC cannot be used in single-shot mode
while either of the DACs is enabled - see Section 4.2.
However, it can be used in continuous or accumulation
mode - see Section 4.1.2 below.
44 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
4.1.3 Accumulation Mode (JN5148 Only)
In accumulation mode on the JN5148 device, the ADC performs a fixed number of
conversions and then stops. The results of these conversions are added together to
allow them to be averaged. To operate in this mode, the conversions must be started
using the function vAHI_AdcStartAccumulateSamples(). The number of
conversions is selected in this function as 2, 4, 8 or 16.

The sampling frequency in accumulation mode is given by the reciprocal of the
conversion time, where:

Conversion time = [(3 x sampling interval) + 14] x clock period

Completion of ALL the conversions can be detected in one of two ways:

An interrupt can be generated on completion - in this case, analogue peripheral
interrupts must have been enabled in the function vAHI_ApConfigure().
The function bAHI_AdcPoll() can be used to check whether the conversions
have completed.

Once the conversions have been performed, the cumulative result can be obtained
using the function u16AHI_AdcRead(). Note that this function delivers the sum of the
results for individual conversions - the averaging calculation must be performed by the
application (by dividing by the number of conversions).

The conversions can be stopped at any time using the function vAHI_AdcDisable().

Note: When the ADC is started in accumulation mode,
the conversion mode selected in vAHI_AdcEnable() is
ignored.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 45

Chapter 4
Analogue Peripherals

4.2 DACs
The JN51xx microcontrollers include two Digital-to-Analogue Converters (DACs),
denoted DAC1 and DAC2.

On the JN5139 device, they are 11-bit DACs
On the JN5148 device, they are 12-bit DACs

Each DAC can take a digital value of up to 11/12 bits and, from it, produce an analogue
output as a proportional voltage on a dedicated pin, also denoted DAC1 or DAC2.

The DACs share their peripheral block with the ADC and their operation is linked to
that of the ADC. In particular, the ADC and DACs use the same clock, and the ADC
conversion time dictates the DAC conversion time (see Section 4.1). When a DAC and
the ADC are used concurrently, a DAC conversion occurs at exactly the same time as
an ADC conversion.

When using a DAC, the first analogue peripheral function to be called must be
vAHI_ApConfigure(), which allows the following properties to be configured:

Clock:
The clock input for the DAC is provided by the 16-MHz on-chip clock, which is
divided down. The target frequency is selected using vAHI_ApConfigure() (this
clock is shared with the other DAC and the ADC).
Conversion time:
The operation of a DAC is linked to the ADC and the DAC conversion time is
equal to the ADC conversion time for an individual sample, described in Section
4.1 and given by:

 [(3 x sampling interval) + 14] x clock period
The sampling interval is selected in vAHI_ApConfigure() as a multiple of the
DAC clock period (2x, 4x, 6x or 8x) - this setting is shared with the other DAC
and ADC. The resulting analogue voltage is maintained on the output pin until
the next digital value is submitted to the DAC for conversion.

Note 1: On the JN5139 device, only one DAC can be
used at any one time, since the two DACs share
resources. If both DACs are to be used concurrently,
they can be multiplexed.

Note 2: When a DAC is enabled, the ADC cannot be
used in single-shot mode but can be used in continuous
mode.

Note 3: The function vAHI_ApConfigure(), referred to
below, is used to configure properties that apply to the
DACs and the ADC.
46 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
Reference voltage:
The maximum range for the analogue output voltage can be defined relative to
a reference voltage Vref, which can be sourced internally or externally. The
source of Vref is selected using the function vAHI_ApConfigure().
The output voltage range can be selected as either 0-Vref or 0-2Vref, which is
selected using the function vAHI_DacEnable() - see later.
Voltage regulator:
In order to minimise the amount of digital noise in the DACs, they are powered
(along with the ADC) from a separate voltage regulator, sourced from the
analogue supply VDD1. The separate regulator (and therefore power) can be
enabled/disabled using vAHI_ApConfigure(). Once enabled, it is necessary to
wait for the regulator to stabilise - the function bAHI_APRegulatorEnabled()
can be used to check whether the regulator is ready.

The DAC must then be further configured and enabled using the function
vAHI_DacEnable(). This function allows the following properties to be configured.

Output voltage range:
The maximum range for the analogue output voltage can be defined relative to
a reference voltage Vref. The output voltage range can be selected as either
0-Vref or 0-2Vref, selected using vAHI_DacEnable().
First conversion value (JN5148 only):
For the JN5148 device, the first value to be converted must be specified through
vAHI_DacEnable(). In this case, this function also starts the conversion - see
below.

Starting a DAC
Starting a DAC differs between the chip types:

On the JN5148 device, the first value to be converted is specified through the
vAHI_DacEnable() function and the conversion starts immediately after this
function call. All subsequent values to be converted must then be specified
through calls to the function vAHI_DacOutput().
On the JN5139 device, all values to be converted must be specified through
calls to the function vAHI_DacOutput(). Thus, conversion will begin after the
first call to this function.

The function bAHI_DacPoll() can be used to check whether a DAC conversion has
completed, before submitting the next value to be converted.

A DAC can be disabled using the function vAHI_DacDisable().

Note: The value to be converted must be specified as a
16-bit value, but only the 11/12 least significant bits are
used (all other bits are ignored).
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 47

Chapter 4
Analogue Peripherals

4.3 Comparators
The JN51xx microcontrollers include two comparators, denoted COMP1 and COMP2.

A comparator can be used to compare two analogue inputs. The comparator changes
its two-state digital output (high to low or low to high) when the arithmetic difference
between the inputs changes sense (positive to negative or negative to positive). A
comparator can be used as a basis for measuring the frequency of a time-varying
analogue input when compared with a constant reference input.

Thus, each comparator has two analogue inputs. One analogue input (on the ‘positive’
pin COMP1P or COMP2P) carries the externally sourced signal to be monitored - the
input voltage must always remain within the range 0V to Vdd (the chip supply voltage).
This external signal will be compared with a reference signal, which can be sourced
internally or externally, as follows:

externally from the ‘negative’ pin COMP1M or COMP2M
internally from the analogue output of the corresponding DAC (DAC1 or DAC2)
internally from the reference voltage Vref (the source of Vref is selected using
the function vAHI_ApConfigure())

The reference signal is selected from the above options via the function
vAHI_ComparatorEnable(), which is used to configure and enable the comparator.

The comparator has two possible states - high or low. The comparator state is
determined by the relative values of the two analogue input voltages - that is, by the
instantaneous voltages of the signal under analysis, Vsig, and the reference signal,
Vrefsig. The relationships are as follows:

Vsig > Vrefsig ⇒ high

Vsig < Vrefsig ⇒ low

or in terms of differences:

Vsig - Vrefsig > 0 ⇒ high

Vsig - Vrefsig < 0 ⇒ low

Thus, as the signal levels vary with time, when Vsig rises above Vrefsig or falls below
Vrefsig, the state of the comparator result changes. In this way, Vrefsig is used as the
threshold against which Vsig is assessed.

Note 1: By default, the comparators are enabled in low-
power mode. Refer to Section 4.3.2 for more details.

Note 2: Calling vAHI_ComparatorEnable() while the
ADC is operating may lead to corruption of the ADC
results. Therefore, if required, this function should be
called before starting the ADC.
48 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
In reality, this method of functioning is sensitive to noise in the analogue input signals
causing spurious changes in the comparator state. This situation can be improved by
using two different thresholds:

An upper threshold, Vupper, for low-to-high transitions

A lower threshold, Vlower, for high-to-low transitions

The thresholds Vupper and Vlower are defined such that they are above and below the
reference signal voltage Vrefsig by the same amount, where this amount is called the
hysteresis voltage, Vhyst.

That is:

Vupper = Vrefsig + Vhyst

Vlower = Vrefsig - Vhyst

The hysteresis voltage is selected using the vAHI_ComparatorEnable() function. It
can be set to 0, 5, 10 or 20 mV. The selected hysteresis level should be larger than
the noise level in the input signal.

The comparator two-threshold mechanism is illustrated in Figure 4 below for the case
when the reference signal voltage Vrefsig is constant.

Note that there is a time delay between a change in the comparator inputs and the
resulting state reported by the comparator.

As well as configuring a specified comparator, vAHI_ComparatorEnable() also starts
operation of the comparator. The current state of the comparator (high or low) can be
obtained at any time using the function u8AHI_ComparatorStatus(). The comparator
can be stopped at any time using the function vAHI_ComparatorDisable().

Figure 4: Upper and Lower Thresholds of Comparator

Vsig

t

Vupper

Vlower

Vrefsig
2Vhyst

⇒

⇒

Comparator state:
Low to High

Comparator state:
High to Low
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 49

Chapter 4
Analogue Peripherals

4.3.1 Comparator Interrupts and Wake-up
The comparators allow an interrupt to be generated on either a low-to-high or high-to-
low transition. Interrupts can only be produced on transitions in one direction (and not
both). Interrupts can be enabled using the function vAHI_ComparatorIntEnable().
The function is used to both enable/disable comparator interrupts and select the
direction of the transitions that will trigger the interrupts.

A comparator interrupt can be used as a signal to wake a node from sleep - this is then
referred to as a ‘wake-up interrupt’. To use this feature, interrupts must be configured
and enabled using vAHI_ComparatorIntEnable(), as described above. Note that
during sleep, the reference signal Vrefsig is taken from an external source via the
‘negative’ pin COMP1M or COMP2M. The wake-up interrupt status can be checked
using the function u8AHI_ComparatorWakeStatus().

4.3.2 Comparator Low-Power Mode
The comparators are able to operate in a low-power mode, in which each comparator
draws only 1.2 µA of current, compared with 70 µA when operating in standard-power
mode. Comparator low-power mode can be enabled/disabled using the function
vAHI_ComparatorLowPowerMode(), which affects both comparators together.

Low-power mode is enabled by default when a comparator is configured and started
using vAHI_ComparatorEnable(). Therefore, to operate the comparators in
standard-power mode, the function vAHI_ComparatorLowPowerMode() must be
called to disable low-power mode.

Low-power mode is beneficial in helping to minimise the current drawn by a device that
employs energy harvesting. It is also beneficial during sleep to optimise the energy
conserved. The disadvantage of low-power mode is a slower response time for the
comparator - that is, a longer delay between a change in the comparator inputs and
the resulting state reported by the comparator. However, if the response time is not
important, low-power mode should normally be used.

Important: Comparator interrupts are System Controller
interrupts and not analogue peripheral interrupts. They
must therefore be handled by a callback function that is
registered via vAHI_SysCtrlRegisterCallback().
50 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
4.4 Analogue Peripheral Interrupts
Analogue peripheral interrupts (of the type E_AHI_DEVICE_ANALOGUE) are only
generated by the ADC (the DACs do not generate interrupts and the comparators
generate System Controller interrupts). The analogue peripheral interrupts are
enabled in the function vAHI_ApConfigure() and are handled using a user-defined
callback function registered using the function vAHI_APRegisterCallback(). For
details of the callback function prototype, refer to Appendix A.1. The interrupt is
automatically cleared when the callback function is invoked.

The exact interrupt source depends on the ADC operating mode (single-shot,
continuous, accumulation):

In single-shot and continuous modes, a ‘capture’ interrupt will be generated
after each individual conversion.
In accumulation mode on the JN5148 device, an ‘accumulation’ interrupt will be
generated when the final accumulated result is available.

Once an ADC result becomes available, it can be obtained by calling the function
u16AHI_AdcRead() within the callback function.

Caution: The registered callback function is only
preserved during sleep modes in which RAM remains
powered. If RAM is powered off during sleep and
interrupts are required, the callback function must be re-
registered before calling u32AHI_Init() on waking.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 51

Chapter 4
Analogue Peripherals

52 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
5. Digital Inputs/Outputs (DIOs)
This chapter describes control of the Digital Inputs/Outputs (DIOs) using functions of
the Integrated Peripherals API.

The JN51xx microcontrollers each include 21 general-purpose digital input/output
(DIO) pins, denoted DIO0 to DIO20. Each pin can be individually configured as an
input or output. However, the DIO pins are shared with the following on-chip
peripherals/features:

UARTs
Timers
2-wire Serial Interface (SI)
Serial Peripheral Interface (SPI)
Intelligent Peripheral (IP) Interface
Antenna Diversity
Pulse Counters [JN5148 only]
Digital Audio Interface (DAI) [JN5148 only]

A shared DIO is not available when the corresponding peripheral/feature is enabled.
For details of the shared pins, refer to the data sheet for your microcontroller.

From reset, all peripherals are disabled and the DIOs are configured as inputs.

In addition to normal operation, when configured as inputs, the DIOs can be used to
generate interrupts and wake the device from sleep - see Section 5.2. Note that the
interrupts triggered by the DIOs are System Controller interrupts and are handled by
a callback function registered via vAHI_SysCtrlRegisterCallback() - see Section 3.5.

5.1 Using the DIOs
This section describes how to use the Integrated Peripherals API functions to use the
DIOs.

5.1.1 Setting the Directions of the DIOs
The DIOs can be individually configured as inputs and outputs using the function
vAHI_DioSetDirection() - by default, they are all inputs. If a DIO is shared with an on-
chip peripheral and is being used by this peripheral when vAHI_DioSetDirection() is
called, the specified input/output setting for the DIO will not take immediate effect but
will take effect once the peripheral has been disabled.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 53

Chapter 5
Digital Inputs/Outputs (DIOs)

5.1.2 Setting DIO Outputs
The DIOs configured as outputs can then be individually set to on (high) and off (low)
using the function vAHI_DioSetOutput(). The output states are set in a 32-bit bitmap,
where each DIO is represented by a bit (bits 0-20 are used, bits 21-31 are ignored).
Note that:

DIOs configured as inputs will not be affected by this function unless they are
later set as outputs via a call to vAHI_DioSetDirection() - they will then adopt
the output states set in vAHI_DioSetOutput().
If a shared DIO is in use by an on-chip peripheral when vAHI_DioSetOutput()
is called, the specified on/off setting for the DIO will not take immediate effect
but will take effect once the peripheral has been disabled.

On the JN5148 device, a set of 8 consecutive DIOs can be used to output a byte in
parallel - set DIO0-7 or DIO8-15 can be used for this purpose, where bit 0 or 8 is used
for the least significant bit of the byte. The DIO set and the output byte can be specified
using the function vAHI_DioSetByte(). All DIOs in the selected set must have been
previously configured as outputs - see Section 5.1.1.

5.1.3 Setting DIO Pull-ups
Each DIO has an associated pull-up resistor. The purpose of the ‘pull-up’ is to prevent
the state of the pin from ‘floating’ when there is no external load connected to the DIO
- that is, when enabled, the pull-up ties the pin to the high (on) state in the absence of
an external load (or in the presence a weak external load). The pull-ups for all the DIOs
can be enabled/disabled using the function vAHI_DioSetPullup() - by default, all pull-
ups are enabled. Again, if a shared DIO is in use by an on-chip peripheral when
vAHI_DioSetPullup() is called, the specified pull-up setting for the DIO will be applied
except when it is connected to an external 32-kHz crystal (JN5148 only - see Section
3.1.4).

5.1.4 Reading the DIOs
The states of the DIOs can be obtained using the function u32AHI_DioReadInput().
This function will return the states of all the DIOs, irrespective of whether they have
been configured as inputs or outputs, or are in use by peripherals.

On the JN5148 device, a set of 8 consecutive DIOs can be used to input a byte in
parallel - set DIO0-7 or DIO8-15 can be used for this purpose, where bit 0 or 8 is used
for the least significant bit of the byte. The input byte on a DIO set can be obtained
using the function u8AHI_DioReadByte(). All DIOs in the set must have been
previously configured as inputs - see Section 5.1.1.

Note: DIO pull-up settings are maintained through
sleep. A power saving can be made by disabling DIO
pull-ups (during sleep or normal operation) if they are
not required.
54 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
5.2 DIO Interrupts and Wake-up
The DIOs configured as inputs can be used to generate System Controller interrupts.
These interrupts can be used to wake the microcontroller, if it is sleeping. The
Integrated Peripherals API includes a set of ‘DIO interrupt’ functions and a set of ‘DIO
wake’ functions, but these functions are identical in their effect (as they access the
same register bits in hardware). Use of these two function-sets is described in the
subsections below.

5.2.1 DIO Interrupts
A change of state on an input DIO can be used to trigger an interrupt.

First, the input signal transition (low-to-high or high-to-low) that will trigger the
interrupt should be selected for individual DIOs using the function
vAHI_DioInterruptEdge() - the default is a low-to-high transition. Interrupts can then
be enabled for the relevant DIO pins using the function vAHI_DioInterruptEnable().
The interrupt status of the DIO pins can subsequently be obtained using the function
u32AHI_DioInterruptStatus() - that is, this function can be used to determine if one
of the DIOs caused an interrupt. This function is useful for polling the interrupt status
of the DIOs when DIO interrupts are disabled and therefore not generated.

Caution: Since the ‘DIO interrupt’ and ‘DIO wake’
functions access the same JN51xx register bits, you
must ensure that the two sets of functions do not conflict
in your application code.

Note: If DIO interrupts are enabled, you should include
DIO interrupt handling in the callback function registered
via vAHI_SysCtrlRegisterCallback().
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 55

Chapter 5
Digital Inputs/Outputs (DIOs)

5.2.2 DIO Wake-up
The DIOs can be used to wake the microcontroller from Sleep (including Deep Sleep)
or Doze mode. Any DIO pin configured as an input can be used for wake-up - a change
of state of the DIO will trigger a wake interrupt.

First, the input signal transition (low-to-high or high-to-low) that will trigger the wake
interrupt should be selected for individual DIOs using the function
vAHI_DioWakeEdge() - the default is a low-to-high transition. Wake interrupts can
then be enabled for the relevant DIO pins using the function vAHI_DioWakeEnable().
The wake status of the DIO pins can subsequently be obtained using the function
u32AHI_DioWakeStatus() - that is, this function can be used to determine if one of
the DIOs caused a wake-up event. Note that on waking, you must call this function
before u32AHI_Init(), as the latter function will clear any pending interrupts.

Note: As an alternative to calling the function
u32AHI_DioWakeStatus(), you can determine the
wake interrupt source in the callback function registered
via vAHI_SysCtrlRegisterCallback().
56 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
6. UARTs
This chapter describes control of the UARTs (Universal Asynchronous Receiver
Transmitters) using functions of the Integrated Peripherals API.

The JN51xx microcontrollers each have two 16550-compatible UARTs, denoted
UART0 and UART1, which can be independently enabled. These UARTs can be used
for the input/output of serial data at a programmable baud-rate of up to
1 Mbps for the JN5139 device and up to 4 Mbps for the JN5148 device.

6.1 UART Signals and Pins
A UART employs the following signals to interface with an external device:

Transmit Data (TxD) output - connected to RxD on external device
Receive Data (RxD) input - connected to TxD on external device
Request-To-Send (RTS) output - connected to CTS on external device
Clear-To-Send (CTS) input - connected to RTS on external device

The interface can use just two of these signals (RxD and TxD), in which case it is said
to operate in 2-wire mode (see Section 6.2.1), or all four signals, in which case it is
said to operate in 4-wire mode and implements flow control (see Section 6.2.2).

The pins used for the above signals are shared with the DIOs, as detailed in the table
below:

On the JN5148 device, the pins normally used by a UART can alternatively be used
to connect a JTAG emulator for debugging.

Signal DIOs for UART0 DIOs for UART1

CTS DIO4 DIO17

RTS DIO5 DIO18

TxD DIO6 DIO19

RxD DIO7 DIO20

Table 1: DIOs Used for UART Signals
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 57

Chapter 6
UARTs

6.2 UART Operation
The transmit and receive paths of a UART each have a 16-byte deep FIFO buffer,
which allows multiple-byte serial transfers to be performed with an external device:

The TxD pin is connected to the Transmit FIFO
The RxD pin is connected to the Receive FIFO

On the local device, the CPU can write/read data to/from a FIFO one byte at a time.
The two paths are independent, so transmission and reception occur independently.

The basic UART set-up is illustrated in Figure 5 below.

A UART can operate in either 2-wire mode or 4-wire mode, which are introduced in
the sub-sections below.

6.2.1 2-wire Mode
In 2-wire mode, the UART only uses signal lines TxD and RxD. Data is transmitted
unannounced, at the convenience of the sending device (e.g. when the Transmit FIFO
contains some data). Data is also received unannounced and at the convenience of
the sending device. This can cause problems and the loss of data - for example, if the
receiving device has insufficient space in its Receive FIFO to accept the sent data.

6.2.2 4-wire Mode (with Flow Control)
In 4-wire mode, the UART uses the signal lines TxD, RxD, RTS and CTS. This allows
flow control to be implemented, which ensures that sent data can always be accepted.
The general principle of flow control is described below.

The RTS and CTS lines are flags that are used to indicate when it is safe to transfer
data between the devices. The RTS line on one device is connected to the CTS line
on the other device.

Figure 5: UART Connections

JN5139/JN5148

UART

Rx FIFO

Tx FIFO

UART

Tx FIFO

Rx FIFO

RTS

CTS

RxD

TxD

TxD

RxD

CTS

RTS

Only required for flow control
58 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
The destination device dictates when the source device should send data to it, as
follows:

When the destination device is ready to receive data, it asserts its RTS line to
request the source device to send data. This may be when the Receive FIFO
fill-level on the destination device falls below a pre-defined level and the FIFO
becomes able to receive more data.
The assertion of the RTS line on the destination device is seen by the source
device as the assertion of its CTS line. The source device is then able to send
data from its Transmit FIFO.

Flow control operation is illustrated in Figure 6 below.

The Integrated Peripherals API provides functions for controlling and monitoring the
RTS/CTS lines, allowing the application to implement the flow control algorithm
manually. In practice, manual flow control can be a burden for a busy CPU, particularly
when the UART is operating at a high baud-rate. For this reason, on the JN5148
device, the API provides an Automatic Flow Control option in which the state of the
RTS line is controlled directly by the Receive FIFO fill-level on the destination device.
The implementations of manual and automatic flow control using the functions of
Integrated Peripherals API are described in Section 6.5.

Figure 6: Example of UART Flow Control

UART UARTRTS

CTS

RxD

TxD

TxD

RxD

CTS

RTS

Tx FIFO

Tx FIFORx FIFO

Rx FIFO

UART UARTRTS

CTS

RxD

TxD

TxD

RxD

CTS

RTS

Tx FIFO

Tx FIFORx FIFO

Rx FIFO

UART UARTRTS

CTS

RxD

TxD

TxD

RxD

CTS

RTS

Tx FIFO

Tx FIFORx FIFO

Rx FIFO

RTS line is asserted
when Rx FIFO fill-level
falls below pre-defined
level

Asserted CTS line
means that data can
be transmitted

Data is transmitted
on TxD line

Data is received on
RxD line

RTS line is cleared
when Rx FIFO fill-level
rises to pre-defined
level

CTS line is cleared
and data transmission
is stopped

Destination Source

1 2

34

5 6
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 59

Chapter 6
UARTs

6.3 Configuring the UARTs
This section describes the various aspects of configuring a UART before using it to
transfer serial data.

6.3.1 Enabling a UART
A UART is enabled using the function vAHI_UartEnable(), which enables the UART
in 4-wire mode by default. This must be the first UART function called, unless you wish
to use the UART in 2-wire mode (without flow control). In the latter case, you will first
need to call vAHI_UartSetRTSCTS() in order to release control of the DIOs used for
the flow control RTS and CTS lines.

6.3.2 Setting the Baud-rate
The following functions are provided for setting the baud-rate of a UART:

vAHI_UartSetBaudRate()
This function allows one of the following standard baud-rates to be set: 4800,
9600, 19200, 38400, 76800 or 115200 bps.
vAHI_UartSetBaudDivisor()
This function allows a 16-bit integer divisor (Divisor) to be specified which will
be used to derive the baud-rate from a 1-MHz frequency, given by:

vAHI_UartSetClocksPerBit() [JN5148 only]
This function can be used on the JN5148 device to obtain a more refined baud-
rate than can be achieved using vAHI_UartSetBaudDivisor() alone. The
divisor from the latter function is used in conjunction with an 8-bit integer
parameter (Cpb) from vAHI_UartSetClocksPerBit() to derive a baud-rate from
the 16-MHz system clock, given by:

Based on the above formula, the highest recommended baud-rate that can be
achieved on the JN5148 device is 4 Mbps (Divisor=1, Cpb=3).

Note: Either vAHI_UartSetBaudRate() or
vAHI_UartSetBaudDivisor() must be called, but not
both. If used, vAHI_UartSetClocksPerBit() must be
called after vAHI_UartSetBaudDivisor().

1 106×
Divisor

16 106×
Divisor Cpb 1+()×

60 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
6.3.3 Setting Other UART Properties
In addition to setting the baud-rate of a UART, as described in Section 6.3.2, it is also
necessary to configure a number of other properties of the UART. These properties
are set using the function vAHI_UartSetControl() and include the following:

Parity checks can be optionally applied to the transferred data and the type of
parity (odd or even) can be selected.
The length of a word of data can be set to 5, 6, 7 or 8 bits - this is the number of
bits per transmitted ‘character’ and should normally be set to 8 (a byte).
The number of stop bits can be set to 1 or 1.5 / 2.
The initial state of the RTS line can be configured (set or cleared) - this is only
implemented if using the UART in the default 4-wire mode (see Section 6.3.1).

6.3.4 Enabling Interrupts
UART interrupts can be generated under a variety of conditions. The interrupts can be
enabled and configured using the function vAHI_UartSetInterrupt(). The possible
interrupt conditions are as follows:

Transmit FIFO empty: The Transmit FIFO has become empty (and therefore
requires more data).
Receive data available: The Receive FIFO has filled with data to a pre-defined
level, which can be set to 1, 4, 8 or 14 bytes. This interrupt is cleared when the
FIFO fill-level falls below the pre-defined level again.
Timeout: This interrupt is enabled when the ‘receive data available’ interrupt is
enabled and is generated if all the following conditions exist:

At least one character is in the FIFO.
No character has entered the FIFO during a time interval in which at least
four characters could potentially have been received.
Nothing has been read from the FIFO during a time interval in which at
least four characters could potentially have been read.

A timeout interrupt is cleared and the timer is reset by reading a character from
the Receive FIFO.
Receive line status: An error condition has occurred on the RxD line, such as
a break indication, framing error, parity error or over-run.
Modem status: A change in the CTS line has been detected (for example, it
has been asserted to indicate that the remote device is ready to accept data).

UART interrupts are handled by a callback function which must be registered using
the function vAHI_Uart0RegisterCallback() or vAHI_Uart1RegisterCallback(),
depending on the UART (0 or 1). For more information on UART interrupt handling,
refer to Section 6.7.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 61

Chapter 6
UARTs

6.4 Transferring Serial Data in 2-wire Mode
In 2-wire mode, a UART only uses signals RxD and TxD, and does not implement flow
control. Data transmission and reception are covered separately below.

6.4.1 Transmitting Data (2-wire Mode)
Data is transmitted via a UART by simply calling the function vAHI_UartWriteData(),
which is used by the application to write a single byte of data to the Transmit FIFO.
This function should be called multiple times to queue up to 16 data bytes for
transmission. Once in the FIFO, a data byte starts to be transmitted as soon as it
reaches the head of the FIFO (and provided that the TxD line is idle).

The following methods can be used to prompt the application to call the
vAHI_UartWriteData() function:

On the JN5148 device, the function u8AHI_UartReadTxFifoLevel() can be
called to check the number of characters currently waiting in the Transmit FIFO
(more data could then be written to the FIFO, if there is sufficient free space).
The function u8AHI_UartReadLineStatus() can be used to check whether the
Transmit FIFO is empty.
An interrupt can be generated when the Transmit FIFO becomes empty (that is,
when the last data byte in the FIFO starts to be transmitted) - this interrupt is
enabled using the function vAHI_UartSetInterrupt().
A timer can be used to schedule periodic transmissions (provided that data is
available to be transmitted).

The application can accumulate several bytes of data in its own internal buffer before
transferring this data to the Transmit FIFO through repeated calls to
vAHI_UartWriteData().

Note: The default operating mode of a UART is 4-wire
mode. In order to use a UART in 2-wire mode, the
function vAHI_UartSetRTSCTS() must first be called to
release control of the DIOs used for flow control. This
function must be called before vAHI_UartEnable().
62 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
6.4.2 Receiving Data (2-wire Mode)
Data is received in the Receive FIFO (via the RxD line) as and when the source device
sends it. The destination application can read a byte of data from the Receive FIFO
using the function u8AHI_UartReadData().
The following methods can be used to prompt the application to call the
u8AHI_UartReadData() function:

On the JN5148 device, the function u8AHI_UartReadRxFifoLevel() can be
called to check the number of characters currently in the Receive FIFO.
The function u8AHI_UartReadLineStatus() can be used to check whether the
Receive FIFO contains data that can be read (or is empty).
An interrupt can be generated when the Receive FIFO contains a certain
number of data bytes - this interrupt is enabled using the function
vAHI_UartSetInterrupt(), in which the trigger level for the interrupt must be
specified as 1, 4, 8 or 14 bytes.
A timer can be used to schedule periodic reads of the Receive FIFO. Before
each timed read, the presence of data in the FIFO can be checked using either
u8AHI_UartReadLineStatus() or u8AHI_UartReadRxFifoLevel().

Note: When the ‘receive data available’ interrupt is
enabled (described above), a ‘timeout’ interrupt is also
enabled for the Receive FIFO. For more details of this
interrupt, refer to Section 6.3.4.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 63

Chapter 6
UARTs

6.5 Transferring Serial Data in 4-wire Mode
In 4-wire mode, a UART uses the signals RTS and CTS to implement flow control (see
Section 6.2.2), as well as RxD and TxD. Flow control can be implemented manually
(by the application) or automatically (JN5148 only). The implementation of manual
flow control is described below for transmission and reception separately, and then
automatic flow control is described.

6.5.1 Transmitting Data (4-wire Mode, Manual Flow Control)
In the flow control protocol, the source device should only transmit data when the
destination device is ready to receive (see Section 6.5.2). The readiness of the
destination device to accept data is indicated on the source device by its CTS line
being asserted. The status of the CTS line can be monitored in either of the following
ways:

The source device can check the status of its CTS line using the function
u8AHI_UartReadModemStatus().
An interrupt can be generated when a change in status of the CTS line occurs -
this interrupt is enabled using the function vAHI_UartSetInterrupt().

Once a change in the state of the CTS line (to asserted) has been detected, the
function vAHI_UartWriteData() can be called to write data to the Transmit FIFO - this
function must be called for each byte of data to be transmitted. Once in the FIFO, a
data byte starts to be transmitted as soon as it reaches the head of the FIFO (and
provided that the TxD line is idle).

Note that before calling vAHI_UartWriteData() to write data to the Transmit FIFO, the
application may check whether there is already data in the FIFO (left over from a
previous transfer) using the function u8AHI_UartReadTxFifoLevel() (JN5148 only) or
u8AHI_UartReadLineStatus().
The application can accumulate several bytes of data in its own internal buffer before
transferring this data to the Transmit FIFO through repeated calls to
vAHI_UartWriteData().
The CTS line is de-asserted when the RTS line is de-asserted on the destination
device - see Section 6.5.2.

Note: 4-wire mode is the default operating mode of a
UART. Therefore, the UART will automatically have
control of the DIOs used for the RTS and CTS lines as
soon as vAHI_UartEnable() is called.
64 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
6.5.2 Receiving Data (4-wire Mode, Manual Flow Control)
In the flow control protocol, the destination device should only receive data when it is
ready. This is normally when its Receive FIFO has sufficient free space to accept more
data. The application can check the fill status of its Receive FIFO using the function
u8AHI_UartReadRxFifoLevel() (JN5148 only) or u8AHI_UartReadLineStatus().
Once the application on the destination device has decided that it is ready to receive
data, it must request the data from the source device by asserting the RTS line (which
asserts the CTS line on the source device - see Section 6.5.1). The RTS line can be
asserted using the function vAHI_UartSetRTS() (JN5148 only) or
vAHI_UartSetControl().
The source device may then send data, which is received in the Receive FIFO on the
destination device. The received data can be read from the Receive FIFO one byte at
a time using the function u8AHI_UartReadData().
The application may subsequently make a decision to stop the transfer from the
source device, which is achieved by de-asserting the RTS line using the function
vAHI_UartSetRTS() (JN5148 only) or vAHI_UartSetControl(). This decision is
based on the fill-level of the Receive FIFO - when the amount of data in the FIFO
reaches a certain level, the application will start to read the data and may also stop the
transfer if it cannot read from the FIFO quickly enough to prevent an overflow
condition. The current fill-level of the Receive FIFO can be monitored using either of
the following mechanisms:

On the JN5148 device, the function u8AHI_UartReadRxFifoLevel() can be
called to check the number of data bytes currently in the Receive FIFO.
A ‘receive data available’ interrupt can be generated when the number of data
bytes in the Receive FIFO rises to a certain level - this interrupt is enabled
using the function vAHI_UartSetInterrupt(), in which the trigger-level for the
interrupt must be specified as 1, 4, 8 or 14 bytes.

Note: When the ‘receive data available’ interrupt is
enabled (described above), a ‘timeout’ interrupt is also
enabled for the Receive FIFO. For more details of this
interrupt, refer to Section 6.3.4.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 65

Chapter 6
UARTs

6.5.3 Automatic Flow Control (4-wire Mode) [JN5148 Only]
Flow control can be implemented automatically in UART 4-wire mode on the JN5148
device, rather than manually (as described in Section 6.5.1 and Section 6.5.2).
Automatic flow control can be used on the destination device and/or on the source
device:

On the destination device, automatic flow control avoids the need for the
application to monitor the Receive FIFO fill-level and to assert/de-assert the
RTS line.
On the source device, automatic flow control avoids the need for the application
to monitor the CTS line before transmitting data.

On the JN5148 device, automatic flow control is configured and enabled using the
function vAHI_UartSetAutoFlowCtrl() which, if used, must be called after enabling
the UART and before starting the data transfer.

The vAHI_UartSetAutoFlowCtrl() function allows:

A Receive FIFO trigger-level to be specified on the destination device (as 8, 11,
13 or 15 bytes), so that:

The local RTS line is asserted when the fill-level is below the trigger-level,
indicating the readiness of the destination device to accept more data.
The local RTS line is de-asserted when the fill-level is at or above the
trigger-level, indicating that the destination device is not in a position to
accept more data.

Thus, as the destination Receive FIFO fill-level rises and falls (as data is
received and read), the local RTS line is automatically manipulated to control
the arrival of further data from the source device.
Automatic monitoring of the CTS line to be enabled on the source device -
when this line is asserted, any data in the Transmit FIFO is transmitted
automatically.

This function also allows the RTS/CTS signals to be configured as active-high or
active-low.

Automatic flow control can be set up between the two devices either for data transfers
in only one direction or for data transfers in both directions.

Although much of the data transfer is automatic, the application on the source device
must write data into its Transmit FIFO and the application on the destination device
must read data from its Receive FIFO. These operations are described below.

Transmitting Data
The sending application must use the function vAHI_UartWriteData() to write data to
the Transmit FIFO - this function must be called for each byte of data to be transmitted.
Once in the FIFO, the data is automatically transmitted (via the TxD line) as soon as
the CTS line indicates that the destination device is ready to receive.
66 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
Note that before calling vAHI_UartWriteData() to write data to the Transmit FIFO, the
application may check whether there is already data in the FIFO (left over from a
previous transfer) using the function u8AHI_UartReadTxFifoLevel() (JN5148 only) or
u8AHI_UartReadLineStatus().
The application can accumulate several bytes of data in its own internal buffer before
transferring this data to the Transmit FIFO through repeated calls to
vAHI_UartWriteData().

Receiving Data
The receiving application must use the function u8AHI_UartReadData() to read data
from the Receive FIFO, one byte at a time.

The application can decide when to start and stop reading data from the Receive
FIFO, based on either of the following mechanisms:

On the JN5148 device, the function u8AHI_UartReadRxFifoLevel() can be
called to check the number of characters currently in the Receive FIFO. Thus,
the application may decide to start reading data when the FIFO fill-level is at or
above a certain threshold. It may decide to stop reading data when the FIFO
fill-level is at or below another threshold, or when the FIFO is empty.
A ‘receive data available’ interrupt can be generated when the Receive FIFO
contains a certain number of data bytes - this interrupt is enabled using the
function vAHI_UartSetInterrupt(), in which the trigger-level for the interrupt
must be specified as 1, 4, 8 or 14 bytes. Thus, the application may decide to
start reading data from the Receive FIFO when this interrupt occurs and to stop
reading data when all the received bytes have been extracted from the FIFO.

6.6 Break Condition (JN5148 Only)
During a data transfer from a JN5148 device, if the application on this source device
becomes aware of an error, it can convey this error status to the destination device by
setting a break condition using the function vAHI_UartSetBreak(). When this break
condition is issued, the data byte that is currently being transmitted is corrupted and
the transmission is stopped.

If a JN5148 device receives a break condition (as the destination device), this results
in a ‘receive line status’ interrupt (E_AHI_UART_INT_RXLINE) being generated on
the device, provided that UART interrupts are enabled on this device. UART interrupts
are described in Section 6.3.4 and UART interrupt handling in Section 6.7.

The vAHI_UartSetBreak() function can also be used to clear the break condition
(from the source device). In this case, the transmission will restart in order to transfer
the data remaining in the Transmit FIFO.

Note: When the ‘receive data available’ interrupt is
enabled (described above), a ‘timeout’ interrupt is also
enabled for the Receive FIFO. For more details of this
interrupt, refer to Section 6.3.4.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 67

Chapter 6
UARTs

6.7 UART Interrupt Handling
Interrupts can be employed in a number of ways in controlling UART operation. The
various uses of UART interrupts are introduced in Section 6.3.4 and are further
covered in the sections on transferring data (Section 6.4 and Section 6.5).

UART interrupts are handled by a user-defined callback function, which must be
registered using vAHI_Uart0RegisterCallback() or vAHI_Uart1RegisterCallback(),
depending on the UART (0 or 1). The relevant callback function is automatically
invoked when an interrupt of the type E_AHI_DEVICE_UART0 (for UART 0) or
E_AHI_DEVICE_UART1 (for UART 1) occurs. For details of the callback function
prototype, refer to Appendix A.1.

The exact nature of the UART interrupt (from those listed in Section 6.3.4) can then
be identified from an enumeration that is passed into the callback function. For details
of these enumerations, refer to Appendix B.2.

Note that the handling of UART interrupts differs from the handling of other interrupts
in the following ways:

The exact cause of an interrupt is normally indicated to the callback function by
means of a bitmap, but not in the case of a UART interrupt - instead, an
enumeration is used to indicate the nature of a UART interrupt. The reported
enumeration corresponds to the currently active interrupt condition with the
highest priority.
An interrupt is normally automatically cleared before the callback function is
invoked, but the UARTs are the exception to this rule. When generating a
'receive data available' or 'timeout' interrupt, the UART will only clear the
interrupt once the data has been read from the Receive FIFO. It is therefore
vital that the callback function handles the UART 'receive data available' and
'timeout' interrupts by reading the data from the Receive FIFO before returning.

Caution: The registered callback function is only
preserved during sleep modes in which RAM remains
powered. If RAM is powered off during sleep and
interrupts are required, the callback function must be re-
registered before calling u32AHI_Init() on waking.

Note: If the Application Queue API is being used, the
above issue with the UART interrupts is handled by this
API, so the application does not need to deal with it. For
more information on this API, refer to the Application
Queue API Reference Manual (JN-RM-2025).
68 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
7. Timers
This chapter describes control of the on-chip timers using functions of the Integrated
Peripherals API.

The number of timers available depends on the device type:

JN5139 has two timers: Timer 0 and Timer 1
JN5148 has three timers: Timer 0, Timer 1 and Timer 2

The timers can operate in a range of modes: Timer, Pulse Width Modulation (PWM),
Counter, Capture and Delta-Sigma. These modes are outlined in Section 7.1.

To use a Timer in one of these modes:

1. First refer to Section 7.2 on setting up a timer
2. Then refer to Section 7.3 on operating a timer (you should refer to the sub-

section which corresponds to your chosen mode of operation).
For information on Timer interrupts, refer to Section 7.4.

Note: These timers are distinct from the wake timers
described in Chapter 8 and tick timer described in
Chapter 9.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 69

Chapter 7
Timers

7.1 Modes of Timer Operation
The timers can be operated in the following modes: Timer, Pulse Width Modulation
(PWM), Counter, Capture and Delta-Sigma. These modes are summarised in the
table below, along with the functions needed for each mode (following a call to
vAHI_TimerEnable()).

Mode Description Functions

Timer The source clock is used to produce a pulse cycle
defined by the number of clock cycles until a positive
pulse edge and until a negative pulse edge. Inter-
rupts can be generated on either or both edges. The
pulse cycle can be produced just once in ‘single-
shot’ mode or continuously in ‘repeat’ mode. Timer
mode is described further in Section 7.3.1.

vAHI_TimerConfigureOutputs() (JN5148)

vAHI_TimerStartSingleShot() or
vAHI_TimerStartRepeat()

PWM As for Timer mode, except the Pulse Width Modu-
lated signal is output on a DIO pin (which depends
on the specific timer used - see Section 7.2.1). PWM
mode is described further in Section 7.3.1.

vAHI_TimerConfigureOutputs() (JN5148)

vAHI_TimerStartSingleShot() or
vAHI_TimerStartRepeat()

Counter The timer is used to count edges on an external
input signal, selected as an external clock input. The
timer can count just rising edges or both rising and
falling edges. Counter mode is described further in
Section 7.3.4.

vAHI_TimerClockSelect()

vAHI_TimerConfigureInputs()
vAHI_TimerStartSingleShot() or
vAHI_TimerStartRepeat()
u16AHI_TimerReadCount()

Capture An external input signal is sampled on every tick of
the source clock. The results of the capture allow the
period and pulse width of the sampled signal to be
calculated. If required, the results can be read with-
out stopping the timer. Capture mode is described
further in Section 7.3.3.

vAHI_TimerConfigureInputs()
vAHI_TimerStartCapture()
vAHI_TimerReadCapture() or
vAHI_TimerReadCaptureFreeRunning()

Delta-Sigma The timer is used as a low-rate DAC. The converted
signal is output on a DIO pin (which depends on the
specific timer used - see Section 7.2.1) and requires
simple filtering to give the analogue signal. Delta-
Sigma mode is available in two options, NRZ and
RTZ, and is described further in Section 7.3.2.

vAHI_TimerStartDeltaSigma()

Table 2: Modes of Timer Operation
70 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
7.2 Setting up a Timer
This section describes how to use the Integrated Peripherals API functions to set up
a timer before the timer is started (starting and operating a timer are described in
Section 7.3).

7.2.1 Selecting DIOs
The timers may use certain DIO pins, as indicated in the table below.

* DIO11 is shared by Timer 1 and Timer 2 on the JN5148 device, and their use must not conflict
** Timer 2 (JN5148 only) has no inputs

By default, all the DIO pins for an enabled timer are reserved for use by the timer, but
these DIOs become available for General Purpose Input/Output (GPIO) when the
timer is disabled. Functions are provided that allow the DIO pins associated with an
enabled timer to be released for GPIO use. The availability of DIO pins for GPIO use,
when the timers are enabled, is summarised in the table below for the JN5139 and
JN5148 devices.

Timer 0 DIO Timer 1 DIO Timer 2 DIO
(JN5148 Only) Function

8 11* Not Applicable** Clock or gate input

9 12 Not Applicable** Capture input

10 13 11* PWM and Delta-Sigma output

Table 3: DIO Usage with Timers

Device DIO Availability

JN5139 When enabled, the timer uses all or none of the assigned DIO pins - the DIOs
can be released using the function vAHI_TimerDIOControl(). The released
DIO pins can then be used for GPIO.

JN5148 When enabled, the timer can use individual DIO pins by releasing unwanted
pins using the function vAHI_TimerFineGrainDIOControl(). The released
DIO pins can then be used for GPIO. Alternatively, the timer can release all of
the assigned DIO pins using the function vAHI_TimerDIOControl().

Table 4: DIO Availability During Timer Use

Caution: The above DIO configuration should be
performed before a timer is enabled using
vAHI_TimerEnable(), in order to avoid glitching on the
GPIOs during timer operation.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 71

Chapter 7
Timers

7.2.2 Enabling a Timer
Before a timer can be started, it must be configured and enabled using the function
vAHI_TimerEnable().

The vAHI_TimerEnable() function contains certain configuration parameters, which
are outlined below.

Clock Divisor:
To obtain the timer frequency, the 16-MHz system clock is divided by a factor of
2prescale, where prescale is a user-configurable integer value in the range 0 to
16 (note that the value 0 leaves the clock frequency unchanged). For example,
for a prescale value of 3, the 16-MHz system clock is divided by 8 to give a timer
frequency of 2 MHz.
Interrupts:
Each timer can be configured to generate interrupts on either or both of the
following conditions:

On the rising edge of the timer output (at end of low period)
On the falling edge of the timer output (at the end of full timer period)

Timer interrupts are further described in Section 7.4.
External Output:
The timer signal can be output externally, but this output must be explicitly
enabled. This output is required for Delta-Sigma mode and PWM mode. It is this
option which distinguishes between Timer mode (output disabled) and PWM
mode (output enabled). The DIO pin on which the timer signal is output depends
on the device type:

For Timer 0, DIO10 is used
For Timer 1, DIO13 is used
For Timer 2 (JN5148 only), DIO11 is used

Once a timer has been enabled using vAHI_TimerEnable(), an external clock input
can be selected (if required - see Section 7.2.3) and then the timer can be started in
the desired mode using the relevant start function (see Section 7.3.1 to Section 7.3.4).

Caution: You must enable a timer before attempting
any other operation on it, otherwise an exception may
result.

Note: An enabled timer can be disabled using the
function vAHI_TimerDisable(). This stops the timer (if
running) and powers down the timer block - this is useful
to reduce power consumption when the timer is not
needed. The application must not attempt to access a
disabled timer, otherwise an exception may occur.
72 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
7.2.3 Selecting the Clock
Each timer requires a source clock, which is by default the internal 16-MHz clock. This
source clock is divided down to produce the timer’s clock. The division factor is
specified when the timer is enabled using vAHI_TimerEnable() - see Section 7.2.2.

When operating in Counter mode on the JN5148 device (see Section 7.3.4), an
external clock is monitored by the timer. This signal is input on a DIO pin that is
dependent on the timer - DIO8 for Timer 0, DIO11 for Timer 1 (Counter mode is not
supported on Timer 2). This external input for Counter mode must be selected using
the function vAHI_TimerClockSelect(), which must be called after
vAHI_TimerEnable().

7.3 Starting and Operating a Timer
This section describes how to use the Integrated Peripherals API functions to start and
operate a timer that has been set up as described in Section 7.2. A timer can be
started in the following modes:

Timer or PWM mode - see Section 7.3.1
Delta-Sigma mode - see Section 7.3.2
Capture mode - see Section 7.3.3
Counter mode (JN5148 only) - see Section 7.3.4
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 73

Chapter 7
Timers

7.3.1 Timer and PWM Modes
Timer mode allows a timer to produce a rectangular waveform of a specified period,
where this waveform starts low and then goes high after a specified time. These times
are specified when the timer is started (see below), in terms of the following
parameters:

Time to rise (u16Hi): This is the number of clock cycles between starting the
timer and the (first) low-to-high transition. An interrupt can be generated at this
transition.
Time to fall (u16Lo): This is the number of clock cycles between starting the
timer and the (first) high-to-low transition (effectively the period of one pulse
cycle). An interrupt can be generated at this transition.

These times and the timer signal are illustrated below in Figure 7.

Within Timer mode, there are two sub-modes and the timer is started in these modes
using different functions:

Single-shot mode: The timer produces a single pulse cycle (as depicted in
Figure 7) and then stops. The timer can be started in this mode using
vAHI_TimerStartSingleShot().
Repeat mode: The timer produces a train of pulses (where the repetition rate
is determined by the configured ‘time to fall’ period - see above). The timer can
be started in this mode using vAHI_TimerStartRepeat().

Once started, the timer can be stopped using the function vAHI_TimerStop().
PWM (Pulse Width Modulation) mode is identical to Timer mode except the produced
waveform is output on a DIO pin - DIO10 for Timer 0, DIO13 for Timer 1 and DIO11 for
Timer 2 (JN5148 only). This output can be enabled in vAHI_TimerEnable(). The
output can also be inverted using the function vAHI_TimerConfigureOutputs() for
JN5148.

Figure 7: Timer Mode Signal

Time to rise (configurable)

Time to fall (configurable)

LOW HIGH
74 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
7.3.2 Delta-Sigma Mode (NRZ and RTZ)
Delta-Sigma mode allows a timer to be used as a simple low-rate DAC. This requires
the timer output to be enabled in vAHI_TimerEnable(). The output pin is DIO10 for
Timer 0, DIO13 for Timer 1 and DIO11 for Timer 2 (JN5148 only). An RC (Resistor-
Capacitor) circuit must be inserted between this pin and Ground (see Figure 8).

A timer is started in Delta-Sigma mode using vAHI_TimerStartDeltaSigma(). The
value to be converted is digitally encoded by the timer as a pseudo-random waveform
in which:

the total number of clock cycles that make up one period of the waveform is
fixed (at 216 for NRZ and at 217 for RTZ - see below)
the number of high clock cycles during one period is set to a number which is
proportional to the value to be converted
the high clock cycles are distributed randomly throughout a complete period

Thus, the capacitor will charge in proportion to the specified value such that, at the end
of the period, the voltage produced is an analogue representation of the digital value.
The output voltage requires calibration - for example, you could determine the
maximum possible voltage by measuring the voltage across the capacitor after a
conversion with the high period set to the whole pulse period (less one clock cycle).

Two Delta-Sigma mode options are available, NRZ and RTZ:

NRZ (Non Return-to-Zero): Delta-Sigma NRZ mode uses the 16-MHz system
clock and the period of the waveform is fixed at 216 clock cycles. The NRZ
option means that clock cycles are implemented without gaps between them
(see RTZ option below). You must define the number of clock cycles spent in
the high state during the pulse cycle such that this high period is proportional to
the value to be converted. This number is set when the timer is started using
the function vAHI_TimerStartDeltaSigma(). For example, if you wish to
convert values in the range 0-100 then 216 clock cycles would correspond to
100, and to convert the value 25 you must set the number of high clock cycles
to 214 (a quarter of the pulse cycle). For an illustration, refer to Figure 8.
RTZ (Return-to-Zero): Delta-Sigma RTZ mode is similar to the NRZ option,
described above, except that after every clock cycle, a blank (low) clock cycle
is inserted. Thus, each pulse cycle takes twice as many clock cycles - that is,
217. Note that this does not affect the required number of high clock cycles to
represent the digital value being converted. This mode doubles the conversion
period but improves linearity if the rise and fall times of the outputs are different
from each other.

Note: For more information on ‘Delta-Sigma’ mode,
refer to the data sheet for your microcontroller. Also,
refer to the Application Note Using JN51xx Timers
(JN-AN-1032), which includes the selection of the R and
C values for the RC circuit.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 75

Chapter 7
Timers

7.3.3 Capture Mode
In Capture mode, Timer 0 or Timer 1 can be used to measure the pulse width of an
external input (Capture mode is not available on Timer 2 of the JN5148 device). The
external signal must be provided on the DIO9 pin (Timer 0) or DIO12 pin (Timer 1).
The timer measures the number of clock cycles in the input signal from the start of
capture to the next low-to-high transition and also to next the high-to-low transition.
The number of clock cycles in the last pulse is then the difference between these
measured values (see Figure 9). The pulse width in units of time is then given by:

Pulse width (in units of time) = Number of clock cycles in pulse X Clock cycle period

A timer is started in Capture mode using the function vAHI_TimerStartCapture(). The
timer can be stopped and the most recent measurements obtained using the function
vAHI_TimerReadCapture(). These measurements can alternatively be obtained
without stopping the timer by calling vAHI_TimerReadCaptureFreeRunning().

Figure 8: Delta-Sigma NRZ Mode Operation

Note: Only the measurements for the last low-to-high
and high-to-low transitions are stored, and then returned
when the above ‘read capture’ functions are called.
Therefore, it is important not to call these functions
during a pulse, as in this case the measurements will
not give sensible results. To ensure that you obtain the
capture results after a pulse has completed, you should
enable interrupts on the falling edge when the timer is
configured using vAHI_TimerEnable().

R

C

DIO10, 11* or 13

Period
(216 clock cycles, e.g. corresponding to 100)

High periods represent value, e.g. 214 clock cycles corresponding to 25

JN5139/JN5148 Timer in Delta-Sigma Mode

Vout

* JN5148 only
76 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
On the JN5148 device, the input signal for Capture mode can be inverted. This option
is configured using the function vAHI_TimerConfigureInputs() and allows the low-
pulse width (instead of the high-pulse width) of the input signal to be measured.

7.3.4 Counter Mode (JN5148 Only)
Counter mode is available on Timer 0 and Timer 1 of the JN5148 device to count
edges on an external clock signal (Counter mode is not available on Timer 2). The
input signal must be provided on DIO9 (Timer 0) or DIO12 (Timer 1). Counter mode is
enabled by selecting an external clock input in a call to vAHI_TimerClockSelect().
The timer can count rising edges only or both rising and falling edges. This must be
configured using the function vAHI_TimerConfigureInputs(). Edges must be at least
100 ns apart, i.e. pulses must be wider than 100 ns.

Like Timer/PWM mode, the timer can then be started in one of two sub-modes:

Single-shot mode: The timer can be started in this mode using the function
vAHI_TimerStartSingleShot() and will stop at a specified count value (u16Lo).
Repeat mode: The timer can be started in this mode using the function
vAHI_TimerStartRepeat(). The timer operates continuously and the counter
resets to zero each time the specified count value (u16Lo) is reached.

The above start functions each allow two counts to be specified at which interrupts will
be generated (timer interrupts must also have been enabled in vAHI_TimerEnable()).
The current count of a running timer can be obtained at any time using the function
u16AHI_TimerReadCount(). The timer can be stopped using vAHI_TimerStop().

Figure 9: Capture Mode Operation

Clock cycles to low-to-high transition

Clock cycles to high-to-low transition

Pulse width

Timer started in
Capture mode

Timer stopped
and results
obtained

Clock cycles
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 77

Chapter 7
Timers

7.4 Timer Interrupts
A timer can be configured in vAHI_TimerEnable() to generate interrupts on either or
both of the following conditions:

On the rising edge of the timer output (at end of low period)
On the falling edge of the timer output (at the end of full timer period)

The handling of timer interrupts must be incorporated in a user-defined callback
function for the particular timer. These callback functions are registered using
dedicated registration functions for the individual timers:

vAHI_Timer0RegisterCallback() for Timer 0
vAHI_Timer1RegisterCallback() for Timer 1
vAHI_Timer2RegisterCallback() for Timer 2 (JN5148 only)

The relevant callback function is automatically invoked when an interrupt of the type
E_AHI_DEVICE_TIMER0, E_AHI_DEVICE_TIMER1 or E_AHI_DEVICE_TIMER2
occurs. The exact nature of the interrupt (from the two conditions listed above) can
then be identified from a bitmap that is passed into the function. Note that the interrupt
will be automatically cleared before the callback function is invoked.

Note: The callback function prototype is detailed in
Appendix A.1. The interrupt source information is
provided in Appendix B.

Caution: A registered callback function is only
preserved during sleep modes in which RAM remains
powered. If RAM is powered off during sleep and
interrupts are required, the callback function must be re-
registered before calling u32AHI_Init() on waking.
78 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
8. Wake Timers
This chapter describes control of the on-chip wake timers using functions of the
Integrated Peripherals API.

The JN51xx microcontrollers include two wake timers, denoted Wake Timer 0 and
Wake Timer 1. These are 32-bit timers on the JN5139 device and 35-bit timers on the
JN5148 device. The wake timers are based on the internal 32-kHz clock and can run
while the device is in sleep mode (and while the CPU is running). They are generally
used to time the sleep duration and wake the device at the end of the sleep period. A
wake timer counts down from a programmed value and wakes the device when the
count reaches zero by generating an interrupt or wake-up event.

8.1 Using a Wake Timer
This section describes how to use the Integrated Peripherals API functions to operate
a wake timer.

8.1.1 Enabling and Starting a Wake Timer
A wake timer is enabled using the function vAHI_WakeTimerEnable(). This function
allows the interrupt to be enabled/disabled that is generated when the counter reaches
zero. Note that wake timer interrupts are handled by the callback function registered
using the function vAHI_SysCtrlRegisterCallback() - see Section 3.5.

The wake timer can then be started using one of the following functions:

vAHI_WakeTimerStart() is used to start a 32-bit wake timer on the JN5139
device.
vAHI_WakeTimerStartLarge() is used to start a 35-bit wake timer on the
JN5148 device.

This function takes as a parameter the starting value for the countdown - this value
must be specified in 32-kHz clock periods (thus, 32 corresponds to 1 millisecond).

On reaching zero, the timer ‘fires’, rolls over (to 0xFFFFFFFF on JN5139 or
0x7FFFFFFFF on JN5148) and continues to count down. If enabled, the wake timer
interrupt is generated on reaching zero.

Note: The 32-kHz internal clock, which drives the wake
timers, may be running up to 30% fast or slow. For
accurate timings, you are advised to first calibrate the
clock and adjust the specified count value accordingly,
as described in Section 8.2.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 79

Chapter 8
Wake Timers

8.1.2 Stopping a Wake Timer
A wake timer can be stopped at any time using the function vAHI_WakeTimerStop().
The counter will then remain at the value at which it was stopped and will not generate
an interrupt.

8.1.3 Reading a Wake Timer
The current count of a wake timer can be obtained using one of the following functions:

u32AHI_WakeTimerRead() is used to read a 32-bit wake timer on the JN5139
device.
u64AHI_WakeTimerReadLarge() is used to read a 35-bit wake timer on the
JN5148 device.

These functions do not stop the wake timer.

8.1.4 Obtaining Wake Timer Status
The states of the wake timers can be obtained using the following functions:

u8AHI_WakeTimerStatus() can be used to find out which wake timers are
currently running.
u8AHI_WakeTimerFiredStatus() can be used to find out which wake timers
have fired (passed zero). The ‘fired’ status of a wake timer is also cleared by
this function.

Note: If using u8AHI_WakeTimerFiredStatus() to
check whether a wake timer caused a wake-up event,
you must call this function before u32AHI_Init().
80 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
8.2 Clock Calibration
The wake timers are driven by the microcontroller’s internal 32-kHz clock. However,
this clock may run up to 30% fast or slow, depending on temperature, supply voltage
and manufacturing tolerance. For cases in which accurate timing is required, a self-
calibration facility is provided to time the 32-kHz clock against the chip’s more
accurate 16-MHz clock. This test is performed using Wake Timer 0. The result of this
calibration allows you to calculate the required number of 32-kHz clock cycles to
achieve the desired timer duration when starting a wake timer with the function
vAHI_WakeTimerStart() or vAHI_WakeTimerStartLarge().
The calibration is performed using the function u32AHI_WakeTimerCalibrate(), as
described below.

1. Wake Timer 0 must be disabled (using vAHI_WakeTimerStop(), if required).
2. The status of both wake timers (0 and 1) must be cleared by calling the

function u8AHI_WakeTimerFiredStatus().
3. The calibration is started using u32AHI_WakeTimerCalibrate().

This causes Wake Timer 0 to start counting down 20 clock periods of the
internal 32-kHz clock. At the same time, a reference counter starts counting up
from zero using the 16-MHz clock.

4. When the wake timer reaches zero, u32AHI_WakeTimerCalibrate() returns
the number of 16-MHz clock cycles registered by the reference counter. Let
this value be n.

If the clock is running at 32 kHz, n = 10000
If the clock is running slower than 32 kHz, n > 10000
If the clock is running faster than 32 kHz, n < 10000

5. You can then calculate the required number of 32-kHz clock periods (for
vAHI_WakeTimerStart() or vAHI_WakeTimerStartLarge()) to achieve the
desired timer duration. If T is the required duration in seconds, the appropriate
number of 32-kHz clock periods, N, is given by:

For example, if a value of 9000 is obtained for n, this means that the 32-kHz
clock is running fast. Therefore, to achieve a 2-second timer duration, instead
of requiring 64000 clock periods, you will need (10000/9000) x 32000 x 2 clock
periods; that is, 71111 (rounded down).

Tip: To ensure that the device wakes in time for a
scheduled event, it is better to under-estimate the
required number of 32-kHz clock periods than to over-
estimate them.

N 10000
n

---------------⎝ ⎠
⎛ ⎞ 32000 T××=
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 81

Chapter 8
Wake Timers

82 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
9. Tick Timer
This chapter describes control of the Tick Timer using functions of the Integrated
Peripherals API.

The Tick Timer is a hardware timer derived from the 16-MHz system clock. It can be
used to implement:

timing interrupts to software
regular events, such as ticks for software timers or an operating system
a high-precision timing reference
system monitor timeouts, as used in a watchdog timer

Note that on the JN5139 device, the Tick Timer stops when the CPU enters Doze
mode and therefore cannot be used to bring the CPU out of Doze mode.

9.1 Tick Timer Operation
The Tick Timer counts upwards until the count matches a pre-defined reference value
(the starting value can be specified). The timer can be operated in one of three modes,
which determine what the timer will do once the reference count has been reached.
The options are:

Continue counting upwards
Restart the count from zero
Stop counting (single-shot mode)

An interrupt can also be enabled which is generated on reaching the reference count.

9.2 Using the Tick Timer
This section describes how to use the Integrated Peripherals API functions to set up
and run the Tick Timer.

9.2.1 Setting Up the Tick Timer
On device power-up/reset, the Tick Timer is disabled. However, before setting up the
Tick Timer, you are advised to call the function vAHI_TickTimerConfigure() and
specify the disable option. The starting count and reference count can then be set as
follows:

1. The starting count is set (in the range 0 to 0xFFFFFFFF) using the function
vAHI_TickTimerWrite(). Note that if this function is called while the timer is
enabled, the timer will immediately start counting from the specified value.

2. The reference count is set (in the range 0 to 0x0FFFFFFF) using the function
vAHI_TickTimerInterval().
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 83

Chapter 9
Tick Timer

9.2.2 Running the Tick Timer
Once the timer has been set up (as described in Section 9.2.1), it can be started by
calling the function vAHI_TickTimerConfigure() again but, this time, specifying one
of the three operational modes listed in Section 9.1.

The current count of the Tick Timer can be obtained at any time by calling the function
u32AHI_TickTimerRead().
Note that if the Tick Timer is started in single-shot mode, once it has stopped (on
reaching the reference count), it can be started again simply by setting another
starting value using vAHI_TickTimerWrite().

9.3 Tick Timer Interrupts
An interrupt can be enabled that will be generated when the Tick Timer reaches its
reference count. This interrupt is enabled using the function
vAHI_TickTimerIntEnable().
The Tick Timer interrupt is handled by a user-defined callback function which is
registered using one of the following functions, depending on the chip type:

vAHI_TickTimerRegisterCallback() for JN5148
vAHI_TickTimerInit() for JN5139

The registered callback function is automatically invoked when an interrupt of the type
E_AHI_DEVICE_TICK_TIMER occurs. For details of the callback function prototype,
refer to Appendix A.1.

The following functions are also provided to deal with the status of the Tick Timer
interrupt:

bAHI_TickTimerIntStatus() obtains the current interrupt status of the Tick
Timer.
vAHI_TickTimerIntPendClr() clears a pending Tick Timer interrupt.

Caution: The registered callback function is only
preserved during sleep modes in which RAM remains
powered. If RAM is powered off during sleep and
interrupts are required, the callback function must be re-
registered before calling u32AHI_Init() on waking.
84 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
10. Watchdog Timer (JN5148 Only)
This chapter describes control of the Watchdog Timer on the JN5148 device using
functions of the Integrated Peripherals API.

The Watchdog Timer is provided to allow the JN5148 device to recover from software
lock-ups. Note that a watchdog can also be implemented (on all JN51xx devices)
using the Tick Timer, described in Chapter 9.

10.1 Watchdog Operation
The Watchdog Timer is derived from the 32-kHz RC oscillator and implements a
timeout period. On reaching this timeout period, the JN5148 device is automatically
reset. Therefore, to avoid a chip reset, the application must regularly reset the
Watchdog Timer (to the start of the timeout period) in order to prevent the timer from
expiring and to indicate that the application still has control of the JN5148 device. If
the timer is allowed to expire, the assumption is that the application has lost control of
the chip and, thus, a hardware reset of the chip is automatically initiated.

Note that the Watchdog Timer continues to run during Doze mode but not during Sleep
or Deep Sleep mode, or when the hardware debugger has taken control of the CPU
(it will, however, automatically restart when the debugger un-stalls the CPU).

10.2 Using the Watchdog Timer
This section describes how to use the Integrated Peripherals API functions to start and
reset the Watchdog Timer.

10.2.1 Starting the Timer
The Watchdog Timer is started by default on the JN5148 device. It is started with the
maximum possible timeout of 16392 ms.

If the Watchdog Timer is required with a shorter timeout period, the timer must
be restarted with the desired period. To do this, first call the function
vAHI_WatchdogRestart() to restart the timer from the beginning of the timeout
period and then call the function vAHI_WatchdogStart() to specify the new
timeout period (see below).
If the Watchdog Timer is not required in the application, call the function
vAHI_WatchdogStop() at the start of your code to stop the timer.

Note: Following a power-up, reset or wake-up from
sleep, the Watchdog Timer is enabled with the
maximum possible timeout period of 16392 ms
(regardless of its state before any sleep or reset).
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 85

Chapter 10
Watchdog Timer (JN5148 Only)

In the function vAHI_WatchdogStart(), the timeout period must be specified via an
index, Prescale (in the range 0 to 12), which the function uses to calculate the timeout
period, in milliseconds, according to the following formulae:

Timeout Period = 8 ms if Prescale = 0

Timeout Period = [2(Prescale - 1) + 1] x 8 ms if 1 ≤ Prescale ≤ 12

This gives timeout periods in the range 8 to 16392 ms.

Note that the actual timeout period obtained may be up to 30% less than the calculated
value due to variations in the 32-kHz RC oscillator.

The current count of a running Watchdog Timer can be obtained using the function
u16AHI_WatchdogReadValue().

10.2.2 Resetting the Timer
A running Watchdog Timer should be reset by the application before the pre-set
timeout period is reached. This is done using the function vAHI_WatchdogRestart(),
which restarts the timer from the beginning of the timeout period. When applying this
reset, the application should take into account the fact that the true timeout period may
be up to 30% shorter than the calculated timeout period (see Section 10.2.1).

If the application fails to prevent a Watchdog timeout, the chip will be automatically
reset. The function bAHI_WatchdogResetEvent() can be used following a chip reset
to find out whether the last hardware reset was caused by a Watchdog Timer expiry
event.

Note that it is also possible to stop the Watchdog Timer and freeze its count by using
the function vAHI_WatchdogStop().

Note: If called while the Watchdog Timer is in a stopped
state, vAHI_WatchdogStart() will start the timer with
the specified timeout period. If this function is called
while the timer is running, the timer will continue to run
but with the newly specified timeout period.
86 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
11. Pulse Counters (JN5148 Only)
This chapter describes control of the pulse counters on the JN5148 device using
functions of the Integrated Peripherals API.

Two pulse counters are provided on the JN5148 device, Pulse Counter 0 and Pulse
Counter 1. A pulse counter detects and counts pulses in an external signal that is input
on an associated DIO pin.

11.1 Pulse Counter Operation
The two pulse counters on the JN5148 device, Pulse Counter 0 and Pulse Counter 1,
are each 16-bit counters which receive their input signals on pins DIO1 and DIO8,
respectively. The two counters can be combined together to form a single 32-bit
counter, if desired, in which case the input signal is taken from the DIO1 pin.

The pulse counters can operate in all power modes of the JN5148 device, including
sleep, and with input signals of up to 100 kHz. An increment of the counter can be
configured to occur on a rising or falling edge of the relevant input. Each pulse counter
has an associated user-defined reference value. An interrupt (or wake-up event, if
asleep) can be generated when the counter passes its pre-configured reference value
- that is, when the count reaches (reference value + 1). The counters do not saturate
at their maximum count values, but wrap around to zero.

Debounce
The input pulses can be debounced using the 32-kHz clock, to avoid false counts on
slow or noisy edges. The debounce feature requires a number of identical consecutive
input samples (2, 4 or 8) before a change in the input signal is recognised. Depending
on the debounce setting, a pulse counter can work with input signals up to the
following frequencies:

100 kHz, if debounce disabled
3.7 kHz, if debounce enabled to operate with 2 consecutive samples
2.2 kHz, if debounce enabled to operate with 4 consecutive samples
1.2 kHz, if debounce enabled to operate with 8 consecutive samples

The required debounce setting is selected when the pulse counter is configured, as
described in Section 11.2.1.

When using debounce, the 32-kHz clock must be active - therefore, for minimum sleep
current, the debounce feature should not be used.

Note: Pulse counter interrupts are handled by the
callback function for the System Controller interrupts,
registered using vAHI_SysCtrlRegisterCallback() -
see Section 11.3.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 87

Chapter 11
Pulse Counters (JN5148 Only)

11.2 Using a Pulse Counter
This section describes how to use the Integrated Peripherals API functions to
configure, start/stop and monitor a pulse counter.

11.2.1 Configuring a Pulse Counter
A pulse counter must first be configured using the bAHI_PulseCounterConfigure()
function. This function call must specify:

if the two 16-bit pulse counters are to be combined into a single 32-bit pulse
counter
if the pulse count is to be incremented on the rising edge or falling edge of a
pulse in the input signal
if the debounce feature is to be enabled and, if so, the number of consecutive
samples (2, 4 or 8) with which it will operate (see Section 11.1)
if an interrupt is to be enabled which is generated when the pulse count passes
the reference value (see below)

When a pulse counter is selected using this function, the input signal will automatically
be taken from the relevant pin: DIO1 for Pulse Counter 0, DIO8 for Pulse Counter 1
and DIO1 for the combined pulse counter.

The configuration of the pulse counter is completed by calling the function
bAHI_SetPulseCounterRef() in order to set the reference count. Note that the pulse
counter will continue to count beyond the specified reference value, but will wrap
around to zero on reaching the maximum possible count value.

11.2.2 Starting and Stopping a Pulse Counter
A configured pulse counter is started using the function bAHI_StartPulseCounter().
Note that the count may increment by one when this function is called (even though
no pulse has been detected).

The pulse counter will continue to count until stopped using the function
bAHI_StopPulseCounter(), at which point the count will be frozen. The count can
then be cleared to zero using one of the following functions:

bAHI_Clear16BitPulseCounter() for Pulse Counter 0 or 1
bAHI_Clear32BitPulseCounter() for the combined pulse counter
88 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
11.2.3 Monitoring a Pulse Counter
The application can detect whether a running pulse counter has reached its reference
count in either of the following ways:

An interrupt can be enabled which is triggered when the reference count is
passed (see Section 11.3).
The application can use the function u32AHI_PulseCounterStatus() to poll the
pulse counters - this function returns a bitmap which includes all running pulse
counters and indicates whether each counter has reached its reference value.

Functions are also provided that allow the current count of a pulse counter to be read
without stopping the pulse counter or clearing its count. The required function depends
on the pulse counter:

bAHI_Read16BitCounter() for Pulse Counter 0 or 1
bAHI_Read32BitCounter() for the combined pulse counter

When a pulse counter reaches its reference count, it continues counting beyond this
value. If required, a new reference count can then be set (while the counter is running)
using the function bAHI_SetPulseCounterRef().

11.3 Pulse Counter Interrupts
A pulse counter can optionally generate an interrupt when its count passes the pre-set
reference value - that is, when the count reaches (reference value + 1). This interrupt
can be enabled as part of the call to the function bAHI_PulseCounterConfigure().

The pulse counter interrupt is handled as a System Controller interrupt and must
therefore be incorporated in the user-defined callback function registered using the
function vAHI_SysCtrlRegisterCallback() - see Section 3.5.

The registered callback function is automatically invoked when an interrupt of the type
E_AHI_DEVICE_SYSCTRL occurs. If the source of the interrupt is Pulse Counter 0 or
Pulse Counter 1, this will be indicated in the bitmap that is passed into the callback
function (if the combined pulse counter is in use, this counter will be shown as Pulse
Counter 0 for the purpose of interrupts). Note that the interrupt will be automatically
cleared before the callback function is invoked.

Once a pulse counter interrupt has occurred, the pulse counter will continue to count
beyond its reference value. If required, a new reference count can then be set (while
the counter is running) using the function bAHI_SetPulseCounterRef().

Note: A pulse counter continues to run during sleep. A
pulse counter interrupt can be used to wake the JN5148
device from sleep.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 89

Chapter 11
Pulse Counters (JN5148 Only)

90 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
12. Serial Interface (SI)
This chapter describes control of the 2-wire Serial Interface (SI) using functions of the
Integrated Peripherals API.

The JN51xx microcontrollers include an industry-standard 2-wire synchronous Serial
Interface that provides a simple and efficient method of data exchange between
devices. The Serial Interface is similar to an I2C interface and comprises two lines:

Serial data line
Serial clock line

The SI peripheral on a JN51xx device can act as a master or a slave of the Serial
Interface bus, depending on the device:

An SI master is a feature of the JN51xx microcontrollers - see Section 12.1.
An SI slave is provided only on the JN5148 device - see Section 12.2.

12.1 SI Master
The SI master can implement communication in either direction with a slave device on
the Serial Interface bus. This section describes how to implement a data transfer.

Tip: The protocol used by the Serial Interface is detailed
in the I2C Specification (available from www.nxp.com).

Note: The Serial Interface bus on the JN5148 device
can have more than one master, but multiple masters
cannot use the bus at the same time. To avoid this, an
arbitration scheme is provided on to resolve conflicts
caused by competing masters attempting to take control
of the Serial Interface bus. If a master loses arbitration,
it must wait and try again later.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 91

Chapter 12
Serial Interface (SI)

12.1.1 Enabling the SI Master
The SI master has its own set of functions in the Integrated Peripherals API (and, for
JN5148, the SI slave has a separate set of functions). Before using any of the SI
master functions, the SI peripheral must be enabled using the function
vAHI_SiConfigure() for JN5139 or vAHI_SiMasterConfigure() for JN5148.

When enabled, this interface uses the DIO14 pin as a clock line and the DIO15 pin as
a bi-directional data line. As a bus master, the microcontroller provides the clock (on
the clock line) for synchronous data transfers (on the data line), where the clock is
scaled from the on-chip 16-MHz clock. The clock scaling factor, PreScaler, is specified
when the interface is enabled - the final operating frequency of the interface is given
by:

Operating frequency = 16/[(PreScaler + 1) x 5] MHz

The SI enable functions also allow SI interrupts (of the type E_AHI_DEVICE_SI) to be
enabled, which are handled by the user-defined callback function registered using the
function vAHI_SiRegisterCallback(). For details of the callback function prototype,
refer to Appendix A.1.

For JN5148, vAHI_SiMasterConfigure() also allows a pulse suppression filter to be
enabled, which suppresses any spurious pulses (high or low) with a pulse width less
than 62.5 ns on the clock and data lines. Also note that a JN5148 SI master enabled
using this function can later be disabled using vAHI_SiMasterDisable().

Caution: The registered callback function is only
preserved during sleep modes in which RAM remains
powered. If RAM is powered off during sleep and
interrupts are required, the callback function must be re-
registered before calling u32AHI_Init() on waking.
92 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
12.1.2 Writing Data to SI Slave
The procedure below describes how the SI master can write data to an SI slave which
has a 7-bit or 10-bit address. It is assumed that the SI master has been enabled as
described in Section 12.1.1. The data can comprise one or more bytes.

Step 1 Take control of SI bus and write slave address to bus
The SI master must first take control of the SI bus and transmit the address of the
target slave for the data transfer. The required method is different for 7-bit and 10-bit
slave addresses, as outlined below:

For 7-bit slave address:
a) Call the function vAHI_SiMasterWriteSlaveAddr() to specify the 7-bit slave

address. Also specify through this function that a write operation will be
performed on the slave. This function will put the specified slave address in the SI
master’s buffer, but will not transmit it on the SI bus.

b) Call the function bAHI_SiMasterSetCmdReg() to issue Start and Write
commands, in order to take control of the SI bus and transmit the slave address
specified above.

c) Wait for an indication of success (slave address sent and target slave responded)
by polling or waiting for an interrupt - for details of this stage, refer to Section
12.1.4.

For 10-bit slave address:
a) Call the function vAHI_SiMasterWriteSlaveAddr() to indicate that 10-bit slave

addressing will be used and to specify the two most significant bits of the relevant
slave address (when specified, these bits must be logically ORed with 0x78). Also
specify through this function that a write operation will be performed on the slave.
This function will put the specified information in the SI master’s buffer, but will not
transmit it on the SI bus.

b) Call the function bAHI_SiMasterSetCmdReg() to issue Start and Write
commands, in order to take control of the SI bus and transmit the slave address
information specified above.

c) Wait for an indication of success (slave address information sent and at least one
matching slave responded) by polling or waiting for an interrupt - for details of this
stage, refer to Section 12.1.4.

d) Call the function vAHI_SiMasterWriteData8() to specify the eight remaining bits
of the slave address. This function will put the specified information in the SI
master’s buffer, but will not transmit it on the SI bus.

e) Call the function bAHI_SiMasterSetCmdReg() to issue a Write command, in
order to transmit the slave address information specified above.

f) Wait for an indication of success (slave address information sent and target slave
responded) by polling or waiting for an interrupt - for details of this stage, refer to
Section 12.1.4.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 93

Chapter 12
Serial Interface (SI)

Step 2 Send data byte to slave
If only one data byte or the final data byte is to be sent to the slave then go directly to
Step 3, otherwise follow the instructions below:

a) Call the function vAHI_SiMasterWriteData8() to specify the data byte to be sent.
This function will put the specified data in the SI master’s buffer, but will not
transmit it on the SI bus.

b) Call the function bAHI_SiMasterSetCmdReg() to issue a Write command, in
order to transmit the data byte specified above.

c) Wait for an indication of success (data byte sent and target slave responded) by
polling or waiting for an interrupt - for details of this stage, refer to Section 12.1.4.

Repeat the above instructions (Step 2a-c) for all subsequent data bytes except the
final byte to be sent (which is covered in Step 3).

Step 3 Send final data byte to slave
Send the final (or only) data byte to the slave as follows:

a) Call the function vAHI_SiMasterWriteData8() to specify the data byte to be sent.
This function will put the specified data in the SI master’s buffer, but will not
transmit it on the SI bus.

b) Call the function bAHI_SiMasterSetCmdReg() to issue Write and Stop
commands, in order to transmit the data byte specified above and release control
of the SI bus.

c) Wait for an indication of success (data byte sent and target slave responded) by
polling or waiting for an interrupt - for details of this stage, refer to Section 12.1.4.

12.1.3 Reading Data from SI Slave
The procedure below describes how the SI master can read data sent from an SI slave
which has a 7-bit or 10-bit address. It is assumed that the SI master has been enabled
as described in Section 12.1.1. The data can comprise one or more bytes.

Step 1 Take control of SI bus and write slave address to bus
The SI Master must first take control of the SI bus and transmit the address of the
slave which is to be the source of the data transfer. The required method is different
for 7-bit and 10-bit slave addresses, as outlined below:

For 7-bit slave address:
a) Call the function vAHI_SiMasterWriteSlaveAddr() to specify the 7-bit slave

address. Also specify through this function that a read operation will be performed
on the slave. This function will put the specified slave address in the SI master’s
buffer, but will not transmit it on the SI bus.

b) Call the function bAHI_SiMasterSetCmdReg() to issue Start and Write
commands, in order to take control of the SI bus and transmit the slave address
specified above.

c) Wait for an indication of success (slave address sent and target slave responded)
by polling or waiting for an interrupt - for details of this stage, refer to Section
12.1.4.
94 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
For 10-bit slave address:
a) Call the function vAHI_SiMasterWriteSlaveAddr() to indicate that 10-bit slave

addressing will be used and to specify the two most significant bits of the relevant
slave address. Also, initially specify through this function that a write operation will
be performed. This function will put the specified information in the SI master’s
buffer, but will not transmit it on the SI bus.

b) Call the function bAHI_SiMasterSetCmdReg() to issue Start and Write
commands, in order to take control of the SI bus and transmit the slave address
information specified above.

c) Wait for an indication of success (slave address information sent and at least one
matching slave responded) by polling or waiting for an interrupt - for details of this
stage, refer to Section 12.1.4.

d) Call the function vAHI_SiMasterWriteData8() to specify the eight remaining bits
of the slave address. This function will put the specified information in the SI
master’s buffer, but will not transmit it on the SI bus.

e) Call the function bAHI_SiMasterSetCmdReg() to issue a Write command, in
order to transmit the slave address information specified above.

f) Wait for an indication of success (slave address information sent and target slave
responded) by polling or waiting for an interrupt - for details of this stage, refer to
Section 12.1.4.

g) Call the function vAHI_SiMasterWriteSlaveAddr() again, indicating that 10-bit
slave addressing will be used and specifying the two most significant bits of the
relevant slave address. This time, specify through this function that a read
operation will be performed on the slave. This function will put the specified
information in the SI master’s transmit buffer, but will not transmit it on the SI bus.

h) Call the function bAHI_SiMasterSetCmdReg() to issue Start and Write
commands, in order to take control of the SI bus and transmit the slave address
information specified above.

i) Wait for an indication of success by polling or waiting for an interrupt - for details
of this stage, refer to Section 12.1.4.

Step 2 Read data byte from slave
If only one data byte or the final data byte is to be read from the slave then go directly
to Step 3, otherwise follow the instructions below:

a) Call the function bAHI_SiMasterSetCmdReg() to issue a Read command, in
order to request a data byte from the slave. Also use this function to enable an
ACK (acknowledgement) to be sent to the slave once the byte has been received.

b) Wait for an indication of success (read request sent and data received) by polling
or waiting for an interrupt - for details of this stage, refer to Section 12.1.4.

c) Call the function u8AHI_SiMasterReadData8() to read the received data byte
from the SI master’s buffer.

Repeat the above instructions (Step 2a-c) for all subsequent data bytes except the
final byte to be read (which is covered in Step 3).
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 95

Chapter 12
Serial Interface (SI)

Step 3 Read final data byte from slave
Read the final (or only) data byte from the slave as follows:

a) Call the function bAHI_SiMasterSetCmdReg() to issue Read and Stop
commands, in order to request a data byte from the slave and release control of
the SI bus. Also use this function to enable a NACK to be sent to the slave once
the byte has been received (to indicate that no more data is required).

b) Wait for an indication of success (read request sent and data received) by polling
or waiting for an interrupt - for details of this stage, refer to Section 12.1.4.

c) Call the function u8AHI_SiMasterReadData8() to read the received data byte
from the SI master’s buffer.

12.1.4 Waiting for Completion
At various points in the write and read procedures of Section 12.1.2 and Section
12.1.3, it is necessary to wait for an indication of the success of an operation before
continuing. The application can use either interrupts or polling to determine when to
continue:

Interrupts: SI interrupts can be enabled when vAHI_SiConfigure() or
vAHI_SiMasterConfigure() is called, as described in Section 12.1.1. An SI
interrupt (of the type E_AHI_DEVICE_SI) can be generated on a variety of
conditions of the Serial Interface. The interrupt is handled by a user-defined
callback function registered using the function vAHI_SiRegisterCallback().
This interrupt handler should identify the exact source of the SI interrupt and
act on it. For more details on the callback function and interrupt sources, refer
to Appendix A.1 and Appendix B.2, respectively. In the above write and read
procedures, the SI master interrupt source of interest is the one which indicates
the completion of a byte transfer or loss of arbitration.
Polling: To determine when the transfer of a byte has finished, the application
can regularly call bAHI_SiMasterPollTransferInProgress(), which indicates
whether a transfer is in progress on the SI bus.

Once an interrupt or polling has indicated that the transfer of a byte has completed,
further checks must be made to determine whether the master should stop the data
transfer and release the SI bus:

1. In the case of a write to the slave, the application should call the function
bAHI_SiMasterCheckRxNack() which indicates whether an ACK or a NACK
has been received from the slave following the byte transfer:

An ACK indicates that the slave can accept more data and therefore
further byte transfers can be initiated.
A NACK indicates that the slave cannot accept any more data, and that
the data transfer must be stopped and the SI bus released.

2. Provided that the SI bus has not already been released, the application should
call the function bAHI_SiMasterPollArbitrationLost() to check whether the
SI master has lost the arbitration of the SI bus. If this is the case, the data
transfer must be stopped and the SI bus released.

The data transfer is stopped and the SI bus released by calling the function
bAHI_SiMasterSetCmdReg() in order to issue the Stop command.
96 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
12.2 SI Slave (JN5148 Only)
The SI peripheral on the JN5148 device can act as an SI master or an SI slave (but
not as both at the same time). This section describes what must be done to allow the
SI slave to participate in a data transfer initiated by a remote SI master.

12.2.1 Enabling the SI Slave and its Interrupts
The SI slave must first be configured and enabled using the function
vAHI_SiSlaveConfigure(). This function requires the address size of the SI slave to
be specified as 7-bit or 10-bit, and the SI slave address itself to be specified. The
function also allows the generation of SI slave interrupts to be configured - interrupts
can be triggered on the following conditions:

Data buffer requires data byte for transmission to SI master
Byte in data buffer sent to SI master and so buffer free for next byte
Data buffer contains data byte from SI master, available to be read by SI slave
Final data byte received from SI master (end of data transfer)

I2C protocol error
SI interrupts (of the type E_AHI_DEVICE_SI) are handled by the user-defined
callback function registered using the function vAHI_SiRegisterCallback(). This is
the same callback function and registration function as used for an SI master. For
details of the callback function prototype, refer to Appendix A.1.

For JN5148, vAHI_SiSlaveConfigure() also allows a pulse suppression filter to be
enabled, which suppresses any spurious pulses (high or low) with a pulse width less
than 62.5 ns on the clock and data lines. Also note that a JN5148 SI slave enabled
using this function can later be disabled using vAHI_SiSlaveDisable().

Caution: The registered callback function is only
preserved during sleep modes in which RAM remains
powered. If RAM is powered off during sleep and
interrupts are required, the callback function must be re-
registered before calling u32AHI_Init() on waking.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 97

Chapter 12
Serial Interface (SI)

12.2.2 Receiving Data from the SI Master
An SI master indicates that it needs to send data to a particular SI slave as described
in Section 12.1.2. The SI slave automatically responds to the SI master according to
the protocol for this request, but the application associated with the slave must deal
with the data that arrives from the master.

The data transfer on the SI bus consists of a sequence of data bytes, where each byte
must be received and then read from the SI slave before the next byte can be
received. Interrupts are used to signal the arrival of a data byte from the SI master:

An interrupt can be generated when a data byte has arrived from the SI master
and is available to be read from the SI slave’s buffer.
An interrupt can also be generated when the final data byte of the transfer has
arrived from the SI master and is available to be read from the SI slave’s buffer.

To use these interrupts, they must have been enabled when the function
vAHI_SiSlaveConfigure() was called. The registered SI interrupt handler must also
deal with them - see Section 12.2.1.

Once a received data byte is available in the SI slave’s buffer, it can be read from the
buffer by the application using the function u8AHI_SiSlaveReadData8().

12.2.3 Sending Data to the SI Master
An SI master indicates that it needs to obtain data from a particular SI slave as
described in Section 12.1.3. The SI slave automatically responds to the SI master
according to the protocol for this request, but the application associated with the slave
must supply the data that is to be sent to the master.

The data transfer on the SI bus consists of a sequence of data bytes, where each byte
must be written to the SI slave’s buffer and transmitted before the next byte can be
written to the buffer. Interrupts are used to signal when the next data byte is needed
in the buffer. To use these interrupts, they must have been enabled when the function
vAHI_SiSlaveConfigure() was called. The registered SI interrupt handler must deal
with them - see Section 12.2.1.

Once a new data byte is required in the SI slave’s buffer, it can be written to the buffer
by the application using the function vAHI_SiSlaveWriteData8().
98 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
13. Serial Peripheral Interface (SPI Master)
This chapter describes control of the Serial Peripheral Interface (SPI) using functions
of the Integrated Peripherals API.

The Serial Peripheral Interface on the JN51xx microcontrollers allows high-speed
synchronous data transfers between the microcontroller and peripheral devices,
without software intervention.

The microcontroller operates as the master on the SPI bus and all other devices
connected to the bus are then expected to be slave devices under the control of the
master’s CPU. The SPI device supports up to five slave devices, one of which is Flash
memory (by default).

Dedicated pins are provided for Data In (SPIMISO), Data Out (SPIMOSI) and Clock
(SPICLK), which are shared on the SPI bus. A dedicated pin is also provided for
Slave-select 0 (SPISEL0), which is assumed to be connected to Flash memory and is
read during the boot sequence. Up to 4 more slave-select lines (SPISEL1-SPISEL4)
can be used which, if enabled, appear on DIO0 to DIO3.

Data transfer is full-duplex, so data is transmitted by both communicating devices at
the same time. Data to be transmitted is stored in a FIFO buffer in the device. The
available data transaction sizes depend on the device type:

JN5148: Any transaction size between 1 and 32 bits (inclusive) can be used.
JN5139: A transaction size of 8, 16 or 32 bits can be used.

The data transfer order can be configured as LSB (least significant bit) first or MSB
(most significant bit) first.

Since the data transfer is synchronous, both transmitting and receiving devices use
the same clock, provided by the SPI master. The SPI device uses the 16-MHz clock,
which may be divided down to allow bit rates from 250 kbps to 16 Mbps.

An interrupt can be enabled, which is generated when the data transfer completes.

13.1 SPI Modes
The clock edge on which data is latched is determined by the SPI mode of operation
used (0, 1, 2 or 3), which is determined by two boolean parameters, clock polarity and
phase, as indicated in the table below.

SPI Mode Polarity Phase Description

0 0 0 Data latched on rising edge of clock

1 0 1 Data latched on falling edge of clock

2 1 0 Clock inverted and data latched on falling edge of clock

3 1 1 Clock inverted and data latched on rising edge of clock

Table 5: SPI Modes of Operation
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 99

Chapter 13
Serial Peripheral Interface (SPI Master)

13.2 Slave Selection
Before transferring data, the SPI master must select the slave(s) with which it wishes
to communicate. Thus, the relevant slave-select line(s) must be asserted. It is usual
for the SPI master to communicate with a single slave at a time, so not to receive data
from multiple slaves simultaneously (unless the slave devices can be inhibited from
transmitting data). An ‘Automatic Slave Selection’ feature is provided, which only
asserts the chosen slave-select line(s) during a data transfer.

Manual slave selection is preferred over ‘Automatic Slave Selection’ when a number
of consecutive data transfers are to be performed with a particular slave device,
avoiding the need for the slave to be deselected and then reselected between
adjacent transfers.

13.3 Using the Serial Peripheral Interface
This section describes how to use the Integrated Peripherals API functions to operate
the Serial Peripheral Interface.

13.3.1 Performing a Data Transfer
A SPI data transfer is performed as follows:

1. The SPI master must first be configured using the function
vAHI_SpiConfigure(). This function allows the configuration of:

Number of extra SPI slaves (in addition to Flash memory)
Clock divisor (for 16-MHz clock)
Data transfer order (LSB first or MSB first)
Clock polarity (unchanged or inverted)
Phase (latch data on leading edge or trailing edge of clock)
Automatic Slave Selection
SPI interrupts

If SPI interrupts are enabled, a corresponding callback function must be
registered using the function vAHI_SpiRegisterCallback() - see Section 13.4.

2. The SPI slaves must be selected using the function vAHI_SpiSelect(). If
‘Automatic Slave Selection’ is off, the relevant slave-select line(s) will be
asserted immediately, otherwise the line(s) will only be asserted during a
subsequent data transfer.

3. A data transfer is implemented using vAHI_SpiStartTransfer() on JN5148
(for a transaction size between 1 and 32 bits) or using one of the following
functions on JN5139 (depending on the transaction size):

vAHI_SpiStartTransfer8() for 8-bit data
vAHI_SpiStartTransfer16() for 16-bit data
vAHI_SpiStartTransfer32() for 32-bit data
100 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
4. The transfer is allowed to complete by waiting for a SPI interrupt (if enabled)
to indicate completion, or by calling vAHI_SpiWaitBusy() which returns when
the transfer has completed, or by periodically calling bAHI_SpiPollBusy() to
check whether the SPI master is still busy.

5. Data received from a slave is read using u32AHI_SpiReadTransfer32() on
JN5148 or using one of the following functions on JN5139 (depending on the
transaction size):

u8AHI_SpiReadTransfer8() for 8-bit data
u16AHI_SpiReadTransfer16() for 16-bit data
u32AHI_SpiReadTransfer32() for 32-bit data

6. If another transfer is required then Steps 3 to 5 must be repeated for the next
data. Otherwise, if ‘Automatic Slave Selection’ is off, the SPI slaves must be
de-selected by calling vAHI_SpiSelect(0) or vAHI_SpiStop().

A number of other SPI functions exist in the Integrated Peripherals API. The current
SPI configuration can be obtained and saved using vAHI_SpiReadConfiguration().
If necessary, this saved configuration can later be restored in the SPI using the
function vAHI_SpiRestoreConfiguration().

13.3.2 Performing a Continuous Transfer (JN5148 Only)
On the JN5148 device, continuous SPI transfers can be initiated by calling the function
vAHI_SpiContinuous() instead of vAHI_SpiStartTransfer(). This mode facilitates
back-to-back reads of the received data, with the incoming data transfers
automatically controlled by hardware - data is received and the hardware then waits
for this data to be read by the software before allowing the next incoming data transfer.

In this case, Steps 1-2 of the procedure in Section 13.3.1 remain the same but Steps
3 and onwards are replaced by the following:

3. A continuous data transfer is started using vAHI_SpiContinuous(), which
requires the data length (1 to 32 bits) of an individual transfer to be specified.

4. bAHI_SpiPollBusy() must be called periodically to check whether the SPI
master is still busy with an individual transfer.

5. Once the latest transfer has completed (the SPI master is no longer busy), the
the received data from this transfer must be read by calling the function
u32AHI_SpiReadTransfer32() - the read data is aligned to the right (lower
bits) of the 32-bit return value.

6. Once the data has been read, the next transfer will automatically occur and
the transferred data must be read as detailed in Steps 4-5 above. However, a
continuous transfer can be stopped at any time by calling the function
vAHI_SpiContinuous() again, this time to disable continuous mode (after this
function call, there will be one more transfer before the transfers are stopped).

7. If ‘Automatic Slave Selection’ is off, after stopping a continuous transfer the
SPI slaves must be de-selected by calling vAHI_SpiSelect(0).
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 101

Chapter 13
Serial Peripheral Interface (SPI Master)

13.4 SPI Interrupts
A SPI interrupt can be used to indicate when a data transfer initiated by the SPI master
has completed. This interrupt is enabled in vAHI_SpiConfigure().
SPI interrupts are handled by a user-defined callback function, which must be
registered using vAHI_SpiRegisterCallback(). The relevant callback function is
automatically invoked when an interrupt of the type E_AHI_DEVICE_SPIM occurs.
For details of the callback function prototype, refer to Appendix A.1.

Caution: The registered callback function is only
preserved during sleep modes in which RAM remains
powered. If RAM is powered off during sleep and
interrupts are required, the callback function must be re-
registered before calling u32AHI_Init() on waking.
102 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
14. Intelligent Peripheral Interface (SPI Slave)
This chapter describes control of the Intelligent Peripheral (IP) interface using
functions of the Integrated Peripherals API.

14.1 IP Interface Operation
The Intelligent Peripheral (IP) interface is used for high-speed data exchanges
between the JN51xx microcontroller and a ‘remote’ processor, which may be a
separate processor contained in the wireless network node. The data exchange
requires minimal use of the CPU of this processor.

This interface is based on the Serial Peripheral Interface (SPI) - see Chapter 13. The
IP interface on the JN51xx microcontroller is a SPI slave - the remote processor must
contain the SPI master (which initiates data transfers).

Data transfer is full-duplex, so data is transmitted by both communicating devices at
the same time. The JN51xx device uses a Transmit buffer and Receive buffer in a
dedicated block of local memory for the data exchanges - each buffer in this IP
memory block contains sixty-three 32-bit words. As the master device, the remote
processor must initiate the transfer. Data is transmitted and received simultaneously.
Only SPI mode 0 is supported, in which data is transmitted on a negative clock edge
and received on a positive clock edge.

The interface shares pins with DIO14-18.

An interrupt can be enabled, which is generated when the data transfer completes -
see Section 14.3.

Tip: Although the data transfer is full-duplex, a simplex
transfer can be achieved by transferring dummy data in
the unwanted direction.

Figure 10: IP Interface as SPI Slave

 JN51xx

IP Interface
(SPI slave)

Remote Processor

SPI master
DIO14-18

Bi-directional
data transfer
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 103

Chapter 14
Intelligent Peripheral Interface (SPI Slave)

14.2 Using the IP Interface
A data transfer is conducted via the IP interface (SPI slave) as follows:

1. The IP interface must first be enabled using the function vAHI_IpEnable().
Although this function allows the transmit and receive clock edges to be
selected, the IP interface only supports SPI mode 0 which requires that
data is transmitted on a negative edge and received on a positive edge.
This function allows IP interrupts to be enabled that are generated on the
completion of data transfers. If enabled, IP interrupts are handled by a
callback function registered using vAHI_IpRegisterCallback() - see
Section 14.3.

2. Once the application is prepared to transmit and/or receive data, one of two
functions can be called:

bAHI_IpSendData() can be called to copy data from RAM into the IP
Transmit buffer and to indicate to the remote processor that the JN5148/
JN5139 device is ready to exchange data - that is, either send and receive
data at the same time or just send data (in the latter case, the data
received in the subsequent bi-directional transfer should be ignored).
vAHI_IpReadyToReceive() can be called on the JN5148 device (only) to
indicate to the remote processor that the local device is ready to receive
data (the data sent in the subsequent bi-directional transfer should then be
ignored by the remote processor).

It is then the responsibility of the remote processor, as the SPI master, to
initiate the data transfer.

3. The data transfer is allowed to complete by waiting for an IP interrupt (if
enabled) to indicate completion. Alternatively, two functions can be
periodically called to check whether the data transfer has completed:

bAHI_IpTxDone() can be used to check whether all data has been
transmitted.
bAHI_IpRxDataAvailable() can be used to check whether data has been
received.

4. Once the received data is available, it can be copied from the IP Receive
buffer into RAM using the function bAHI_IpReadData(). Subsequent
behaviour depends on the local device type:

On JN5139, the above function automatically indicates to the remote
processor that a new transfer can be initiated. The application should then
return to Step 3 to wait for the next transfer to complete.
On JN5148, the application should return to Step 2 when it is ready for the
next transfer (this allows time between transfers, e.g. for data processing).

Note: The byte order of data to be sent must be
specified as Big Endian or Little Endian. This is done in
the function vAHI_IpEnable() for JN5139 and in
bAHI_IpSendData() for JN5148.
104 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
14.3 IP Interrupts
An IP interrupt can be used to indicate when a data transfer has completed. This
interrupt is enabled in vAHI_IpEnable().
IP interrupts are handled by a user-defined callback function, which must be
registered using vAHI_IpRegisterCallback(). The relevant callback function is
automatically invoked when an interrupt of the type E_AHI_DEVICE_INTPER occurs.
For details of the callback function prototype, refer to Appendix A.1.

Caution: The registered callback function is only
preserved during sleep modes in which RAM remains
powered. If RAM is powered off during sleep and
interrupts are required, the callback function must be re-
registered before calling u32AHI_Init() on waking.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 105

Chapter 14
Intelligent Peripheral Interface (SPI Slave)

106 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
15. Digital Audio Interface (DAI) [JN5148 Only]
This chapter describes control of the Digital Audio Interface (DAI) of the JN5148
device using functions of the Integrated Peripherals API.

The JN5148 device contains a 4-wire Digital Audio Interface which allows
communication with external devices that support other digital audio interfaces, such
as CODECs.

15.1 DAI Operation
The Digital Audio Interface on the JN5148 device is compatible with the industry-
standard I²S interface and acts as the interface master. The signals, data format and
data transfer modes supported by the interface are described in the sub-sections
below.

15.1.1 DAI Signals and DIOs
The DAI is a 4-wire interface that uses four of the DIO pins of the JN5148 device. The
DAI signals and corresponding DIO pins are detailed in the table below.

Note that the data transfer is always full-duplex, so audio data will be transmitted on
SDOUT and received on SDIN simultaneously.

Note: The data path between the CPU and the DAI can
be optionally buffered using the Sample FIFO interface,
described in Chapter 16. Also refer to Section 15.3.

DAI Signal DIO Pin Signal Description

SDIN 13 Data In: Audio data is received on this line.

SDOUT 18 Data Out: Audio data is transmitted on this line.

WS 12 Word Select: Indicates for which stereo channel (Left or Right) data is
currently being transferred - normally:
• asserted (1) for Right channel
• de-asserted (0) for Left channel
It is possible to invert WS, so that 0 is for Right and 1 is for Left.

SCK 17 Clock: Bit clock for transfer of audio data. This is derived from the
16-MHz system clock and the clock frequency is configurable.

Table 6: DAI Signals and DIO Pins
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 107

Chapter 15
Digital Audio Interface (DAI) [JN5148 Only]

15.1.2 Audio Data Format
Audio data is normally serially transferred (on the SDOUT and SDIN lines) with up to
16 bits per stereo channel. It is possible to have fewer than 16 bits of actual audio data
per channel and to (optionally) make up the number of bits per channel to 16 by
padding with zeros.

It is also possible to implement data transfers with more than 16 bits per channel - up
to 32 bits per channel, in fact. In this case, the actual audio data can still only occupy
a maximum of 16 bits per channel and zero-padding must be enabled for those bits
beyond the basic 16 bits.

The audio data format described above is summarised in Figure 11 below.

15.1.3 Data Transfer Modes
An audio data frame is always transferred from the DAI with left channel first and right
channel second. Within a channel, the audio data is transferred starting with the most
significant bit (MSB), although this bit may not be the first bit actually transferred (see
modes below). The DAI will always transfer both left- and right-channel data. In the
transfer of mono data, one channel is unused and should be padded out with zeros
during transmission - similarly, the bits for the unused channel should be ignored
during reception. There are three possible DAI modes, each based on this format.

I²S Mode
The format of the audio data transfer in I²S mode is as follows:

During idle periods, the WS line takes its state for the right channel - that is, the
‘asserted’ state. During a frame transfer, the WS line is then de-asserted just
before the left-channel data and is re-asserted just before the right-channel
data.
The MSB of the left-channel data is transferred one clock cycle (SCK line) after
the WS transition and the MSB of the right-channel data is transferred one
clock cycle after the next (opposite) WS transition. Within a channel, any zero-
padding is added after the actual audio data.

Figure 11: Format of Transferred Audio Data

Left Channel
Audio Data

Zero
Padding

Zero
Padding

Right Channel
Audio Data

Zero
Padding

Zero
Padding

Up to 32 bits Up to 32 bits

16 bits 16 bits

Zeros can be inserted
to make up audio data
to 16 bits

Extra zeros can be
inserted to make up
audio data to more than
16 bits

Zeros can be inserted
to make up audio data
to 16 bits

Extra zeros can be
inserted to make up
audio data to more than
16 bits
108 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
An audio data frame transfer in I²S mode is illustrated in Figure 12 below.

Left-justified Mode
The DAI can operate in left-justified mode, if required. In this mode:

The polarity of the WS signal can be optionally inverted.
During idle periods, the WS line normally takes its state for the right channel (as
in I²S mode). During a frame transfer, there is then a transition of the WS signal
at the start of the left-channel data and then an opposite transition at the start of
the right-channel data.
The data bits are aligned such that the MSB of the left-channel data is
transferred on the same clock cycle (SCK line) as the WS transition and the
MSB of the right-channel data is transferred on the same clock cycle as the
next (opposite) WS transition. Within a channel, any zero-padding is added
after the actual audio data.

An audio data frame transfer in left-justified mode is illustrated in Figure 13 below (in
this example, the WS signal has not been inverted).

Figure 12: I²S Transfer Mode

Figure 13: Left-justified Mode

SCK

WS

SD Max Size

SD 3 bits

MSB LSB MSB LSB

Left Right

L2 L1 L0 0 R2 R1 R0

MSB-1 MSB-2 MSB-1 MSB-2

0 0 0

This example assumes that the channel data comprises 3 bits: L2 L1 L0 for left channel, R2 R1 R0 for right channel.

SCK

WS

SD Max Size

SD 3 bits

MSB LSB MSB LSB

Left Right

L2 L1 L0 0 R2 R1 R0

MSB-1 MSB-2 MSB-1 MSB-2

0 00

This example assumes that the channel data comprises 3 bits: L2 L1 L0 for left channel, R2 R1 R0 for right channel.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 109

Chapter 15
Digital Audio Interface (DAI) [JN5148 Only]

Right-justified Mode
The DAI can operate in right-justified mode, if required. In this mode:

The polarity of the WS signal can be optionally inverted.
During idle periods, the WS line normally takes its state for the left channel.
During a frame transfer, there is then a transition of the WS signal at the start of
the right-channel data and then an opposite transition at the end of the right-
channel data.
The data bits are aligned such that the MSB of the right-channel data is
transferred on the same clock cycle (SCK line) as the WS transition and the
LSB of the right-channel data is transferred on the clock cycle before the next
(opposite) WS transition. Within a channel, any zero-padding is added before
the actual audio data.

An audio data frame transfer in right-justified mode is illustrated in Figure 14 below (in
this example, the WS signal has not been inverted).

Figure 14: Right-justified Mode

SCK

WS

SD Max Size

SD 3 bits

MSB LSB MSB LSB

Left Right

L2 L1 L00 R2 R1 R0

MSB-1 MSB-1

0 00

This example assumes that the channel data comprises 3 bits: L2 L1 L0 for left channel, R2 R1 R0 for right channel.
110 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
15.2 Using the DAI
This section describes how to use the Integrated Peripherals API functions to operate
the Digital Audio Interface.

15.2.1 Enabling the DAI
The DAI must first be powered on using the function vAHI_DaiEnable(). This function
can also be used to power down the DAI, when required.

15.2.2 Configuring the Bit Clock
The DAI bit clock is derived from the 16-MHz system clock and is transmitted on the
SCK line to provide bit synchronisation when transferring audio data. The bit clock
must be configured using the function vAHI_DaiSetBitClock() in the following ways:

The system clock is scaled to produce a bit clock frequency in the range
8 MHz to approximately 127 kHz. To achieve this, the 16-MHz source
frequency is divided by an even integer value in the range 2 to 126, where this
scaling is specified using the above function. The default bit clock frequency is
1 MHz.
The clock output on the SCK line can be enabled permanently or only during
data transfers. This choice is made using the above function.

15.2.3 Configuring the Data Format
Data transfers via the DAI must be configured in terms of data size/padding and the
transfer mode. These configurations are described separately below. The required
settings depend on the external device to which the DAI is connected.

Data Size/Padding
The number of audio data bits per channel can be up to 16, although the total number
of bits per channel can be up to 32. Any bits that are not used for audio data must be
set to zero. This is described in Section 15.1.2.

The function vAHI_DaiSetAudioData() is used to configure data size and zero-
padding per channel, as follows:

The number of audio data bits per channel must be specified in the range 1 to
16.
If there are fewer than 16 audio data bits per channel, an option can be enabled
to automatically make up the total number of bits per channel to 16 by adding
zeros.
If the required total number of bits per channel is greater than 16, an option can
be enabled to automatically add the relevant number of extra zero-padding bits
(in addition to those required to pad to 16 bits). Up to 16 extra zero-padding bits
can be added (to achieve a maximum of 32 bits per channel).
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 111

Chapter 15
Digital Audio Interface (DAI) [JN5148 Only]

For example, if there are 12 bits of audio data per channel but a total of 24 bits per
channel are required, 4 zero-bits are added to make the number of bits up to 16 and
8 extra zero-bits are added to make the total up to 24.

Transfer Mode
A data transfer can operate in one of three modes (I²S, left-justified or right-justified),
described in Section 15.1.3. Within each mode, choices are available. The mode is
selected and configured using the function vAHI_DaiSetAudioFormat(), as follows:

The operating mode can be selected as I²S, left-justified or right-justified.
The polarity of the WS signal can be inverted (must not be done for I²S mode).
The WS state during idle time can be configured to be its left-channel state or
its right-channel state (must be set as right-channel state for I²S mode).

15.2.4 Enabling DAI Interrupts
An interrupt can be generated on completion of each data transfer from/to the DAI. If
DAI interrupts are to be used, they must be enabled using the function
vAHI_DaiInterruptEnable(). In addition, a user-defined callback function to handle
the interrupts (of the type E_AHI_DEVICE_I2S) must be registered using the function
vAHI_DaiRegisterCallback(). For details of the callback function prototype, refer to
Appendix A.1.

The use of DAI interrupts is described further in Section 15.2.5 below.

15.2.5 Transferring Data
As the interface master, the DAI on the JN5148 device initiates data transfers (under
the control of the application). These transfers are full-duplex, so the DAI transmits
and receives data at the same time. A single data frame (containing left-channel and
right-channel audio data) is transmitted and received during an individual transfer.

Caution: The registered callback function is only
preserved during sleep modes in which RAM remains
powered. If RAM is powered off during sleep and
interrupts are required, the callback function must be re-
registered before calling u32AHI_Init() on waking.

Note: This section describes data transfers using the
DAI Transmit and Receive buffers. Alternatively, the DAI
can be connected to the Sample FIFO interface of the
JN5148 device. In this case, the function calls described
in this section are not applicable. Use of the DAI with the
Sample FIFO interface is outlined in Section 15.3.
112 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
Preparing a Data Transfer
The data frame to be transmitted must be stored in the DAI Transmit buffer. When
received, an incoming data frame will be stored in the DAI Receive buffer. Before
starting a data transfer, the application must prepare these buffers:

The data frame to be transmitted must be loaded into the Transmit buffer using
the function vAHI_DaiWriteAudioData(). The left-channel data and right-
channel data are passed into this function via separate 16-bit parameters.
The Receive buffer should be free of the previous data frame that was
received. The application can ensure that the Receive buffer is clear by calling
the function vAHI_DaiReadAudioData() to read any remaining data in the
buffer.

Performing the Data Transfer
A data transfer can be started by calling the function vAHI_DaiStartTransaction().
Once the transfer has completed, the received data frame can be obtained from the
DAI Receive buffer by calling vAHI_DaiReadAudioData() - the left-channel data and
right-channel data are obtained from this function via separate returned pointers. The
application can also prepare the next transfer by calling vAHI_DaiWriteAudioData()
to load the next data frame to be transmitted into the DAI Transmit buffer. The next
data transfer can then be initiated by calling vAHI_DaiStartTransaction().
The timing of the above set of read/write/start function calls can be controlled in one
of three ways, described below:

Polling:
The function bAHI_DaiPollBusy() can be called on a regular basis to check
whether the DAI is still performing the previous transfer. Once this function
returns FALSE, the next read/write/start function calls can be made.
DAI Interrupts:
A DAI interrupt can be used to signal when the previous transfer has completed.
This interrupt must have been enabled using vAHI_DaiInterruptEnable(). The
generated interrupt is of the type E_AHI_DEVICE_I2S, which will be
automatically handled by the registered callback function for DAI interrupts - see
Section 15.2.4. Once this interrupt has occurred, the next read/write/start
function calls can be made.
Timer Interrupts:
A JN5148 timer (Timer 0, 1 or 2) can be used to schedule data transfers at
regular intervals. Interrupts must be enabled for the timer and on each timer
interrupt, the next read/write/start function calls can be made. Timers and timer
interrupts are described in Chapter 7. Care must be taken to allow enough time
for an individual transfer to complete before the next timer interrupt is
generated.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 113

Chapter 15
Digital Audio Interface (DAI) [JN5148 Only]

15.3 Using the DAI with the Sample FIFO Interface
Normally, the DAI Transmit and Receive buffers are used to store audio data between
the CPU and DAI, where each buffer holds a single data frame containing left-channel
and right-channel audio data. Alternatively, the Sample FIFO interface (described in
Chapter 15) can be used to hold audio data between the CPU and DAI.

The Sample FIFO interface comprises transmit and receive paths, each containing a
FIFO able to store ten 16-bit words. This interface is only able to handle 16-bit mono
audio data, where up to 10 mono audio samples can be stored in each FIFO. The
advantage of using this interface is that each CPU read/write operation can comprise
up to 10 mono audio samples (each way) rather than a single stereo audio sample,
thereby requiring less regular CPU intervention. The scheduling of the transfers
between the FIFOs and DAI is provided by Timer 2 operating in ‘Timer repeat’ mode
(see Chapter 7), such that a transfer is initiated every time the timer produces a rising
signal.

Although the Sample FIFO interface can only store 16-bit mono audio samples, each
mono sample will be transferred between the DAI and external device in a stereo data
frame. The 16-bit mono sample can be transported in either the left channel or the right
channel of the data frame.

To use the DAI in conjunction with the Sample FIFO interface (with Timer 2), refer to
Chapter 16 - an example procedure is given in Section 16.3.
114 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
16. Sample FIFO Interface (JN5148 Only)
This chapter describes control of the Sample FIFO interface of the JN5148 device
using functions of the Integrated Peripherals API.

The Sample FIFO interface comprises transmit and receive paths, each containing a
FIFO able to store ten 16-bit words. This interface is primarily designed to buffer audio
data between the CPU and the Digital Audio Interface (DAI), described in Chapter 15
(although these FIFOs are not essential to the operation of the DAI). Therefore,
particular reference is made to the DAI in the description of the Sample FIFO interface
in this chapter. Use of the DAI in conjunction with the Sample FIFO interface is also
described in Section 15.3.

16.1 Sample FIFO Operation
The Sample FIFO interface allows up to ten 16-bit words to be buffered on their way
to or from the CPU of the JN5148 device. This interface can reduce the frequency at
which the CPU needs to generate output data and/or process input data, which may
allow more efficient CPU operation.

The Sample FIFO interface is illustrated in Figure 15 below.

On the DAI side of the FIFOs, the input and output of data are governed by Timer 2,
which must be set to run in ‘Timer repeat’ mode (see Section 7.3.1). Data input/output
automatically occurs on every rising edge of the pulsed signal generated by Timer 2.
On this Timer 2 trigger, one sample of audio data is passed (in each direction)
between the FIFOs and the DAI, and the DAI also exchanges data with the external
device to which it is connected.

Figure 15: Sample FIFO Interface

Transmit FIFO

Receive FIFO

CPU

Timer 2
Sample FIFO Interface

To another
device, e.g. DAI

From another
device, e.g. DAI
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 115

Chapter 16
Sample FIFO Interface (JN5148 Only)

On the CPU side of the FIFOs, the CPU (application) must write a burst of data to the
Transmit FIFO and read a burst of data from the Receive FIFO at appropriate times.
Interrupts can be used to aid the timings of these CPU read and write operations.
Sample FIFO interrupts can be generated when:

the Transmit FIFO fill-level falls below a pre-defined threshold - can be used to
prompt a write to the FIFO to provide further data to be transmitted
the Transmit FIFO becomes empty - can be used to prompt a write to the FIFO
to provide further data to be transmitted
the Receive FIFO fill-level rises above a pre-defined threshold - can be used to
prompt a read of the FIFO to collect received data
the Receive FIFO becomes full and an attempt to add more data fails
(overflow) - this is an error condition, resulting in lost data, and prompts a read
of the FIFO to make space for new data

Note: The Sample FIFOs are only able to store 16-bit
mono audio data, although the DAI external transfer will
be made in terms of stereo audio data frames
containing left and right channels. In practice, a mono
sample is stored in one stereo channel of a transferred
frame.
116 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
16.2 Using the Sample FIFO Interface
This section describes how to use the Integrated Peripherals API functions to operate
the Sample FIFO interface.

16.2.1 Enabling the Interface
The Sample FIFO interface must first be enabled using the function
vAHI_FifoEnable(). This function can also be used to disable the interface, when
required.

16.2.2 Configuring and Enabling Interrupts
Interrupts can be used to prompt the application to write/read data to/from the Sample
FIFO interface (see Section 16.1). These interrupts can be enabled using the function
vAHI_FifoEnableInterrupts(), which allows four different interrupts (already outlined
in Section 16.1) to be individually enabled/disabled:

Transmit interrupt: Generated when the number of samples in the Transmit
FIFO falls below a level which is pre-defined using the function
vAHI_FifoSetInterruptLevel().
Transmit Empty interrupt: Generated when the Transmit FIFO becomes
empty.
Receive interrupt: Generated when the number of samples in the Receive
FIFO rises above a level which is pre-defined using the function
vAHI_FifoSetInterruptLevel().
Receive Overflow interrupt: Generated when the number of samples in the
Receive FIFO reaches the maximum capacity of the FIFO (10 samples) and an
attempt has been made to add more samples.

The function vAHI_FifoSetInterruptLevel() also allows selection of the device which
is to be connected to the Sample FIFO interface (currently, the only option is the DAI).

In addition, a user-defined callback function to handle the interrupts (of the type
E_AHI_DEVICE_AUDIOFIFO) must be registered using the function
vAHI_FifoRegisterCallback(). For details of the callback function prototype, refer to
Appendix A.1.

Caution: The registered callback function is only
preserved during sleep modes in which RAM remains
powered. If RAM is powered off during sleep and
interrupts are required, the callback function must be re-
registered before calling u32AHI_Init() on waking.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 117

Chapter 16
Sample FIFO Interface (JN5148 Only)

16.2.3 Configuring and Starting the Timer
Timer 2 must be used to schedule the movement of data between the Sample FIFO
interface and the connected peripheral device (normally the DAI). This timer must be
put into ‘Timer repeat’ mode to generate a train of pulses - one sample of data will be
shipped into and out of the FIFOs on every rising edge of this pulse train.

The timer is configured and started as detailed in Chapter 7, but the following
requirements should be noted:

In the vAHI_TimerEnable() function call:
the timer output option must be disabled, since the timer will operate in the
basic ‘Timer’ mode (although a PWM signal will be produced by the timer,
there will be no need to externally output this signal)
interrupts should be disabled for this timer

In the vAHI_TimerConfigureOutputs() function call, external gating must be
disabled.
The timer must be started in ‘repeat’ mode by calling the function
vAHI_TimerStartRepeat() (which also allows the period of the pulsed signal to
be defined).

Note: The data movement scheduled by Timer 2 does
not apply to data transfers between the CPU and the
Sample FIFO interface. CPU read and write operations
on the FIFOs are described in Section 16.2.4.
118 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
16.2.4 Buffering Data
The Sample FIFO interface facilitates the buffering of 16-bit data samples between the
CPU and another peripheral device (the DAI), allowing samples to be moved in blocks
of up to 10 (in each direction). As described in Section 16.1 and Section 16.2.3, duplex
data transfers between the FIFOs and the peripheral device (DAI) are automatically
triggered by Timer 2. However, the data transfers between the CPU and the FIFOs
must be explicitly controlled by the application, as described below.

The cases of writing to and reading from the Sample FIFO interface are dealt with
separately below.

Writing Data to FIFO
Before the application writes data to the Sample FIFO interface, it should call the
function u8AHI_FifoReadTxLevel() to obtain the number of data samples currently in
the Transmit FIFO. Provided the FIFO is not full, the function vAHI_FifoWrite() can
then be called to write data to the FIFO - this function writes a single 16-bit data
sample on each call and must therefore be called multiple times according to the
number of samples to be written.

Reading Data from FIFO
Before the application reads data from the Sample FIFO interface, it should call the
function u8AHI_FifoReadRxLevel() to obtain the number of data samples currently in
the Receive FIFO. Provided the FIFO is not empty, the function bAHI_FifoRead() can
then be called to read data from the FIFO - this function reads a single 16-bit data
sample on each call and must therefore be called multiple times according to the
number of samples available to be read.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 119

Chapter 16
Sample FIFO Interface (JN5148 Only)

16.3 Example FIFO Operation
This section outlines a typical use of the Sample FIFO interface to pass 16-bit mono
audio data samples to and from the DAI. In this example, the FIFOs are serviced by
the CPU when the number of samples in the Transmit FIFO falls to 2 and the number
of samples in the Receive FIFO rises to 8.

The procedure below describes the actions to be taken by the CPU application.

Step 1 Enable, configure and connect the DAI and the Sample FIFO interface
a) Call vAHI_DaiEnable() to enable the DAI and then call vAHI_FifoEnable() to

enable the Sample FIFO interface.
b) Configure the bit clock for the DAI, as described in Section 15.2.2.
c) Configure the data format for the DAI, as described in Section 15.2.3.
d) Call vAHI_DaiConnectToFIFO() to connect the DAI to the Sample FIFO interface

- this function requires you to specify whether the 16-bit mono data will be
contained in the left channel or right channel of the transferred stereo data frame.

Step 2 Pre-fill the Transmit FIFO
a) Check whether there are already any samples in the Transmit FIFO by calling

u8AHI_FifoReadTxLevel().
b) Use multiple calls to vAHI_FifoWrite() to write the appropriate number of

samples to the Transmit FIFO in order to make up the total number of samples in
the FIFO to 10.

Step 3 Empty the Receive FIFO
a) Check whether there are already any samples in the Receive FIFO by calling

u8AHI_FifoReadRxLevel().
b) Use multiple calls to bAHI_FifoRead() to read the appropriate number of samples

from the Receive FIFO in order to empty the FIFO.
Step 4 Set the Transmit interrupt level and enable FIFO interrupts

a) Use vAHI_FifoSetInterruptLevel() to set the Transmit FIFO interrupt level to 3
samples and the Receive FIFO interrupt level to 7 samples.

b) Call vAHI_FifoEnableInterrupts() to enable the Sample FIFO interface interrupts
(you should also have registered a corresponding callback function via
vAHI_FifoRegisterCallback()).

Step 5 Enable and Start Timer 2
a) Call vAHI_TimerEnable() to enable Timer 2 - choose an appropriate clock

divisor, do not enable Timer interrupts and do not enable the PWM output.
b) Call vAHI_TimerConfigureOutputs() to disable external gating.
c) Call vAHI_TimerStartRepeat() to start the timer in ‘repeat mode’ with the

appropriate period for the desired data transmission rate.
120 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
Step 6 Wait for a FIFO interrupt and service the interrupt
a) Wait for an interrupt of the type E_AHI_DEVICE_AUDIOFIFO to occur (which will

invoke the registered callback function).
b) In the callback function, use multiple calls to vAHI_FifoWrite() to write 8 new

samples to the Transmit FIFO.
c) Also in the callback function, use multiple calls to bAHI_FifoRead() to read 8

samples from the Receive FIFO.
d) Return from the callback function to Step 6a.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 121

Chapter 16
Sample FIFO Interface (JN5148 Only)

122 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
17. External Flash Memory
This chapter describes control of external Flash memory using functions of the
Integrated Peripherals API.

A JN51xx microcontroller is normally connected to an external Flash memory device
which is used to store the binary application and associated application data. The two
devices are typically resident on the same carrier board or module.

The Integrated Peripherals API includes functions that allow the application to erase,
programme and read a sector of the attached Flash memory. Normally, these
functions are used to store and retrieve application data - this might include data to be
preserved in non-volatile memory before going to sleep without RAM held.

17.1 Flash Memory Organisation and Types
JN51xx modules are supplied with Flash memory devices fitted, but the API functions
can also be used with custom modules and boards which have different Flash devices.

Flash memory is partitioned into sectors. The number of sectors depends on the Flash
device type (see Table 7), but the application binary is normally stored from the start
of the first sector, denoted Sector 0, and the application data is stored in the final
sector.

A Flash memory sector which is blank (no data) comprises entirely of binary 1s. When
data is written to the sector, the relevant bits are changed from 1 to 0.

The following table lists the Flash device types supported by JN51xx microcontrollers
and gives the number of sectors for each device as well as the size of a sector.

Thus, the supported Flash memory devices are 64-Kbyte, 128-Kbyte or 512-Kbyte in
size. Custom Flash devices can also be used.

Flash Device Number of
Sectors

Sector Size
(Kbytes)

AT25F512 2 32

SST25V010 4 32

M25P10A 4 32

M25P40 8 64

Table 7: Supported Flash Devices
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 123

Chapter 17
External Flash Memory

17.2 Function Types
Some Flash functions of the Integrated Peripherals API are available in two versions:

One version is designed to interact with a 4-sector 128-Kbyte Flash device in
which the application data is stored in Sector 3, e.g. the ST M25P10 device.
These functions are designed to access Sector 3 only and all addresses are
offsets from the start of this sector.
The other version is designed to interact with a 128-Kbyte or 512-Kbyte Flash
device. These functions are able to access any sector - you should refer to the
datasheet for the Flash device to obtain the necessary sector details.

17.3 Operating on Flash Memory
This section describes how to use the Flash functions of the Integrated Peripherals
API to erase, read from and write to a sector of Flash memory.

The first Flash function called must be the initialisation function bAHI_FlashInit(). This
function requires the attached Flash device type to be specified, although an auto-
detect option for the device type is also available.

A custom Flash device can also be specified. In this case, a set of custom functions
must be provided that will be used by the API to access the Flash device.

17.3.1 Erasing Data from Flash Memory
Erasing a portion of Flash memory involves setting any 0 bits to 1. Two functions are
provided that allow an entire sector of Flash memory to be erased:

bAHI_FlashErase() can be used on a JN5139 device to erase the final sector
of a 4-sector 128-Kbyte Flash device. Only Sector 3 is erased by this function -
no other sectors are affected.
bAHI_FlashEraseSector() can be used on a JN5148 or JN5139 device to
erase one sector of the attached Flash device. Any sector can be erased and
thus care must be taken not to erase the application code.

Caution: Be careful not to erase essential data such as
the application code. The application is stored from the
start of the Flash memory. It is therefore normally held in
Sectors 0, 1 and 2 of a 128-Kbyte device, and in Sectors
0 and 1 of a 512-Kbyte device.
124 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
17.3.2 Reading Data from Flash Memory
Two functions are provided that allow data to be read from a sector of Flash memory:

bAHI_FlashRead() can be used on a JN5139 device to read from the final
sector of a 4-sector 128-Kbyte Flash device. Only Sector 3 can be accessed by
this function.
bAHI_FullFlashRead() can be used on a JN5148 or JN5139 device to read
data from any sector of the attached Flash device.

In either case, the function can be used to read a portion of data starting at any point
within the sector.

17.3.3 Writing Data to Flash Memory
Before writing the first data to a sector of Flash memory, the sector must be blank
(consisting entirely of binary 1s), as the write operation will only change 1s to 0s
(where relevant). Therefore, it may be necessary to erase the relevant sector, as
described in Section 17.3.1, before writing the first data to it.

Two functions are provided that allow data to be written within a sector of Flash
memory:

bAHI_FlashProgram() can be used on a JN5139 device to write to the final
sector of a 4-sector 128-Kbyte Flash device. Only Sector 3 can be accessed by
this function.
bAHI_FullFlashProgram() can be used on a JN5148 or JN5139 device to
write data to any sector of the attached Flash device.

In either case, the function can be used to write a portion of data starting at any point
within the sector. When adding data to existing data in a sector, you must be sure that
the relevant portion of the sector is already blank (comprising all binary 1s).

Tip: One way to ensure that data is added successfully
to a sector is: first read the entire sector into RAM (see
Section 17.3.2), then erase the entire sector in Flash
memory (see Section 17.3.1), then add the new data to
the existing data in RAM, and finally write all of this data
back to the sector in Flash memory.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 125

Chapter 17
External Flash Memory

17.4 Controlling Power to Flash Memory
Flash memory can be optionally powered off while the JN51xx microcontroller is in
Sleep mode, and is always automatically powered off for Deep Sleep mode. An
unpowered Flash device during sleep allows greater power savings and extends
battery life.

Two functions are provided for controlling power to the Flash memory device, but
these are only applicable to the following devices:

STM25P10A attached to a JN5139 or JN5148 device
STM25P40 attached to a JN5148 device

Calling these functions for other Flash devices will have no effect.

The necessary function calls before and after sleep are outlined below.

Before Sleep
The above Flash memory devices can be powered down before entering sleep mode
by calling the function vAHI_FlashPowerDown(). This function must be called before
vAHI_Sleep() is called.

After Sleep
If a Flash memory device was powered down using vAHI_FlashPowerDown() before
entering sleep with RAM held, on waking from sleep the function
vAHI_FlashPowerUp() must be called to power on the Flash memory device again.

In the cases of sleep without RAM held and Deep Sleep mode, there is no need to call
vAHI_FlashPowerUp() on waking, since the Flash memory device is powered on
automatically.

Note 1: In the case of sleep without RAM held, the
function vAHI_FlashPowerDown() should not be called
until all the application data that needs to be preserved
during sleep has been saved to Flash memory.

Note 2: There is no need to call the function
vAHI_FlashPowerDown() for Deep Sleep mode, as the
Flash memory device is automatically powered down
before entering this mode.

Tip: In order to conserve power, you may wish to power
down the Flash memory device at JN5148/JN5139 start-
up and only power up the Flash device when required.
126 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
Part II:
Reference Information
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 127

128 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
18. General Functions
This chapter describes various functions of the Integrated Peripherals API that are not
associated with any of the main peripheral blocks on a JN51xx microcontroller. Note
that many of these functions can be used only on the JN5148 device.

The functions in this chapter include:

API initialisation function
Functions concerned with radio transmissions (including setting the
transmission power and data-rate)
Functions to control the random number generator (JN5148 only)
Stack overflow detection function

Note that the random number generator can produce interrupts which are treated as
System Controller interrupts. For more information on interrupt handling, refer to
Appendix A.

The functions are listed below, along with their page references:

Function Page
u32AHI_Init 130
bAHI_PhyRadioSetPower 131
vAppApiSetBoostMode (JN5139 Only) 132
vAHI_HighPowerModuleEnable 133
vAHI_ETSIHighPowerModuleEnable (JN5148 Only) 134
vAHI_AntennaDiversityOutputEnable 135
vAHI_BbcSetHigherDataRate (JN5148 Only) 136
vAHI_BbcSetInterFrameGap (JN5148 Only) 137
vAHI_StartRandomNumberGenerator (JN5148 Only) 138
vAHI_StopRandomNumberGenerator (JN5148 Only) 139
u16AHI_ReadRandomNumber (JN5148 Only) 140
bAHI_RndNumPoll (JN5148 Only) 141
vAHI_SetStackOverflow (JN5148 Only) 142

Note: For guidance on using these functions in JN5148/
JN5139 application code, refer to Chapter 2.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 129

Chapter 18
General Functions

u32AHI_Init

Description
This function initialises the Integrated Peripherals API. It should be called after every
reset and wake-up, and before any other Integrated Peripherals API functions are
called.

Parameters
None

Returns
0 if initialisation failed, otherwise a 32-bit version number for the API (most significant
16 bits are main revision, least significant 16 bits are minor revision).

uint32 u32AHI_Init(void);

Caution: If you are using JenOS (Jennic Operating System),
you must not call this function explicitly in your code, as the
function is called internally by JenOS. This applies principally
to users who are developing ZigBee PRO applications.

Note: This function must be called before initialising the
Application Queue API (if used). For more information on the
latter, refer to the Application Queue API Reference Manual
(JN-RM-2025).
130 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
bAHI_PhyRadioSetPower

Description
This function sets the transmit power level of the JN5148/JN5139 device’s radio
transceiver. The levels that can be set depend on the type of module (JN5139
standard, JN5139 high-power, JN5148 standard, JN5148 high-power), as indicated
in the table below:

Note that the above power levels are nominal values. The actual power levels
obtained vary with temperature and supply voltage. The quoted values are typical for
an operating temperature of 25oC and a supply voltage of 3.0 V.

Before this function is called, vAHI_ProtocolPower() must have been called.

Before using a high-power module, its radio transceiver must be enabled via the
function vAHI_HighPowerModuleEnable().

Parameters
u8PowerLevel Integer value in the range 0-5 representing the desired radio

power level (the default value is 5 for JN5139 modules and
3 for JN5148 modules). The corresponding power levels (in
dBm) depend on the type of JN5148/JN5139 module and are
detailed in the above table. Note that values 4 and 5 are not
valid for JN5148 modules

Returns
One of:

TRUE if specified power setting is valid (in the range 0-5)
FALSE if specified power setting is invalid (not in the range 0-5)

bool_t bAHI_PhyRadioSetPower(uint8 u8PowerLevel);

u8PowerLevel Setting

Power Level (dBm)

JN5139 Modules JN5148 Modules

Standard High-Power Standard High-Power

0 -30 -7 -32 -16.5

1 -24 -1 -20.5 -5

2 -18 +5 -9 +6.5

3 -12 +11 +2.5 +18

4 -6 +15 - -

5 +1.5 +17.5 - -
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 131

Chapter 18
General Functions

vAppApiSetBoostMode (JN5139 Only)

Description
This function enables or disables boost mode on a JN5139 device. Boost mode
increases the radio transmission power by 1.5 dBm (beware that this results in
increased current consumption). This feature can only be used with standard JN5139
modules (and not high-power modules), thus increasing the maximum possible
transmit power to +3 dBm.

If required, this function must be the very first call in your code. A new setting only
takes effect when the device is initialised, so this function must be called before
intialising the stack and before calling u32AppQApiInit() (if the Application Queue
API is used). The setting is maintained throughout sleep if memory is held, but is lost
if memory is not held during sleep.

Parameters
bOnNotOff On/off setting for boost mode:

TRUE - enable boost mode
FALSE - disable boost mode (default setting)

Returns
None

void vAppApiSetBoostMode(bool_t bOnNotOff);
132 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_HighPowerModuleEnable

Description
This function allows the transmitter and receiver sections of a JN51xx high-power
module to be enabled or disabled. The transmitter and receiver sections must both
be enabled or disabled at the same time (enabling only one of them is not supported).
The function must be called before using the radio transceiver on a high-power
module.

The function sets the CCA (Clear Channel Assessment) threshold to suit the gain of
the attached JN51xx high-power module.

Note that this function cannot be used with a JN51xx high-power module from a
manufacturer other than NXP/Jennic.

The European Telecommunications Standards Institute (ETSI) dictates an operating
power limit for Europe of +10 dBm EIRP. If you wish to operate a JN5148 high-power
module close to this power limit, you should subsequently call the function
vAHI_ETSIHighPowerModuleEnable().

Parameters
bRFTXEn Enable/disable setting for high-power module transmitter

(must be same setting as for bRFRXEn):
TRUE - enable transmitter
FALSE - disable transmitter

bRFRXEn Enable/disable setting for high-power module receiver
(must be same setting as for bRFTXEn):
TRUE - enable receiver
FALSE - disable receiver

Returns
None

void vAHI_HighPowerModuleEnable(bool_t bRFTXEn,
bool_t bRFRXEn);

Caution: A JN51xx high-power module cannot be used in
channel 26 of the 2.4-GHz band.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 133

Chapter 18
General Functions

vAHI_ETSIHighPowerModuleEnable (JN5148 Only)

Description
This function sets the power output of a JN5148 high-power module just within the
limit of +10 dBm EIRP dictated by the European Telecommunications Standards
Institute (ETSI). The function sets the power output of the module to +8 dBm, which
is suitable for use with an antenna with a gain of up to +2 dBi.

Before calling this function, the transmitter of the high-power module must be
enabled using the function vAHI_HighPowerModuleEnable().
Note that this function cannot be used with a JN5148 high-power module from a
manufacturer other than NXP/Jennic.

Parameters
bOnNotOff Enable/disable ETSI power limit on high-power module:

TRUE - enable limit
FALSE - disable limit (returns to normal high-power module setting)

Returns
None

void vAHI_ETSIHighPowerModuleEnable(bool_t bOnNotOff);
134 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_AntennaDiversityOutputEnable

Description
This function can be used to individually enable or disable the use of DIO12 (pin 53)
and DIO13 (pin 54) to control up to two antennae when packets are re-transmitted
following an initial transmission failure.

The JN5148 has two antenna diversity outputs, on DIO12 and DIO13, but the
JN5139 device only have one antenna diversity output, on DIO12. Therefore, the
parameter bEvenRetryOutEn (for DIO13) is only applicable to JN5148 and should be
set to FALSE for JN5139.

Refer to your device datasheet for more information on the antenna diversity output.

Parameters
bOddRetryOutEn Enable/disable setting for DIO12:

TRUE - enable output on pin
FALSE - disable output on pin

bEvenRetryOutEn Enable/disable setting for DIO13 (JN5148 only):
TRUE - enable output on pin
FALSE - disable output on pin

Returns
None

void vAHI_AntennaDiversityOutputEnable(
bool_t bOddRetryOutEn,
bool_t bEvenRetryOutEn);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 135

Chapter 18
General Functions

vAHI_BbcSetHigherDataRate (JN5148 Only)

Description
This function sets the data-rate for over-air radio transmissions from the JN5148
device. Before this function is called, vAHI_ProtocolPower() must have been called.

The standard data-rate is 250 Kbps but one of two alternative rates can be set using
this function: 500 Kbps and 666 Kbps. Note that these alternatives are not standard
IEEE 802.15.4 modes and performance in these modes is degraded by at least 3 dB.
There will be a residual error-rate caused by any frequency offset when operating at
666 Kbps.

Provision of the alternative data-rates allows on-demand, burst transmissions
between nodes.

Note that the data-rate set by this function does not only apply to data transmission,
but also to data reception - the device will only be able to receive data sent at the rate
specified through this function. Therefore, this data-rate must be also be taken into
account by the sending node.

Parameters
u8DataRate Data rate to set:

E_AHI_BBC_CTRL_DATA_RATE_250_KBPS (250 Kbps)
E_AHI_BBC_CTRL_DATA_RATE_500_KBPS (500 Kbps)
E_AHI_BBC_CTRL_DATA_RATE_666_KBPS (666 Kbps)

Returns
None

void vAHI_BbcSetHigherDataRate(uint8 u8DataRate);
136 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_BbcSetInterFrameGap (JN5148 Only)

Description
This function sets the long inter-frame gap for over-air radio transmissions of IEEE
802.15.4 frames from the JN5148 device. Before this function is called,
vAHI_ProtocolPower() must have been called and the radio section of the JN5148
chip must have been initialised (done when the protocol stack is started).

The long inter-frame gap must be a multiple of 4 µs and this function multiplies the
specified value (u8Lifs) by 4 ìs to obtain the long inter-frame gap to be set.

The standard long inter-frame gap (as specified by IEEE 802.15.4) is 640 µs.
Reducing it may result in an increase in the throughput of frames. The recommended
minimum value is 192 µs. The function imposes a lower limit of 184 µs on the long
inter-frame gap, so it is not possible to achieve a value below this limit, irrespective
of the setting in this function.

The function can be used to configure two nodes to exchange messages by means
of non-standard transmissions. To maintain compliance with the IEEE 802.15.4
standard, this function should not be called.

Parameters
u8Lifs Long inter-frame gap, in units of 4 microseconds

(e.g. for a gap of 192 µs, set this parameter to 48).
Specifying a value of less than 46 results in a setting of 46,
corresponding to 184 µs

Returns
None

void vAHI_BbcSetInterFrameGap(uint8 u8Lifs);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 137

Chapter 18
General Functions

vAHI_StartRandomNumberGenerator (JN5148 Only)

Description
This function starts the random number generator on the JN5148 device, which
produces 16-bit random values. The generator can be started in one of two modes:

Single-shot mode: Stop generator after one random number
Continuous mode: Run generator continuously - this will generate a random number
every 256 µs

A randomly generated value can subsequently be read using the function
u16AHI_ReadRandomNumber(). The availability of a new random number, and
therefore the need to call the ‘read’ function, can be determined using either
interrupts or polling:

When random number generator interrupts are enabled, an interrupt will occur each
time a new random value is generated. These interrupts are handled by the callback
function registered with vAHI_SysCtrlRegisterCallback() - also refer to Appendix A.
Alternatively, when random number generator interrupts are disabled, the function
bAHI_RndNumPoll() can be used to poll for the availability of a new random value.

When running continuously, the random number generator can be stopped using the
function vAHI_StopRandomNumberGenerator().
Note that the random number generator uses the 32-kHz clock domain (see Section
3.1) and will not operate properly if a high-precision external 32-kHz clock source is
used. Therefore, if generating random numbers in your application, you are advised
to use the internal RC oscillator or a low-precision external clock source.

Parameters
bMode Generator mode:

E_AHI_RND_SINGLE_SHOT (single-shot mode)
E_AHI_RND_CONTINUOUS (continuous mode)

bIntEn Enable/disable interrupts setting:
E_AHI_INTS_ENABLED(enable)
E_AHI_INTS_DISABLED(disable)

Returns
None

void vAHI_StartRandomNumberGenerator(
bool_t const bMode,
bool_t const bIntEn);
138 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_StopRandomNumberGenerator (JN5148 Only)

Description
This function stops the random number generator on the JN5148 device, if it has
been started in continuous mode using vAHI_StartRandomNumberGenerator().

Parameters
None

Returns
None

void vAHI_StopRandomNumberGenerator(void);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 139

Chapter 18
General Functions

u16AHI_ReadRandomNumber (JN5148 Only)

Description
This function obtains the last 16-bit random value produced by the random number
generator on the JN5148 device. The function can only be called once the random
number generator has generated a new random number.

The availability of a new random number, and therefore the need to call
u16AHI_ReadRandomNumber(), is determined using either interrupts or polling:

When random number generator interrupts are enabled, an interrupt will occur each
time a new random value is generated.
Alternatively, when random number generator interrupts are disabled, the function
bAHI_RndNumPoll() can be used to poll for the availability of a new random value.

Interrupts are enabled or disabled when the random number generator is started
using vAHI_StartRandomNumberGenerator().

Parameters
None

Returns
16-bit random integer

uint16 u16AHI_ReadRandomNumber(void);
140 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
bAHI_RndNumPoll (JN5148 Only)

Description
This function can be used to poll the random number generator on the JN5148 device
- that is, to determine whether the generator has produced a new random value.

Note that this function does not obtain the random value, if one is available - the
function u16AHI_ReadRandomNumber() must be called to read the value.

Parameters
None

Returns
Availability of new random value, one of:

TRUE - random value available
FALSE - no random value available

bool_t bAHI_RndNumPoll(void);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 141

Chapter 18
General Functions

vAHI_SetStackOverflow (JN5148 Only)

Description
This function allows stack overflow detection to be enabled/disabled on the JN5148
device and a threshold to be set for the generation of a stack overflow exception.

The JN5148 processor has a stack for temporary storage of data during code
execution, such as local variables and return addresses from functions. The stack
begins at the highest location in RAM (0x04020000) and grows downwards through
RAM, as required. Thus, the stack size is dynamic, typically growing when a function
is called and shrinking when returning from a function. It is difficult to determine by
code inspection exactly how large the stack may grow. The lowest memory location
currently used by the stack is stored in the stack pointer.

Applications occupy the bottom region of RAM and the memory space required by
the applications is fixed at build time. Above the applications is the heap, which is
used to store static data. The heap grows upwards through RAM as data is added.
Since the actual space needed by the processor stack is not known at build time, it
is possible for the processor stack to grow downwards into the heap space while the
application is running. This condition is called a stack overflow and results in the
processor stack corrupting the heap (and potentially the application).

This function allows a threshold RAM address to be set, such that a stack overflow
exception is generated if and when the stack pointer falls below this threshold
address. The threshold address is specified as a 17-bit offset from the base of RAM
(from 0x04000000). It can take values in the range 0x00000 to 0x1FFFC (the stack
pointer is word-aligned, so the bottom 2 bits of the address are always 0). The value
0x1F800 is a good starting point.

Parameters
bStkOvfEn Enable/disable stack overflow detection:

TRUE - enable detection
FALSE - disable detection (default)

u32Addr 17-bit stack overflow threshold, in range 0x00000 to 0x1FFFC

Returns
None

void vAHI_SetStackOverflow(bool_t bStkOvfEn,
uint32 u32Addr);

Note 1: If a stack overflow is detected, the detection
mechanism is automatically disabled and this function must
be called to re-enable it.

Note 2: An exception handler should be developed and
configured before enabling stack overflow detection.
142 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
19. System Controller Functions
This chapter describes the functions that interface to the System Controller on the
JN51xx microcontroller. The System Controller is largely concerned with controlling
the power domains for the CPU and on-chip RAM, and has a key role in implementing
low-power sleep modes.

The functions detailed in this chapter cover the following areas:

Power management
Clock management
Voltage brownout
Chip reset

The System Controller functions are listed below, along with their page references:

Function Page
u8AHI_PowerStatus 144
vAHI_CpuDoze 145
vAHI_Sleep 146
vAHI_ProtocolPower 148
vAHI_ExternalClockEnable (JN5139 Only) 149
bAHI_Set32KhzClockMode (JN5148 Only) 150
vAHI_SelectClockSource (JN5148 Only) 151
bAHI_GetClkSource (JN5148 Only) 152
bAHI_SetClockRate (JN5148 Only) 153
u8AHI_GetSystemClkRate (JN5148 Only) 154
vAHI_EnableFastStartUp (JN5148 Only) 155
vAHI_PowerXTAL (JN5148 Only) 156
vAHI_BrownOutConfigure (JN5148 Only) 157
bAHI_BrownOutStatus (JN5148 Only) 159
bAHI_BrownOutEventResetStatus (JN5148 Only) 160
u32AHI_BrownOutPoll (JN5148 Only) 161
vAHI_SwReset 162
vAHI_DriveResetOut 163
vAHI_ClearSystemEventStatus 164
vAHI_SysCtrlRegisterCallback 165

Note: For information on the above chip features and
guidance on using the System Controller functions in
JN5148/JN5139 application code, refer to Chapter 3.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 143

Chapter 19
System Controller Functions

u8AHI_PowerStatus

Description
This function returns power domain status information for the JN51xx microcontroller
- in particular, whether:

The device has completed a sleep-wake cycle
RAM contents were retained during sleep
The analogue power domain is switched on
The protocol logic is operational - clock is enabled

Parameters
None

Returns
Returns the power domain status information in bits 0-3 of the 8-bit return value:

uint8 u8AHI_PowerStatus(void);

Bit Reads a ‘1’ if...

0 Device has completed a sleep-wake cycle

1 RAM contents were retained during sleep

2 Analogue power domain is switched on

3 Protocol logic is operational

4-7 Unused
144 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_CpuDoze

Description
This function puts the device into doze mode by stopping the clock to the CPU (other
on-chip components are not affected by this functon and so will continue to operate
normally, e.g. on-chip RAM will remain powered and so retain its contents). The CPU
will cease operating until an interrupt occurs to re-start normal operation. Disabling
the CPU clock in this way reduces the power consumption of the device during
inactive periods.

The function returns when the CPU re-starts.

Parameters
None

Returns
None

void vAHI_CpuDoze(void);

Note: Tick Timer interrupts can be used to wake the CPU
from doze mode on the JN5148 device, but not on the
JN5139 device.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 145

Chapter 19
System Controller Functions

vAHI_Sleep

Description
This function puts the JN5148/JN5139 device into sleep mode, being one of four
‘normal’ sleep modes or deep sleep mode. The normal sleep modes are
distinguished by whether on-chip RAM remains powered and whether the 32-kHz
oscillator is left running during sleep (see parameter description below).

In a normal sleep mode, the device can be woken by a reset or one of the following
interrupts:

DIO interrupt
Wake timer interrupt (needs 32-kHz oscillator to be left running during sleep)
Comparator interrupt
Pulse counter interrupt (JN5148 only - see introduction to Chapter 11)

External Flash memory is not powered down during normal sleep mode. On the JN5148
and JN5139 devices, if required, you can power down the Flash memory device using
the function vAHI_FlashPowerDown(), which must be called before vAHI_Sleep(),
provided you are using a compatible Flash memory device - refer to the description of
vAHI_FlashPowerDown() on page 373.
In deep sleep mode, all components of the chip are powered down, as well as external
Flash memory, and the device can only be woken by the device’s reset line being
pulled low or an external event which triggers a change on a DIO pin (the relevant DIO
must be configured as an input and DIO interrupts must be enabled).

When the device restarts, it will begin processing at the cold start or warm start entry
point, depending on the sleep mode from which the device is waking (see below).
This function does not return.

void vAHI_Sleep(teAHI_SleepMode sSleepMode);

Note 1: If an external source is used for the 32-kHz oscillator
on the JN5148 device (see page 143), it is not recommended
that the oscillator is stopped on entering sleep mode.

Note 2: Registered callback functions are only preserved
during sleep modes in which RAM remains powered. If RAM
is powered off during sleep and interrupts are required, any
callback functions must be re-registered before calling
u32AHI_Init() on waking. Alternatively, a DIO wake source
can be resolved using u32AHI_DioWakeStatus().
Note 3: If a JN5148 high-power module is being used, this
function will power down lines to the high-power module that
draw significant current.
146 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
Parameters
sSleepMode Required sleep mode, one of:

E_AHI_SLEEP_OSCON_RAMON
32-kHz oscillator on and RAM on (warm restart)
E_AHI_SLEEP_OSCON_RAMOFF
32-kHz oscillator on and RAM off (cold restart)
E_AHI_SLEEP_OSCOFF_RAMON
32-kHz oscillator off and RAM on (warm restart)
E_AHI_SLEEP_OSCOFF_RAMOFF
32-kHz oscillator off and RAM off (cold restart)
E_AHI_SLEEP_DEEP
Deep sleep (all components off - cold restart)

Returns
None
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 147

Chapter 19
System Controller Functions

vAHI_ProtocolPower

Description
This function is used to enable or disable the clock for the Digital Logic domain - the
clock is simply disabled (gated) while the domain remains powered.

If you intend to switch the clock off and then back on again, without performing a
reset or going through a sleep cycle, you must first save the current IEEE 802.15.4
MAC settings before switching off the clock. Upon switching the clock on again, the
MAC settings must be restored from the saved settings. You can save and restore
the MAC settings using functions of the 802.15.4 Stack API:

To save the MAC settings, use the function vAppApiSaveMacSettings().
Switching the clock back on can then be achieved by restoring the MAC settings using
the function vAppApiRestoreMacSettings() (this function automatically calls
vAHI_ProtocolPower() to switch on the clock)

The MAC settings save and restore functions are described in the IEEE 802.15.4
Stack User Guide (JN-UG-3024).

While the Digital Logic domain clock is off, you must not make any calls into the stack,
as this may result in the stack attempting to access the associated hardware (which
is disabled) and therefore cause an exception.

Parameters
bOnNotOff Setting for Digital Logic domain clock:

TRUE to switch the clock ON
FALSE to switch the clock OFF

Returns
None

void vAHI_ProtocolPower(bool_t bOnNotOff);

Caution: Do not call vAH_ProtocolPower(FALSE) while the
802.15.4 MAC layer is active, otherwise the device may
freeze.
148 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_ExternalClockEnable (JN5139 Only)

Description
This function can be used to enable the use of an external source for the 32-kHz
clock on a JN5139 device (the function is used to move from the internal source to
an external source). The function should be called only following a device reset and
not following a wake-up from sleep (since this clock selection is maintained during
sleep).

The external clock must be supplied on DIO9 (pin 50), with the other end tied to
ground. Note that there is no need to explicitly configure DIO9 as an input, as this is
done automatically by the function. However, you are advised to first disable the pull-
up on this DIO using the function vAHI_DioSetPullup().
If this function is not called, the internal 32-kHz RC oscillator is used by default.

Once this function has been called to enable an external clock input, you are not
advised to subsequently change back to the internal oscillator.

Note that the equivalent function for the JN5148 device is
bAHI_Set32KhzClockMode().

Parameters
bExClockEn Enable/disable setting for external 32-kHz clock:

TRUE - enable external clock input
FALSE - disable external clock input

Returns
None

void vAHI_ExternalClockEnable(bool_t bExClockEn);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 149

Chapter 19
System Controller Functions

bAHI_Set32KhzClockMode (JN5148 Only)

Description
This function selects an external source for the 32-kHz clock for the JN5148 device
(the function is used to move from the internal source to an external source). The
selected clock can be either of the following options:

External module (RC circuit): This clock must be supplied on DIO9 (pin 50)
External crystal: This circuit must be attached on DIO9 (pin 50) and DIO10 (pin 51)

If this function is not called, the internal 32-kHz RC oscillator is used by default. Note
that once an external 32-kHz clock source has been selected using this function, it is
not possible to switch back to the internal RC oscillator.

If required, this function should be called near the start of the application. In
particular, if selecting the external crystal, the function must be called before Timers
0 and 1, and any wake timers are used by the application, since these timers are
used by the function when switching the clock source to the external crystal.

Note that there is no need to explicitly configure DIO9 or DIO10 as an input, as this
is done automatically by the function.

When selecting an external module, you must disable the pull-up on DIO9 using the
function vAHI_DioSetPullup(). However, when selecting the external crystal, the
pull-ups on DIO9 and DIO10 are disabled automatically.

Note that the equivalent function for the JN5139 device is
vAHI_ExternalClockEnable().

Parameters
u8Mode External 32-kHz clock source:

E_AHI_EXTERNAL_RC (external module)
E_AHI_XTAL (external crystal)

Returns
Validity of specified clock source, one of:

TRUE - valid clock source specified
FALSE - invalid clock source specified

bool_t bAHI_Set32KhzClockMode(uint8 const u8Mode);

Caution: When switching to an external crystal, this function
automatically takes control of the DIOs (11, 12 and 13)
associated with Timer 1 unless the application first makes the
call vAHI_TimerDIOControl(E_AHI_TIMER1, FALSE). Also,
the function does not disable Timer 1 following the switch -
Timer 1 should then be disabled by the application through
the call vAHI_TimerDisable(E_AHI_TIMER1).
150 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_SelectClockSource (JN5148 Only)

Description
This function selects the clock source for the system clock on the JN5148 device.
The clock options are:

32-MHz crystal oscillator (XTAL), derived from external crystal on pins 8 and 9
24-MHz RC oscillator

The clock source is divided by two to produce the system clock. Thus, the crystal
oscillator will produce a 16-MHz system clock and the RC oscillator will produce a
12-MHz (±30%, unless calibrated) system clock (see Caution below).

When the RC oscillator is selected, the function allows the crystal oscillator to be
powered down, in order to save power.

If the crystal oscillator is selected using this function but the oscillator is not already
running when the function is called (see vAHI_EnableFastStartUp()), at least 1 ms
will be required for the oscillator to become stable once it has powered up. The
function will not return until the oscillator has stabilised.

The function is mainly useful in conjunction with vAHI_EnableFastStartUp() to
perform a manual switch from the RC oscillator to the crystal oscillator after sleeping.

Parameters
bClkSource System clock source:

TRUE - RC oscillator
FALSE - crystal oscillator

bPowerDown Power down crystal oscillator:
TRUE - power down when not needed
FALSE - leave powered up (when not in sleep mode)

Returns
None

void vAHI_SelectClockSource(bool_t bClkSource,
bool_t bPowerDown);

Caution: You will not be able to run the full system while
using the 24-MHz clock source. It is possible to execute code
while using this clock, but it is not possible to transmit or
receive. Further, calculated baud rates and timing intervals for
the UARTs and timers should be based on 12 MHz. You are
also not advised to change from the crystal oscillator to the
RC oscillator.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 151

Chapter 19
System Controller Functions

bAHI_GetClkSource (JN5148 Only)

Description
This function obtains the identity of the clock source for the system clock. The clock
options are:

32-MHz crystal oscillator (XTAL), derived from external crystal on pins 8 and 9
24-MHz RC oscillator

Parameters
None

Returns
Clock source, one of:

TRUE - 24-MHz RC oscillator
FALSE - 32-MHz crystal oscillator

 bool_t bAHI_GetClkSource(void);
152 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
bAHI_SetClockRate (JN5148 Only)

Description
This function is used to select a CPU clock rate on the JN5148 device by setting the
divisor used to derive the CPU clock from the system clock.

The system clock source is selected as either the 32-MHz external crystal oscillator
or the 24-MHz internal RC oscillator using the function vAHI_SelectClockSource().

Parameters
u8Speed Divisor for desired CPU clock frequency:

Returns
TRUE if successful, FALSE if invalid clock frequency specified (100 or above)

bool_t bAHI_SetClockRate(uint8 u8Speed);

u8Speed Clock Divisor
Resulting Frequency

From 32 MHz From 24 MHz

000 8 4 MHz 3 MHz

001 4 8 MHz 6 MHz

010 2 16 MHz 12 MHz

011 1 32 MHz 24 MHz

100 or above Invalid

Note: When the 24-MHz RC oscillator is used as the source,
the resulting CPU clock frequency is dictated by the actual
RC oscillator frequency, which can be 24 MHz ±30%.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 153

Chapter 19
System Controller Functions

u8AHI_GetSystemClkRate (JN5148 Only)

Description
This function obtains the divisor used to divide down the system clock source to
produce the CPU clock.

The system clock source is selected as either the 32-MHz external crystal oscillator
or the 24-MHz internal RC oscillator using the function vAHI_SelectClockSource().
The clock source can be obtained using the function bAHI_GetClkSource().
The CPU clock frequency can be calculated by dividing the source clock frequency
by the returned divisor. The results are summarised in the table below.

The divisor for the CPU clock is configured using the function bAHI_SetClockRate().

Parameters
None

Returns
Clock divisor:

000: Divisor of 8
001: Divisor of 4
010: Divisor of 2
011: Divisor of 1 (source frequency untouched)

uint8 u8AHI_GetSystemClkRate(void);

Returned
Value Clock Divisor

Resulting Frequency

From 32 MHz From 24 MHz

000 8 4 MHz 3 MHz

001 4 8 MHz 6 MHz

010 2 16 MHz 12 MHz

011 1 32 MHz 24 MHz

100 or above Invalid

Note: When the 24-MHz RC oscillator is used as the source,
the resulting CPU clock frequency is dictated by the actual
RC oscillator frequency, which can be 24 MHz ±30%.
154 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_EnableFastStartUp (JN5148 Only)

Description
This function can be used to enable fast start-up of the JN5148 device when waking
from sleep. The function is relevant to a sleeping device for which the system clock
is derived from the 32-MHz crystal oscillator (the default clock source).

The 32-MHz crystal oscillator is powered down during sleep and takes some time to
become available again when the JN5148 device wakes. A more rapid start-up from
sleep can be achieved by using the 24-MHz RC oscillator immediately on waking and
then switching to the 32-MHz crystal oscillator when it becomes available. This
allows initial processing at wake-up to proceed before the 32-MHz clock is ready.

The switch to the 32-MHz clock source can be either automatic or manual:

Automatic switch: The crystal oscillator starts immediately on waking from sleep
(irrespective of the setting of the bPowerDown parameter - see below), allowing it to
warm up and stabilise while the boot code is running. The crystal oscillator is then
automatically and seamlessly switched to when ready. To determine whether the
switch has taken place, you can use the function bAHI_GetClkSource().
Manual switch: The switch to the crystal oscillator takes place at any time the
application chooses, using the function vAHI_SelectClockSource(). If the crystal
oscillator is not already running when this manual switch is initiated, the oscillator will
be automatically started. Depending on the oscillator’s progress towards stabilisation at
the time of the switch request, there may be a delay of up to 1 ms before the crystal
oscillator is stable and the switch takes place.

During the temporary period while the 24-MHz clock source is being used, you
should not attempt to transmit or receive, and you can only use the JN5148
peripherals with special care - refer to the Caution on page 151.

You may wish to initially use the 24-MHz RC oscillator on waking and then manually
switch to the 32-MHz crystal oscillator only when it becomes necessary to start
transmitting/receiving. In this case, to conserve power, you can use the bPowerDown
parameter to keep the crystal oscillator powered down until it is needed.

Parameters
bMode Automatic/manual switch to 32-MHz clock:

TRUE - automatic switch
FALSE - manual switch

bPowerDown Power down crystal oscillator:
TRUE - power down when not needed
FALSE - leave powered up (when not in sleep mode)

Returns
None

void vAHI_EnableFastStartUp(bool_t bMode,
bool_t bPowerDown);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 155

Chapter 19
System Controller Functions

vAHI_PowerXTAL (JN5148 Only)

Description
This function can be used on the JN5148 device to enable or disable the power
supply to a 32-MHz external crystal source for the 16-MHz system clock.

Typically, this function would be called on waking from sleep

The source of the 32-kHz clock must be selected using the function
bAHI_Set32KhzClockMode(). If an external crystal oscillator is selected as the
source, the latter function will automatically power up the oscillator. However, it is
then necessary to wait a little time until the crystal oscillator is properly up and
running. The function vAHI_PowerXTAL() can be called before the function
bAHI_Set32KhzClockMode() in order to start the crystal oscillator in advance of its
selection, so that the 32-kHz clock becomes available immediately after selection.
This approach also allows other code to be executed while the oscillator is warming
up between the calls to vAHI_PowerXTAL() and bAHI_Set32KhzClockMode().

Parameters
bIsOn Power setting for external crystal:

TRUE to DISABLE power to crystal
FALSE to ENABLE power to crystal

Returns
None

void vAHI_PowerXTAL(bool_t bIsOn);
156 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_BrownOutConfigure (JN5148 Only)

Description
This function configures and enables brownout detection on the JN5148 device.

Brownout is the point at which the chip supply voltage falls to (or below) a pre-defined
level. The default brownout level is set to 2.3 V in the JN5148 device during
manufacture. This function can be used to temporarily over-ride the default brownout
voltage with one of four voltage levels (which include the default). There is a delay of
up to 30 µs before the new setting will take effect.

The occurrence of the brownout condition is tracked by an internal ‘brownout bit’ in
the device, which is set to:

‘1’ when the brownout state is entered - that is, when the supply voltage crosses the
brownout voltage from above (decreasing supply voltage)
‘0’ when the brownout state is exited - that is, when the supply voltage crosses the
brownout voltage from below (increasing supply voltage)

When brownout detection is enabled, the occurrence of a brownout event can be
detected by the application in one of three ways:

An automatic device reset (if configured using this function) - the function
bAHI_BrownOutEventResetStatus() is used to check if a brownout caused a reset
A brownout interrupt (if configured using this function) - see below
Manual polling using the function u32AHI_BrownOutPoll()

Interrupts can be individually enabled that are generated when the chip goes into and
out of brownout. Brownout interrupts are handled by the System Controller callback
function, which is registered using the function vAHI_SysCtrlRegisterCallback().

Parameters
u8VboSelect Voltage threshold for brownout:

0: 2.0 V
1: 2.3 V
2: 2.7 V
3: 3.0 V

void vAHI_BrownOutConfigure(unit8 u8VboSelect,
bool_t bVboRestEn,
bool_t bVboEn,
bool_t bVboIntEnFalling,
bool_t bVboIntEnRising);

Note: Following a device reset or sleep, ‘reset on brownout’
will be re-enabled and the default setting for the brownout
voltage threshold will be re-instated.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 157

Chapter 19
System Controller Functions

bVboRestEn Enable/disable ‘reset on brownout’:
TRUE to enable reset
FALSE to disable reset

bVboEn Enable/disable brownout detection:
TRUE to enable detection
FALSE to disable detection

bVboIntEnFalling Enable/disable interrupt generated when the brownout bit
falls, indicating that the device has come out of the brownout
state:

TRUE to enable interrupt
FALSE to disable interrupt

bVboIntEnRising Enable/disable interrupt generated when the brownout bit
rises, indicating that the device has entered the brownout
state:

TRUE to enable interrupt
FALSE to disable interrupt

Returns
None
158 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
bAHI_BrownOutStatus (JN5148 Only)

Description
This function can be used to check whether the current supply voltage to the JN5148
device is above or below the brownout voltage setting (the default value or the value
configured using the function vAHI_BrownOutConfigure()).
The function is useful when deciding on a suitable brownout voltage to configure.

There may be a delay of up to 30 µs before bAHI_BrownOutStatus() returns, if the
brownout configuration has recently changed.

Parameters
None

Returns
TRUE if supply voltage is below brownout voltage
FALSE if supply voltage is above brownout voltage

bool_t bAHI_BrownOutStatus(void);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 159

Chapter 19
System Controller Functions

bAHI_BrownOutEventResetStatus (JN5148 Only)

Description
This function can be called following a JN5148 device reset to determine whether the
reset event was caused by a brownout. This allows the application to then take any
necessary action following a confirmed brownout.

Note that by default, a brownout will trigger a reset event. However, if
vAHI_BrownOutConfigure() was called, the ‘reset on brownout’ option must have
been explicitly enabled during this call.

Parameters
None

Returns
TRUE if brownout caused reset, FALSE otherwise

bool_t bAHI_BrownOutEventResetStatus(void);
160 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
u32AHI_BrownOutPoll (JN5148 Only)

Description
This function can be used to poll for a brownout on the JN5148 device - that is, to
check whether a brownout has occurred. The returned value will indicate whether the
chip supply voltage has fallen below or risen above the brownout voltage (or both).
Polling using this function clears the brownout status, so that a new and valid result
will be obtained the next time the function is called.

Polling in this way is useful when brownout interrupts and ‘reset on brownout’ have
been disabled through vAHI_BrownOutConfigure(). However, to successfully poll,
brownout detection must still have been enabled through the latter function.

Parameters
None

Returns
32-bit value containing brownout status:

Bit 24 is set (to ‘1’) if the chip has come out of brownout - that is, an increasing supply
voltage has crossed the brownout voltage from below. If the 32-bit return value is
logically ANDed with the bitmask E_AHI_SYSCTRL_VFEM_MASK, a non-zero result
indicates this brownout condition.
Bit 25 is set (to ‘1’) if the chip has gone into brownout - that is, a decreasing supply
voltage has crossed the brownout voltage from above. If the 32-bit return value is
logically ANDed with the bitmask E_AHI_SYSCTRL_VREM_MASK, a non-zero result
indicates this brownout condition.

uint32 u32AHI_BrownOutPoll(void);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 161

Chapter 19
System Controller Functions

vAHI_SwReset

Description
This function generates an internal reset which completely re-starts the system
through the full reset sequence.

Parameters
None

Returns
None

void vAHI_SwReset (void);

Caution: This reset has the same effect as pulling the
external RESETN line low and is likely to result in the loss of
the contents of on-chip RAM.
162 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_DriveResetOut

Description
This function drives the ResetN line low for the specified period of time.

Note that one or more external devices may be connected to the ResetN line.
Therefore, using this function to drive this line low may affect these external devices.
For more information on the ResetN line and external devices, consult the data sheet
for your microcontroller.

Parameters
u8Period Duration for which line will be driven low, in milliseconds

Returns
None

void vAHI_DriveResetOut(uint8 u8Period);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 163

Chapter 19
System Controller Functions

vAHI_ClearSystemEventStatus

Description
This function clears the specified System Controller interrupt sources. A bitmask
indicating the interrupt sources to be cleared must be passed into the function.

Parameters
u32BitMask Bitmask of the System Controller interrupt sources to be

cleared. To clear an interrupt, the corresponding bit must be
set to 1 - for bit numbers, refer to Table 10 on page 382

Returns
None

void vAHI_ClearSystemEventStatus(uint32 u32BitMask);
164 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_SysCtrlRegisterCallback

Description
This function registers a user-defined callback function that will be called when a
System Control interrupt is triggered. The source of this interrupt could be the wake
timer, a comparator, a DIO event, a brownout event (JN5148 only), a pulse counter
(JN5148 only) or the random number generator (JN5148 only).

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32AHI_Init() on waking.

Note that the System Controller interrupt handler will clear the interrupt before
invoking the callback function to deal with the interrupt.

Interrupt handling is described in Appendix A.

Parameters
prSysCtrlCallback Pointer to callback function to be registered

Returns
None

void vAHI_SysCtrlRegisterCallback(
PR_HWINT_APPCALLBACK prSysCtrlCallback);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 165

Chapter 19
System Controller Functions

166 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
20. Analogue Peripheral Functions
This chapter describes the functions that are used to control the analogue peripherals
of the JN51xx microcontrollers. These are the on-chip peripherals with analogue
inputs or outputs, including an Analogue-to-Digital Converter (ADC), Digital-to-
Analogue Converters (DACs) and comparators.

The analogue peripheral functions are divided into the following sections:

Common analogue peripheral functions, described in Section 20.1
ADC functions, described in Section 20.2
DAC functions, described in Section 20.3
Comparator functions, described in Section 20.4

20.1 Common Analogue Peripheral Functions
This section describes functions used to configure functionality shared by the on-chip
analogue peripherals - the ADC, DACs and comparators.

The functions are listed below, along with their page references:
Function Page
vAHI_ApConfigure 168
vAHI_ApSetBandGap 169
bAHI_APRegulatorEnabled 170
vAHI_APRegisterCallback 171

Note: For information on the analogue peripherals and
guidance on using these functions in JN5148/JN5139
application code, refer to Chapter 4.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 167

Chapter 20
Analogue Peripheral Functions

vAHI_ApConfigure

Description
This function configures common parameters for all on-chip analogue resources.

The analogue peripheral regulator can be enabled - this dedicated power source
minimises digital noise and is sourced from the analogue supply pin VDD1.
Interrupts can be enabled that are generated after each ADC conversion.
The clock frequency (derived from the chip’s 16-MHz clock) is specified.
The ‘sampling interval’ is specified as a number of clock periods.
The source of the reference voltage, Vref, is specified.

For the ADC, the input signal is integrated over 3 x sampling interval, where sampling
interval is defined as 2, 4, 6 or 8 clock cycles. For the ADC and DACs, the total
conversion period (for a single value) is given by

[(3 x sampling interval) + 14] x clock period

Parameters
bAPRegulator Enable/disable analogue peripheral regulator:

E_AHI_AP_REGULATOR_ENABLE
E_AHI_AP_REGULATOR_DISABLE

bIntEnable Enable/disable interrupt when ADC conversion completes:
E_AHI_AP_INT_ENABLE
E_AHI_AP_INT_DISABLE

u8SampleSelect Sampling interval in terms of divided clock periods (see
below):
E_AHI_AP_SAMPLE_2 (2 clock periods)
E_AHI_AP_SAMPLE_4 (4 clock periods)
E_AHI_AP_SAMPLE_6 (6 clock periods)
E_AHI_AP_SAMPLE_8 (8 clock periods)

u8ClockDivRatio Clock divisor (for 16-MHz clock):
E_AHI_AP_CLOCKDIV_2MHZ (achieves 2 MHz)
E_AHI_AP_CLOCKDIV_1MHZ (achieves 1 MHz)
E_AHI_AP_CLOCKDIV_500KHZ (achieves 500 kHz)
E_AHI_AP_CLOCKDIV_250KHZ (achieves 250 kHz)
(500 kHz is recommended for ADC)

bRefSelect Source of reference voltage, Vref:
E_AHI_AP_EXTREF (external from VREF pin)
E_AHI_AP_INTREF (internal)

Returns
None

void vAHI_ApConfigure(bool_t bAPRegulator,
bool_t bIntEnable,
uint8 u8SampleSelect,
uint8 u8ClockDivRatio,
bool_t bRefSelect);
168 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_ApSetBandGap

Description
This function allows the device’s internal band-gap cell to be routed to the VREF pin,
in order to provide internal reference voltage de-coupling.

Note that:

Before calling vAHI_ApSetBandGap(), you must ensure that protocol power is
enabled, by calling vAHI_ProtocolPower() if necessary, otherwise an exception will
occur. Also, subsequently disabling protocol power will cause the band-gap cell setting
to be lost.
A call to vAHI_ApSetBandGap() is only valid if an internal source for Vref has been
selected through the function vAHI_ApConfigure().

Parameters
bBandGapEnable Enable/disable routing of band-gap cell to VREF:

E_AHI_AP_BANDGAP_ENABLE (enable routing)
E_AHI_AP_BANDGAP_DISABLE (disable routing)

Returns
None

void vAHI_ApSetBandGap(bool_t bBandGapEnable);

Caution: Never call this function to enable the use of the
internal band-gap cell after selecting an external source for
Vref through vAHI_ApConfigure(), otherwise damage to the
device may result.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 169

Chapter 20
Analogue Peripheral Functions

bAHI_APRegulatorEnabled

Description
This function enquires whether the analogue peripheral regulator has powered up.
The function should be called after enabling the regulator through
vAHI_ApConfigure(). When the regulator is enabled, it will take a little time to start
- this period is 31.25 µs for both the JN5148 and JN5139 devices.

Parameters
None

Returns
TRUE if powered up, FALSE if still waiting

bool_t bAHI_APRegulatorEnabled(void);
170 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_APRegisterCallback

Description
This function registers a user-defined callback function that will be called when an
analogue peripheral interrupt is triggered.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32AHI_Init() on waking.

Interrupt handling is described in Appendix A. Analogue peripheral interrupt handling
is further described in Section 4.4.

Parameters
prApCallback Pointer to callback function to be registered

Returns
None

void vAHI_APRegisterCallback(
PR_HWINT_APPCALLBACK prApCallback);

Note: Among the analogue peripherals, only the ADC
generates Analogue peripheral interrupts. The DACs do not
generate interrupts and the comparators generate System
Controller interrupts (see Section 3.5).
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 171

Chapter 20
Analogue Peripheral Functions

20.2 ADC Functions
This section describes the functions that can be used to control the on-chip ADC
(Analogue-to-Digital Converter). This is a 12-bit ADC that can be switched between 6
different sources (4 pins on the device, an on-chip temperature sensor and a voltage
monitor). The ADC can be configured to perform a single conversion or convert
continuously (until stopped). On the JN5148 device, it is also possible to operate the
ADC in accumulation mode, in which a number of consecutive samples are added
together for averaging.

The functions are listed below, along with their page references:
Function Page
vAHI_AdcEnable 173
vAHI_AdcStartSample 174
vAHI_AdcStartAccumulateSamples (JN5148 Only) 175
bAHI_AdcPoll 176
u16AHI_AdcRead 177
vAHI_AdcDisable 178

Note: In order to use the ADC, the analogue peripheral
regulator must first be enabled using the function
vAHI_ApConfigure(). You must also check that the
regulator has started, using the function
bAHI_APRegulatorEnabled().
172 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_AdcEnable

Description
This function configures and enables the ADC. Note that this function does not start
the conversions (this is done using the function vAHI_AdcStartSample() or, in the
case of accumulation mode on the JN5148 device, using the function
vAHI_AdcStartAccumulateSamples()).
The function allows the ADC mode of operation to be set to one of:

Single-shot mode: ADC will perform a single conversion and then stop (only valid if
DACs are not enabled).
Continuous mode: ADC will perform conversions repeatedly until stopped using the
function vAHI_AdcDisable().

If using the ADC in accumulation mode (JN5148 only), the mode set here is ignored.

The function also allows the input source for the ADC to be selected as one of four
pins, the on-chip temperature sensor or the internal voltage monitor. The voltage
range for the analogue input to the ADC can also be selected as 0-Vref or 0-2Vref.

Note that:

The source of Vref is defined using vAHI_ApConfigure().

The internal voltage monitor measures the voltage on the pin VDD1.
Before enabling the ADC, the analogue peripheral regulator must have been enabled
using the function vAHI_ApConfigure(). You must also check that the regulator has
started, using the function bAHI_APRegulatorEnabled().

Parameters
bContinuous Conversion mode of ADC:

E_AHI_ADC_CONTINUOUS (continous mode)
E_AHI_ADC_SINGLE_SHOT (single-shot mode)

bInputRange Input voltage range:
E_AHI_AP_INPUT_RANGE_1 (0 to Vref)
E_AHI_AP_INPUT_RANGE_2 (0 to 2Vref)

u8Source Source for conversions:
E_AHI_ADC_SRC_ADC_1 (ADC1 input)
E_AHI_ADC_SRC_ADC_2 (ADC2 input)
E_AHI_ADC_SRC_ADC_3 (ADC3 input)
E_AHI_ADC_SRC_ADC_4 (ADC4 input)
E_AHI_ADC_SRC_TEMP (on-chip temperature sensor)
E_AHI_ADC_SRC_VOLT (internal voltage monitor)

Returns
None

void vAHI_AdcEnable(bool_t bContinuous,
bool_t bInputRange,
uint8 u8Source);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 173

Chapter 20
Analogue Peripheral Functions

vAHI_AdcStartSample

Description
This function starts the ADC sampling in single-shot or continuous mode, depending
on which mode has been configured using vAHI_AdcEnable().
If analogue peripheral interrupts have been enabled in vAHI_ApConfigure(), an
interrupt will be triggered when a result becomes available. Alternatively, if interrupts
are disabled, you can use bAHI_AdcPoll() to check for a result. Once a conversion
result becomes available, it should be read with u16AHI_AdcRead().
Once sampling has been started in continuous mode, it can be stopped at any time
using the function vAHI_AdcDisable().

Parameters
None

Returns
None

void vAHI_AdcStartSample(void);

Note: On the JN5148 device, if you wish to use the ADC in
accumulation mode, start sampling using the function
vAHI_AdcStartAccumulateSamples() instead.
174 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_AdcStartAccumulateSamples (JN5148 Only)

Description
This function starts the ADC sampling in accumulation mode on the JN5148 device,
which allows a specified number of consecutive samples to be added together to
facilitate the averaging of output samples. Note that before calling this function, the
ADC must be configured and enabled using vAHI_AdcEnable().
In accumulation mode, the output will become available after the specified number
of consecutive conversions (2, 4, 8 or 16), where this output is the sum of these
conversion results. Conversion will then stop. The cumulative result can be obtained
using the function u16AHI_AdcRead(), but the application must then perform the
averaging calculation itself (by dividing the result by the appropriate number of
samples).

If analogue peripheral interrupts have been enabled in vAHI_ApConfigure(), an
interrupt will be triggered when the accumulated result becomes available.
Alternatively, if interrupts are disabled, you can use the function bAHI_AdcPoll() to
check whether the conversions have completed.

In this mode, conversion can be stopped at any time using the function
vAHI_AdcDisable().

Parameters
u8AccSamples Number of samples to add together:

E_AHI_ADC_ACC_SAMPLE_2 (2 samples)
E_AHI_ADC_ACC_SAMPLE_4 (4 samples)
E_AHI_ADC_ACC_SAMPLE_8 (8 samples)
E_AHI_ADC_ACC_SAMPLE_16 (16 samples)

Returns
None

void vAHI_AdcStartAccumulateSamples(
uint8 u8AccSamples);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 175

Chapter 20
Analogue Peripheral Functions

bAHI_AdcPoll

Description
This function can be used when the ADC is operating in single-shot mode,
continuous mode or accumulation mode (JN5148 only), to check whether the ADC
is still busy performing a conversion:

In single-shot mode, the poll result indicates whether the sample has been taken and is
ready to be read.
In continuous mode, the poll result indicates whether a new sample is ready to be read.
In accumulation mode on the JN5148 device, the poll result indicates whether the final
sample for the accumulation has been taken.

You may wish to call this function before attempting to read the conversion result
using u16AHI_AdcRead(), particularly if you are not using the analogue peripheral
interrupts.

Parameters
None

Returns
TRUE if ADC is busy, FALSE if conversion complete

bool_t bAHI_AdcPoll(void);
176 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
u16AHI_AdcRead

Description
This function reads the most recent ADC conversion result.

If sampling was started using the function vAHI_AdcStartSample(), the most recent
ADC conversion will be returned.
If sampling on the JN5148 device was started using the function
vAHI_AdcStartAccumulateSamples(), the last accumulated conversion result will be
returned.

If analogue peripheral interrupts have been enabled in vAHI_ApConfigure(), you
must call this read function from a callback function invoked when an interrupt has
been generated to indicate that an ADC result is ready (this user-defined callback
function is registered using the function vAHI_APRegisterCallback()). Alternatively,
if interrupts have not been enabled, before calling the read function, you must first
check whether a result is ready using the function bAHI_AdcPoll().

Parameters
None

Returns
Most recent ADC conversion result (the result is contained in the least significant 12
bits of the 16-bit returned value) or, if in accumulation mode, the most recent
accumulated conversion result (here, all 16 bits are relevant)

uint16 u16AHI_AdcRead(void);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 177

Chapter 20
Analogue Peripheral Functions

vAHI_AdcDisable

Description
This function disables the ADC. It can be used to stop the ADC when operating in
continuous mode or accumulation mode (the latter mode on JN5148 only).

Parameters
None

Returns
None

void vAHI_AdcDisable(void);
178 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
20.3 DAC Functions
This section describes the functions that can be used to control the on-chip DACs
(Digital-to-Analogue Converters). The JN51xx microcontrollers feature two DACs,
denoted DAC1 and DAC2. On the JN5148 device, 12-bit DACs are used, while on the
JN5139 device, 11-bit DACs are used. The outputs from these DACs go to dedicated
pins on the chip.

The functions are listed below, along with their page references:
Function Page
vAHI_DacEnable 180
vAHI_DacOutput 181
bAHI_DacPoll 182
vAHI_DacDisable 183

Note 1: In order to use a DAC, the analogue peripheral
regulator must first be enabled using the function
vAHI_ApConfigure(). You must also check that the
regulator has started, using the function
bAHI_APRegulatorEnabled().
Note 2: On the JN5139 device, only one DAC can be
enabled at any one time. If both DACs are to be used
concurrently, they can be multiplexed.

Note 3: When a DAC is enabled, the ADC cannot be
used in single-shot mode but can be used in continuous
mode.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 179

Chapter 20
Analogue Peripheral Functions

vAHI_DacEnable

Description
This function configures and enables the specified DAC (DAC1 or DAC2). Note that:

On the JN5139 device, only one of the DACs can be enabled at any one time. If both
DACs are to be used concurrently, they can be multiplexed.
The voltage range for the analogue output can be specified as 0-Vref or 0-2Vref.

The source of Vref is defined using vAHI_ApConfigure().

The first value to be converted is specified through this function (for JN5148 only).
Subsequent values must be specified through vAHI_DacOutput().

Before enabling the DAC, the analogue peripheral regulator must have been enabled
using the function vAHI_ApConfigure(). You must also check that the regulator has
started, using the function bAHI_APRegulatorEnabled().
When a DAC is enabled, the ADC cannot be used in single-shot mode but can be
used in continuous mode.

Parameters
u8Dac DAC to configure and enable:

E_AHI_AP_DAC_1 (DAC1)
E_AHI_AP_DAC_2 (DAC2)

bOutputRange Output voltage range:
E_AHI_AP_INPUT_RANGE_1 (0 to Vref)
E_AHI_AP_INPUT_RANGE_2 (0 to 2Vref)

bRetainOutput Unused - set to 0 (FALSE)
u16InitialVal Initial value to be converted - only the 12 least significant bits

will be used (this parameter is not valid for the JN5139 device
- see Caution above)

Returns
None

void vAHI_DacEnable(uint8 u8Dac,
bool_t bOutputRange,
bool_t bRetainOutput,
uint16 u16InitialVal);

Caution: The parameter u16InitialVal is not used by the
JN5139 device. To set the initial value to be converted (and all
subsequent values), use the function vAHI_DacOutput().
180 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_DacOutput

Description
This function allows the next value for conversion by the specified DAC to be set.
This value will be used for all subsequent conversions until the function is called
again with a new value.

Although a 16-bit value must be specified in this function:

For the JN5148 device, only the 12 least significant bits will be used, since the chip
features 12-bit DACs
For the JN5139 device, only the 11 least significant bits will be used, since the chip
features 11-bit DACs

Parameters
u8Dac DAC to which value will be submitted:

E_AHI_AP_DAC_1 (DAC1)
E_AHI_AP_DAC_2 (DAC2)

u16Value Value to be converted - only the 11 or 12 least significant bits
will be used (see above)

Returns
None

void vAHI_DacOutput(uint8 u8Dac,
uint16 u16Value);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 181

Chapter 20
Analogue Peripheral Functions

bAHI_DacPoll

Description
This function can be used to check whether the enabled DAC is busy performing a
conversion. A short delay (of approximately 2 µs) is included after polling and
determining whether the DAC has completed, in order to prevent lock-ups when
further calls are made to the DAC.

Parameters
None

Returns
TRUE if DAC is busy, FALSE if conversion complete

bool_t bAHI_DacPoll(void);
182 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_DacDisable

Description
This function stops and powers down the specified DAC.

Note that on the JN5139 device, only one of the two DACs can be used at any one
time. If both DACs are to be used concurrently, they can be multiplexed.

Parameters
u8Dac DAC to disable:

E_AHI_AP_DAC_1 (DAC1)
E_AHI_AP_DAC_2 (DAC2)

Returns
None

void vAHI_DacDisable(uint8 u8Dac);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 183

Chapter 20
Analogue Peripheral Functions

20.4 Comparator Functions
This section describes the functions that can be used to control the on-chip
comparators. On both the JN5139 and JN5148 devices, there are two comparators (1
and 2).

A comparator compares its signal input with a reference input, and can be
programmed to provide an interrupt when the difference between its inputs changes
sense. It can also be used to wake the chip from sleep. The inputs to the comparator
use dedicated pins on the chip. The signal input is provided on the comparator ‘+’ pin
and the reference input is provided on the comparator ‘-’ pin, by the DAC output or by
the internal reference voltage Vref.

The comparator functions are listed below, along with their page references:

Function Page
vAHI_ComparatorEnable 185
vAHI_ComparatorDisable 186
vAHI_ComparatorLowPowerMode 187
vAHI_ComparatorIntEnable 188
u8AHI_ComparatorStatus 189
u8AHI_ComparatorWakeStatus 190

Note: If the comparator is to be used to wake the device
from sleep mode then only the comparator ‘+’ and ‘-’
pins can be used. The internal reference voltage cannot
be used and neither can the DAC output (as the DACs
are switched off when the device enters sleep mode).

Note: The analogue peripheral regulator must be
enabled while configuring a comparator, although it can
be disabled once configuration is complete.
184 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_ComparatorEnable

Description
This function configures and enables the specified comparator. The reference signal
and hysteresis setting must be specified.

The hysteresis voltage selected should be greater than:

the noise level in the input signal on the comparator '+' pin, if comparing the signal on
this pin with the internal reference voltage or DAC output
the differential noise between the signals on the comparator ‘+’ and ‘-’ pins, if
comparing the signals on these two pins

Note that the same hysteresis setting is used for both comparators, so if this function
is called several times for different comparators, only the hysteresis value from the
final call will be used.

Once enabled using this function, the comparator can be disabled using the function
vAHI_ComparatorDisable().

Parameters
u8Comparator Identity of comparator:

E_AHI_AP_COMPARATOR_1
E_AHI_AP_COMPARATOR_2

u8Hysteresis Hysteresis setting (controllable from 0 to 40 mV)
E_AHI_COMP_HYSTERESIS_0MV (0 mV)
E_AHI_COMP_HYSTERESIS_10MV (10 mV)
E_AHI_COMP_HYSTERESIS_20MV (20 mV)
E_AHI_COMP_HYSTERESIS_40MV (40 mV)

u8SignalSelect Reference signal to compare with input signal on comparator
'+' pin:
E_AHI_COMP_SEL_EXT (comparator '-' pin)
E_AHI_COMP_SEL_DAC (related DAC output)
E_AHI_COMP_SEL_BANDGAP (fixed at Vref)

Returns
None

void vAHI_ComparatorEnable(uint8 u8Comparator,
uint8 u8Hysteresis,
uint8 u8SignalSelect);

Note: This function puts the comparator in low-power mode in
which the comparator draws 1.2 µA of current, compared with
70 µA when operating in standard-power mode. If you wish to
use the comparators in standard-power mode, you must
disable low-power mode using the function
vAHI_ComparatorLowPowerMode().
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 185

Chapter 20
Analogue Peripheral Functions

vAHI_ComparatorDisable

Description
This function disables the specified comparator on the JN5148/JN5139 device.

Parameters
u8Comparator Identity of comparator:

E_AHI_AP_COMPARATOR_1
E_AHI_AP_COMPARATOR_2

Returns
None

void vAHI_ComparatorDisable(uint8 u8Comparator);
186 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_ComparatorLowPowerMode

Description
This function can be used to enable or disable low-power mode on the comparators
of the JN5148/JN5139 device. The function affects both comparators together.

In low-power mode, a comparator draws 1.2 µA of current, compared with 70 µA
when operating in standard-power mode. Low-power mode can be used while the
device is sleeping, to minimise power consumption, but is also ideal for energy
harvesting (while awake).

When a comparator is enabled using vAHI_ComparatorEnable(), it is put into low-
power mode by default. Therefore, to use the comparators in standard-power mode,
you must call vAHI_ComparatorLowPowerMode() to disable low-power mode.

Parameters
bLowPowerEnable Enable/disable low-power mode:

TRUE - enable
FALSE - disable

Returns
None

void vAHI_ComparatorLowPowerMode(
bool_t bLowPowerEnable);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 187

Chapter 20
Analogue Peripheral Functions

vAHI_ComparatorIntEnable

Description
This function enables interrupts for the specified comparator on the JN5148/JN5139
device. An interrupt can be used to wake the device from sleep or as a normal
interrupt.

If enabled, an interrupt is generated on one of the following conditions (which must
be configured):

The input signal rises above the reference signal (plus hysteresis level, if non-zero)
The input signal falls below the reference signal (minus hysteresis level, if non-zero)

Comparator interrupts are handled by the System Controller callback function,
registered using the function vAHI_SysCtrlRegisterCallback().

Parameters
u8Comparator Identity of comparator:

E_AHI_AP_COMPARATOR_1
E_AHI_AP_COMPARATOR_2

bIntEnable Enable/disable interrupts:
TRUE to enable interrupts
FALSE to disable interrupts

bRisingNotFalling Triggering condition for interrupt:
TRUE for interrupt when input signal rises above reference
FALSE for interrupt when input signal falls below reference

Returns
None

void vAHI_ComparatorIntEnable(uint8 u8Comparator,
bool_t bIntEnable,
bool_t bRisingNotFalling);
188 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
u8AHI_ComparatorStatus

Description
This function obtains the status of the comparators on the JN5148/JN5139 device.

To obtain the status of an individual comparator, the returned value must be bitwise
ANDed with the mask E_AHI_AP_COMPARATOR_MASK_x, where x is 1 for
Comparator 1 and 2 for Comparator 2.

The result for an individual comparator is interpreted as follows:

0 indicates that the input signal is lower than the reference signal
1 indicates that the input signal is higher than the reference signal

Parameters
None

Returns
Value containing the status of both comparators (see above)

uint8 u8AHI_ComparatorStatus(void);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 189

Chapter 20
Analogue Peripheral Functions

u8AHI_ComparatorWakeStatus

Description
This function returns the wake-up interrupt status of the comparators on the JN5148/
JN5139 device. The value is cleared after reading.

To obtain the wake-up interrupt status of an individual comparator, the returned value
must be bitwise ANDed with the mask E_AHI_AP_COMPARATOR_MASK_x, where
x is 1 for Comparator 1 and 2 for Comparator 2.

The result for an individual comparator is interpreted as follows:

Zero indicates that a wake-up interrupt has not occurred
Non-zero value indicates that a wake-up interrupt has occurred

Parameters
None

Returns
Value containing wake-up interrupt status of both comparators (see above)

uint8 u8AHI_ComparatorWakeStatus(void);

Note: If you wish to use this function to check whether a
comparator caused a wake-up event, you must call it before
u32AHI_Init(). Alternatively, you can determine the wake
source as part of your System Controller callback function.
190 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
21. DIO Functions
This chapter describes the functions that can be used to control the digital input/output
lines, referred to as DIOs. The JN51xx microcontrollers have 21 DIO lines, numbered
0 to 20, where each DIO can be individually configured. However, the pins for the DIO
lines are shared with other peripherals (see list below) and are not available when
those peripherals are enabled:

UARTs
Timers
Serial Interface (2-wire)
Serial Peripheral Interface
Intelligent Peripheral Interface
Antenna Diversity
Pulse Counters [JN5148 only]
Digital Audio Interface (DAI) [JN5148 only]

For details of the shared pins, refer to the data sheet for your microcontroller.

In addition to normal operation, when configured as inputs, the DIOs can be used to
generate interrupts and wake the device from sleep.

The DIO functions are listed below, along with their page references:
Function Page
vAHI_DioSetDirection 192
vAHI_DioSetOutput 193
u32AHI_DioReadInput 194
vAHI_DioSetPullup 195
vAHI_DioSetByte (JN5148 Only) 196
u8AHI_DioReadByte (JN5148 Only) 197
vAHI_DioInterruptEnable 198
vAHI_DioInterruptEdge 199
u32AHI_DioInterruptStatus 200
vAHI_DioWakeEnable 201
vAHI_DioWakeEdge 202
u32AHI_DioWakeStatus 203

Note: For guidance on using the DIO functions in
JN5148/JN5139 application code, refer to Chapter 5.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 191

Chapter 21
DIO Functions

vAHI_DioSetDirection

Description
This function sets the direction for the DIO pins individually as either input or output
(note that they are set as inputs, by default, on reset). This is done through two
bitmaps for inputs and outputs, u32Inputs and u32Outputs respectively. In these
values, each of bits 0 to 20 represents a DIO pin, where bit 0 represents DIO0 and
bit 20 represents DIO20 (bits 21-31 are ignored). Setting a bit in one of these bitmaps
configures the corresponding DIO as an input or output, depending on the bitmap.

Note that:

Not all DIO pins must be defined (in other words, u32Inputs logical ORed with
u32Outputs does not need to produce all zeros for bits 0-20).
Any DIO pins that are not defined by a call to this function (the relevant bits being
cleared in both bitmaps) will be left in their previous states.
If a bit is set in both u32Inputs and u32Outputs, it will default to becoming an input.
If a DIO is assigned to another peripheral which is enabled, this function call will not
immediately affect the relevant pin. However, the DIO setting specified by this function
will take effect if/when the relevant peripheral is subsequently disabled.
This function does not change the DIO pull-up status - this must be done separately
using vAHI_DioSetPullup().

Parameters
u32Inputs Bitmap of inputs - a bit set means that the corresponding DIO

pin will become an input
u32Outputs Bitmap of outputs - a bit set means that the corresponding DIO

pin will become an output

Returns
None

void vAHI_DioSetDirection(uint32 u32Inputs,
uint32 u32Outputs);
192 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_DioSetOutput

Description
This function sets individual DIO outputs on or off, driving an output high or low,
respectively. This is done through two bitmaps for on-pins and off-pins, u32On and
u32Off respectively. In these values, each of bits 0 to 20 represents a DIO pin, where
bit 0 represents DIO0 and bit 20 represents DIO20 (bits 21-31 are ignored). Setting
a bit in one of these bitmaps configures the corresponding DIO output as on or off,
depending on the bitmap.

Note that:

Not all DIO pins must be defined (in other words, u32On logical ORed with u32Off does
not need to produce all zeros for bits 0-20).
Any DIO pins that are not defined by a call to this function (the relevant bits being
cleared in both bitmaps) will be left in their previous states.
If a bit is set in both u32On and u32Off, the DIO pin will default to off.
This call has no effect on DIO pins that are not defined as outputs (see
vAHI_DioSetDirection()), until a time when they are re-configured as outputs.
If a DIO is assigned to another peripheral which is enabled, this function call will not
affect the relevant DIO, until a time when the relevant peripheral is disabled.

Parameters
u32On Bitmap of on-pins - a bit set means that the corresponding DIO

pin will be set to on
u32Off Bitmap of off-pins - a bit set means that the corresponding DIO

pin will be set to off

Returns
None

void vAHI_DioSetOutput(uint32 u32On, uint32 u32Off);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 193

Chapter 21
DIO Functions

u32AHI_DioReadInput

Description
This function returns the value of each of the DIO pins (irrespective of whether the
pins are used as inputs, as outputs or by other enabled peripherals).

Parameters
None

Returns
Bitmap:

Each of bits 0-20 corresponds to a DIO pin, where bit 0 represents DIO0 and
bit 20 represents DIO20. The bit is set to 1 if the pin is high or to 0 if the pin is
low. Bits 21-31 are always 0.

uint32 u32AHI_DioReadInput (void);
194 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_DioSetPullup

Description
This function sets the pull-ups on individual DIO pins as on or off. A pull-up can be
set irrespective of whether the pin is an input or output. This is done through two
bitmaps for ‘pull-ups on’ and ‘pull-ups off’, u32On and u32Off respectively. In these
values, each of bits 0 to 20 represents a DIO pin, where bit 0 represents DIO0 and
bit 20 represents DIO20 (bits 21-31 are ignored).

Note that:

By default, the pull-ups are enabled (on) at power-up.
Not all DIO pull-ups must be set (in other words, u32On logical ORed with u32Off does
not need to produce all zeros for bits 0-20).
Any DIO pull-ups that are not set by a call to this function (the relevant bits being
cleared in both bitmaps) will be left in their previous states.
If a bit is set in both u32On and u32Off, the corresponding DIO pull-up will default to off.
If a DIO is assigned to another peripheral which is enabled, this function call will still
apply to the relevant pin, except in the case of a DIO connected to an external 32-kHz
crystal (JN5148 only).

Parameters
u32On Bitmap of ‘pull-ups on’ - a bit set means that the corresponding

pull-up will be enabled
u32Off Bitmap of ‘pull-ups off’ - a bit set means that the corresponding

pull-up will be disabled

Returns
None

void vAHI_DioSetPullup(uint32 u32On, uint32 u32Off);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 195

Chapter 21
DIO Functions

vAHI_DioSetByte (JN5148 Only)

Description
This function can be used to output a byte on either DIO0-7 or DIO8-15, where bit 0
or 8 is used for the least significant bit of the byte.

Before calling this function, the relevant DIOs must be configured as outputs using
the function vAHI_DioSetDirection().

Parameters
bDIOSelect The set of DIO lines on which to output the byte:

FALSE selects DIO0-7
TRUE selects DIO8-15

u8DataByte The byte to output on the DIO pins

Returns
None

void vAHI_DioSetByte(bool_t bDIOSelect, uint8 u8DataByte);
196 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
u8AHI_DioReadByte (JN5148 Only)

Description
This function can be used to read a byte input on either DIO0-7 or DIO8-15, where
bit 0 or 8 is used for the least significant bit of the byte.

Before calling this function, the relevant DIOs must be configured as inputs using the
function vAHI_DioSetDirection().

Parameters
bDIOSelect The set of DIO lines on which to read the input byte:

FALSE selects DIO0-7
TRUE selects DIO8-15

Returns
The byte read from DIO0-7 or DIO8-15

uint8 u8AHI_DioReadByte(bool_t bDIOSelect);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 197

Chapter 21
DIO Functions

vAHI_DioInterruptEnable

Description
This function enables/disables interrupts on the DIO pins - that is, whether the signal
on a DIO pin will generate an interrupt. This is done through two bitmaps for
‘interrupts enabled’ and ‘interrupts disabled’, u32Enable and u32Disable
respectively. In these values, each of bits 0 to 20 represents a DIO pin, where bit 0
represents DIO0 and bit 20 represents DIO20 (bits 21-31 are ignored). Setting a bit
in one of these bitmaps enables/disables interrupts on the corresponding DIO,
depending on the bitmap (by default, all DIO interrupts are disabled).

Note that:

Not all DIO interrupts must be defined (in other words, u32Enable logical ORed with
u32Disable does not need to produce all zeros for bits 0-20).
Any DIO interrupts that are not defined by a call to this function (the relevant bits being
cleared in both bitmaps) will be left in their previous states.
If a bit is set in both u32Enable and u32Disable, the corresponding DIO interrupt will
default to disabled.
This call has no effect on DIO pins that are not defined as inputs (see
vAHI_DioSetDirection()).

DIOs assigned to enabled JN51xx peripherals are affected by this function.
The DIO interrupt settings made with this function are retained during sleep.

The signal edge on which each DIO interrupt is generated can be configured using
the function vAHI_DioInterruptEdge() (the default is ‘rising edge’).

DIO interrupts are handled by the System Controller callback function, registered
using the function vAHI_SysCtrlRegisterCallback().

Parameters
u32Enable Bitmap of DIO interrupts to enable - a bit set means that

interrupts on the corresponding DIO will be enabled
u32Disable Bitmap of DIO interrupts to disable - a bit set means that

interrupts on the corresponding DIO will be disabled

Returns
None

void vAHI_DioInterruptEnable(uint32 u32Enable,
uint32 u32Disable);

Caution: This function has the same effect as
vAHI_DioWakeEnable() - both functions access the same
JN51xx register bits. Therefore, do not allow the two functions
to conflict in your code.
198 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_DioInterruptEdge

Description
This function configures enabled DIO interrupts by controlling whether individual
DIOs will generate interrupts on a rising or falling edge of the DIO signal. This is done
through two bitmaps for ‘rising edge’ and ‘falling edge’, u32Rising and u32Falling
respectively. In these values, each of bits 0 to 20 represents a DIO pin, where bit 0
represents DIO0 and bit 20 represents DIO20 (bits 21-31 are ignored). Setting a bit
in one of these bitmaps configures interrupts on the corresponding DIO to occur on
a rising or falling edge, depending on the bitmap (by default, all DIO interrupts are
‘rising edge’).

Note that:

Not all DIO interrupts must be configured (in other words, u32Rising logical ORed with
u32Falling does not need to produce all zeros for bits 0-20).
Any DIO interrupts that are not configured by a call to this function (the relevant bits
being cleared in both bitmaps) will be left in their previous states.
If a bit is set in both u32Rising and u32Falling, the corresponding DIO interrupt will
default to ‘rising edge’.
This call has no effect on DIO pins that are not defined as inputs (see
vAHI_DioSetDirection()).
DIOs assigned to enabled JN51xx peripherals are affected by this function.
The DIO interrupt settings made with this function are retained during sleep.

The DIO interrupts can be individually enable/disabled using the function
vAHI_DioInterruptEnable().

Parameters
u32Rising Bitmap of DIO interrupts to configure - a bit set means that

interrupts on the corresponding DIO will be generated on a
rising edge

u32Falling Bitmap of DIO interrupts to configure - a bit set means that
interrupts on the corresponding DIO will be generated on a
falling edge

Returns
None

void vAHI_DioInterruptEdge(uint32 u32Rising,
uint32 u32Falling);

Caution: This function has the same effect as
vAHI_DioWakeEdge() - both functions access the same
JN51xx register bits. Therefore, do not allow the two functions
to conflict in your code.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 199

Chapter 21
DIO Functions

u32AHI_DioInterruptStatus

Description
This function obtains the interrupt status of all the DIO pins. It is used to poll the DIO
interrupt status when DIO interrupts are disabled (and therefore not generated).

The returned value is a bitmap in which a bit is set if an interrupt has occurred on the
corresponding DIO pin (see below). In addition, this bitmap reports other DIO events
that have occurred. After reading, the interrupt status and any other reported DIO
events are cleared.

The results are valid irrespective of whether the pins are used as inputs, as outputs
or by other enabled peripherals. They are also valid immediately following sleep.

Parameters
None

Returns
Bitmap:

Each of bits 0-20 corresponds to a DIO pin, where bit 0 represents DIO0 and
bit 20 represents DIO20. The bit is set to 1 if the corresponding DIO interrupt
has occurred or to 0 if it has not occurred. Bits 21-31 are always 0.

uint32 u32AHI_DioInterruptStatus(void);

Tip: If you wish to generate DIO interrupts instead of using
this function to poll, you must enable DIO interrupts using
vAHI_DioInterruptEnable() and incorporate DIO interrupt
handling in the System Controller callback function registered
using vAHI_SysCtrlRegisterCallback().

Note: This function has the same effect as
vAHI_DioWakeStatus() - both functions access the same
JN51xx register bits.
200 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_DioWakeEnable

Description
This function enables/disables wake interrupts on the DIO pins - that is, whether
activity on a DIO input will be able to wake the device from sleep or doze mode. This
is done through two bitmaps for ‘wake enabled’ and ‘wake disabled’, u32Enable and
u32Disable respectively. In these values, each of bits 0 to 20 represents a DIO pin,
where bit 0 represents DIO0 and bit 20 represents DIO20 (bits 21-31 are ignored).
Setting a bit in one of these bitmaps enables/disables wake interrupts on the
corresponding DIO, depending on the bitmap.

Note that:

Not all DIO wake interrupts must be defined (in other words, u32Enable logical ORed
with u32Disable does not need to produce all zeros for bits 0-20).
Any DIO wake interrupts that are not defined by a call to this function (the relevant bits
being cleared in both bitmaps) will be left in their previous states.
If a bit is set in both u32Enable and u32Disable, the corresponding DIO wake interrupt
will default to disabled.
This call has no effect on DIO pins that are not defined as inputs (see
vAHI_DioSetDirection()).
DIOs assigned to enabled JN51xx peripherals are affected by this function.
The DIO wake interrupt settings made with this function are retained during sleep.

The signal edge on which each DIO wake interrupt is generated can be configured
using the function vAHI_DioWakeEdge() (the default is ‘rising edge’).

DIO wake interrupts are handled by the System Controller callback function,
registered using the function vAHI_SysCtrlRegisterCallback().

Parameters
u32Enable Bitmap of DIO wake interrupts to enable - a bit set means that

wake interrupts on the corresponding DIO will be enabled
u32Disable Bitmap of DIO wake interrupts to disable - a bit set means that

wake interrupts on the corresponding DIO will be disabled

Returns
None

void vAHI_DioWakeEnable(uint32 u32Enable,
uint32 u32Disable);

Caution: This function has the same effect as
vAHI_DioInterruptEnable() - both functions access the
same JN51xx register bits. Therefore, do not allow the two
functions to conflict in your code.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 201

Chapter 21
DIO Functions

vAHI_DioWakeEdge

Description
This function configures enabled DIO wake interrupts by controlling whether
individual DIOs will generate wake interrupts on a rising or falling edge of the DIO
input. This is done through two bitmaps for ‘rising edge’ and ‘falling edge’, u32Rising
and u32Falling respectively. In these values, each of bits 0 to 20 represents a DIO
pin, where bit 0 represents DIO0 and bit 20 represents DIO20 (bits 21-31 are
ignored). Setting a bit in one of these bitmaps configures wake interrupts on the
corresponding DIO to occur on a rising or falling edge, depending on the bitmap (by
default, all DIO wake interrupts are ‘rising edge’).

Note that:

Not all DIO wake interrupts must be configured (in other words, u32Rising logical ORed
with u32Falling does not need to produce all zeros for bits 0-20).
Any DIO wake interrupts that are not configured by a call to this function (the relevant
bits being cleared in both bitmaps) will be left in their previous states.
If a bit is set in both u32Rising and u32Falling, the corresponding DIO wake interrupt
will default to ‘rising edge’.
This call has no effect on DIO pins that are not defined as inputs (see
vAHI_DioSetDirection()).
DIOs assigned to enabled JN51xx peripherals are affected by this function.
The DIO wake interrupt settings made with this function are retained during sleep.

The DIO wake interrupts can be individually enable/disabled using the function
vAHI_DioWakeEnable().

Parameters
u32Rising Bitmap of DIO wake interrupts to configure - a bit set means

that wake interrupts on the corresponding DIO will be
generated on a rising edge

u32Falling Bitmap of DIO wake interrupts to configure - a bit set means
that wake interrupts on the corresponding DIO will be
generated on a falling edge

Returns
None

void vAHI_DioWakeEdge(uint32 u32Rising,
uint32 u32Falling);

Caution: This function has the same effect as
vAHI_DioInterruptEdge() - both functions access the same
JN51xx register bits. Therefore, do not allow the two functions
to conflict in your code.
202 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
u32AHI_DioWakeStatus

Description
This function returns the wake status of all the DIO input pins - that is, whether the
DIO pins were used to wake the device from sleep.

The returned value is a bitmap in which a bit is set if a wake interrupt has occurred
on the corresponding DIO input pin (see below). In addition, this bitmap reports other
DIO events that have occurred. After reading, the wake status and any other reported
DIO events are cleared.

The results are not valid for DIO pins that are configured as outputs or assigned to
other enabled peripherals.

Parameters
None

Returns
Bitmap:

Each of bits 0-20 corresponds to a DIO pin, where bit 0 represents DIO0 and
bit 20 represents DIO20. The bit is set to 1 if the corresponding DIO wake
interrupt has occurred or to 0 if it has not occurred. Bits 21-31 are always 0.

uint32 u32AHI_DioWakeStatus(void);

Note: If you wish to use this function to check whether a DIO
caused a wake-up event, you must call it before
u32AHI_Init(). Alternatively, you can determine the wake
source as part of your System Controller callback function.

Note: This function has the same effect as
vAHI_DioInterruptStatus() - both functions access the same
JN51xx register bits.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 203

Chapter 21
DIO Functions

204 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
22. UART Functions
This chapter details the functions for controlling the on-chip UARTs (Universal
Asynchronous Receiver Transmitters). The JN51xx microcontrollers have two
16550-compatible UARTs, denoted UART0 and UART1, which can be independently
enabled.

Each UART uses four pins (shared with the DIOs) for the following signals: Transmit
Data (TxD) output, Receive Data (RxD) input, Request-To-Send (RTS) output and
Clear-To-Send (CTS) input. In 4-wire mode, all four lines are used to implement flow
control (this is the default mode). In 2-wire mode, only the TxD and RxD lines are used,
and there is no flow control.

The UART functions are listed below, along with their page references:

Function Page
vAHI_UartEnable 206
vAHI_UartDisable 207
vAHI_UartSetBaudRate 208
vAHI_UartSetBaudDivisor 209
vAHI_UartSetClocksPerBit (JN5148 Only) 210
vAHI_UartSetControl 211
vAHI_UartSetInterrupt 212
vAHI_UartSetRTSCTS 213
vAHI_UartSetRTS (JN5148 Only) 214
vAHI_UartSetAutoFlowCtrl (JN5148 Only) 215
vAHI_UartSetBreak (JN5148 Only) 217
vAHI_UartReset 218
u8AHI_UartReadRxFifoLevel (JN5148 Only) 219
u8AHI_UartReadTxFifoLevel (JN5148 Only) 220
u8AHI_UartReadLineStatus 221
u8AHI_UartReadModemStatus 222
u8AHI_UartReadInterruptStatus 223
vAHI_UartWriteData 224
u8AHI_UartReadData 225
vAHI_Uart0RegisterCallback 226
vAHI_Uart1RegisterCallback 227

Note: For information on the UARTs and guidance on
using the UART functions in JN5148/JN5139 application
code, refer to Chapter 6.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 205

Chapter 22
UART Functions

vAHI_UartEnable

Description
This function enables the specified UART. It must be the first UART function called.

Be sure to enable the UART using this function before writing to the UART using the
function vAHI_UartWriteData(), otherwise an exception will result.

The UARTs use certain DIO lines, as follows:

If a UART uses only the RxD and TxD lines, it is said to operate in 2-wire mode. If, in
addition, it uses the RTS and CTS lines to implement flow control, it is said to operate
in 4-wire mode.

4-wire mode (with flow control) is enabled by default when vAHI_UartEnable() is
called. If you wish to implement 2-wire mode, you will need to call
vAHI_UartSetRTSCTS() before calling vAHI_UartEnable() in order to release
control of the DIOs used for RTS and CTS.

Parameters
u8Uart Identity of UART:

E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

Returns
None

void vAHI_UartEnable(uint8 u8Uart);

UART Signal DIOs for UART0 DIOs for UART1

CTS DIO4 DIO17

RTS DIO5 DIO18

TxD DIO6 DIO19

RxD DIO7 DIO20
206 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_UartDisable

Description
This function disables the specified UART by powering it down.

Be sure to re-enable the UART using vAHI_UartEnable() before attempting to write
to the UART using the function vAHI_UartWriteData(), otherwise an exception will
result.

Parameters
u8Uart Identity of UART:

E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

Returns
None

void vAHI_UartDisable(uint8 u8Uart);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 207

Chapter 22
UART Functions

vAHI_UartSetBaudRate

Description
This function sets the baud-rate for the specified UART to one of a number of
standard rates.

The possible baud-rates are:

4800 bps
9600 bps
19200 bps
38400 bps
76800 bps
115200 bps

To set the baud-rate to other values, use the function vAHI_UartSetBaudDivisor().

Parameters
u8Uart Identity of UART:

E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

u8BaudRate Desired baud-rate:
E_AHI_UART_RATE_4800 (4800 bps)
E_AHI_UART_RATE_9600 (9600 bps)
E_AHI_UART_RATE_19200 (19200 bps)
E_AHI_UART_RATE_38400 (38400 bps)
E_AHI_UART_RATE_76800 (76800 bps)
E_AHI_UART_RATE_115200 (115200 bps)

Returns
None

void vAHI_UartSetBaudRate(uint8 u8Uart,
uint8 u8BaudRate);
208 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_UartSetBaudDivisor

Description
This function sets an integer divisor to derive the baud-rate from a 1-MHz frequency
for the specified UART. The function allows baud-rates to be set that are not
available through the function vAHI_UartSetBaudRate().
The baud-rate produced is defined by:

baud-rate = 1000000/u16Divisor

For example:

Note that on the JN5148 device, other baud-rates (including higher baud-rates) can
be achieved by subsequently calling the function vAHI_UartSetClocksPerBit().

Parameters
u8Uart Identity of UART:

E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

u16Divisor Integer divisor

Returns
None

void vAHI_UartSetBaudDivisor(uint8 u8Uart,
uint16 u16Divisor);

u16Divisor Baud-rate (bits/s)

1 1000000

2 500000

9 115200 (approx.)

26 38400 (approx.)
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 209

Chapter 22
UART Functions

vAHI_UartSetClocksPerBit (JN5148 Only)

Description
This function sets the baud-rate used by the specified UART on the JN5148 device
to a value derived from the 16-MHz clock (assuming sourced from a 32-MHz external
crystal oscillator). The function allows higher baud-rates to be set than those
available through vAHI_UartSetBaudRate() and vAHI_UartSetBaudDivisor().
The obtained baud-rate, in Mbits/s, is given by:

where Cpb is set in this function and Divisor is set in vAHI_UartSetBaudDivisor().
Therefore, the function vAHI_UartSetBaudDivisor() must be called to set Divisor
before calling vAHI_UartSetClocksPerBit().
Example baud-rates that can be achieved are listed below:

Note that 4 Mbits/s is the highest baud rate that is recommended.

Parameters
u8Uart Identity of UART:

E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

u8Cpb Cpb value in above formula, in range 0-15
(note that values 0-2 are not recommended)

Returns
None

void vAHI_UartSetClocksPerBit(uint8 u8Uart, uint8 u8Cpb);

Divisor Cpb Baud-rate (Mbits/s)

1 3 4.000

1 4 3.200

1 5 2.667

1 6 2.286

1 7 2.000

1 15 1.000

2 11 0.667

2 15 0.500

3 15 0.333

16
Divisor Cpb 1+()×

210 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_UartSetControl

Description
This function sets various control bits for the specified UART.

Note that RTS cannot be controlled automatically - it can only be set/cleared under
software control.

Parameters
u8Uart Identity of UART:

E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

bEvenParity Type of parity to be applied (if enabled):
E_AHI_UART_EVEN_PARITY (even parity)
E_AHI_UART_ODD_PARITY (odd parity)

bEnableParity Enable/disable parity check:
E_AHI_UART_PARITY_ENABLE
E_AHI_UART_PARITY_DISABLE

u8WordLength Word length (in bits):
E_AHI_UART_WORD_LEN_5 (word is 5 bits)
E_AHI_UART_WORD_LEN_6 (word is 6 bits)
E_AHI_UART_WORD_LEN_7 (word is 7 bits)
E_AHI_UART_WORD_LEN_8 (word is 8 bits)

bOneStopBit Number of stop bits - 1 stop bit, or 1.5 or 2 stop bits
(depending on word length), enumerated as:
E_AHI_UART_1_STOP_BIT (TRUE - 1 stop bit)
E_AHI_UART_2_STOP_BITS (FALSE - 1.5 or 2 stop bits)

bRtsValue Set/clear RTS signal:
E_AHI_UART_RTS_HIGH (TRUE - set RTS to high)
E_AHI_UART_RTS_LOW (FALSE - clear RTS to low)

Returns
None

void vAHI_UartSetControl(uint8 u8Uart,
bool_t bEvenParity,
bool_t bEnableParity,
uint8 u8WordLength,
bool_t bOneStopBit,
bool_t bRtsValue);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 211

Chapter 22
UART Functions

vAHI_UartSetInterrupt

Description
This function enables or disables the interrupts generated by the specified UART and
sets the Receive FIFO trigger-level - that is, the number of bytes required in the
Receive FIFO to trigger a ‘receive data available’ interrupt.

Parameters
u8Uart Identity of UART:

E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

bEnableModemStatus Enable/disable ‘modem status’ interrupt (e.g. CTS change
detected):
TRUE to enable
FALSE to disable

bEnableRxLineStatus Enable/disable ‘receive line status’ interrupt (break
indication, framing error, parity error or over-run):
TRUE to enable
FALSE to disable

bEnableTxFifoEmpty Enable/disable ‘Transmit FIFO empty’ interrupt:
TRUE to enable
FALSE to disable

bEnableRxData Enable/disable ‘receive data available’ interrupt:
TRUE to enable
FALSE to disable

u8FifoLevel Number of bytes in Receive FIFO required to trigger a
‘receive data available’ interrupt:
E_AHI_UART_FIFO_LEVEL_1 (1 byte)
E_AHI_UART_FIFO_LEVEL_4 (4 bytes)
E_AHI_UART_FIFO_LEVEL_8 (8 bytes)
E_AHI_UART_FIFO_LEVEL_14 (14 bytes)

Returns
None

void vAHI_UartSetInterrupt(uint8 u8Uart,
bool_t bEnableModemStatus,
bool_t bEnableRxLineStatus,
bool_t bEnableTxFifoEmpty,
bool_t bEnableRxData,
uint8 u8FifoLevel);
212 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_UartSetRTSCTS

Description
This function instructs the specified UART to take or release control of the DIO lines
used for RTS and CTS in flow control.

UART0: DIO4 for CTS
DIO5 for RTS

UART1: DIO17 for CTS
DIO18 for RTS

The function must be called before vAHI_UartEnable() is called.

If a UART uses the RTS and CTS lines, it is said to operate in 4-wire mode, otherwise
it is said to operate in 2-wire mode. The UARTs operate by default in 4-wire mode. If
you wish to use a UART in 2-wire mode, it will be necessary to call
vAHI_UartSetRTSCTS() before calling vAHI_UartEnable() in order to release
control of the RTS and CTS lines.

Parameters
u8Uart Identity of UART:

E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

bRTSCTSEn Take/release control of DIO lines for RTS and CTS:
TRUE to take control
FALSE to release control (allow use for other operations)

Returns
None

void vAHI_UartSetRTSCTS(uint8 u8Uart,
bool_t bRTSCTSEn);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 213

Chapter 22
UART Functions

vAHI_UartSetRTS (JN5148 Only)

Description
This function instructs the specified UART on the JN5148 device to set or clear its
RTS signal.

In order to use this function, the UART must be in 4-wire mode without automatic flow
control enabled.

The function must be called after vAHI_UartEnable() is called.

Parameters
u8Uart Identity of UART:

E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

bRtsValue Set/clear RTS signal:
E_AHI_UART_RTS_HIGH (TRUE - set RTS to high)
E_AHI_UART_RTS_LOW (FALSE - clear RTS to low)

Returns
None

void vAHI_UartSetRTS(uint8 u8Uart, bool_t bRtsValue);
214 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_UartSetAutoFlowCtrl (JN5148 Only)

Description
This function allows the Automatic Flow Control (AFC) feature on the JN5148 device
to be configured and enabled. The function parameters allow the following to be
selected/set:

Automatic RTS (bAutoRts): This is the automatic control of the outgoing RTS signal
based on the Receive FIFO fill-level. RTS is de-asserted when the Receive FIFO fill-
level is greater than or equal to the specified trigger level (u8RxFifoLevel). RTS is then
re-asserted as soon as Receive FIFO fill-level falls below the trigger level.
Automatic CTS (bAutoCts): This is the automatic control of transmissions based on
the incoming CTS signal. The transmission of a character is only started if the CTS
input is asserted.
Receive FIFO Automatic RTS trigger level (u8RxFifoLevel): This is the level at which
the outgoing RTS signal is de-asserted when the Automatic RTS feature is enabled
(using bAutoRts). If using a USB/FTDI cable to connect to the UART, use a setting of
13 bytes or lower (otherwise the Receive FIFO will overflow and data will be lost, as the
FTDI device sends up to 3 bytes of data even once RTS has been de-asserted).
Flow Control Polarity (bFlowCtrlPolarity): This is the active level (active-low or active-
high) of the RTS and CTS hardware flow control signals when using the AFC feature.
This setting has no effect when not using AFC (in this case, the software decides the
active level, sets the outgoing RTS value and monitors the incoming CTS value).

In order to use the RTS and CTS lines, the UART must be enabled in 4-wire mode,
which is the default mode on the JN5148 device.

Parameters
u8Uart Identity of UART:

E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

u8RxFifoLevel Receive FIFO automatic RTS trigger level:
00: 8 bytes
01: 11 bytes
10: 13 bytes
11: 15 bytes

bFlowCtrlPolarity Active level (low or high) of RTS and CTS flow control:
FALSE: RTS and CTS are active-low
TRUE: RTS and CTS are active-high

bAutoRts Enable/disable Automatic RTS feature:
TRUE to enable
FALSE to disable

void vAHI_UartSetAutoFlowCtrl(uint8 u8Uart,
uint8 u8RxFifoLevel,
bool_t bFlowCtrlPolarity,
bool_t bAutoRts,
bool_t bAutoCts);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 215

Chapter 22
UART Functions

bAutoCts Enable/disable Automatic CTS feature:
TRUE to enable
FALSE to disable

Returns
None
216 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_UartSetBreak (JN5148 Only)

Description
This function instructs the specified UART on the JN5148 device to initiate or clear a
transmission break.

On setting the break condition using this function, the data byte that is currently being
transmitted is corrupted and transmission then stops. On clearing the break
condition, transmission resumes to transfer the data remaining in the Transmit FIFO.

Parameters
u8Uart Identity of UART:

E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

bBreak Instruction for UART:
TRUE to initiate break (no data)
FALSE to clear break (and resume data transmission)

Returns
None

void vAHI_UartSetBreak(uint8 u8Uart, bool_t bBreak);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 217

Chapter 22
UART Functions

vAHI_UartReset

Description
This function resets the Transmit and Receive FIFOs of the specified UART. The
character currently being transferred is not affected. The Transmit and Receive
FIFOs can be reset individually or together.

The function also sets the FIFO trigger-level to single-byte trigger. The Receive FIFO
interrupt trigger-level can be set via vAHI_UartSetInterrupt().

Parameters
u8Uart Identity of UART:

E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

bTxReset Transmit FIFO reset:
TRUE to reset the Transmit FIFO
FALSE not to reset the Transmit FIFO

bRxReset Receive FIFO reset:
TRUE to reset the Receive FIFO
FALSE not to reset the Receive FIFO

Returns
None

void vAHI_UartReset(uint8 u8Uart,
bool_t bTxReset,
bool_t bRxReset);
218 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
u8AHI_UartReadRxFifoLevel (JN5148 Only)

Description
This function obtains the fill-level of the Receive FIFO of the specified UART on the
JN5148 device - that is, the number of characters currently in the FIFO.

Parameters
u8Uart Identity of UART:

E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

Returns
Number of characters in the specified Receive FIFO

uint8 u8AHI_UartReadRxFifoLevel(uint8 u8Uart);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 219

Chapter 22
UART Functions

u8AHI_UartReadTxFifoLevel (JN5148 Only)

Description
This function obtains the fill-level of the Transmit FIFO of the specified UART on the
JN5148 device - that is, the number of characters currently in the FIFO.

Parameters
u8Uart Identity of UART:

E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

Returns
Number of characters in the specified Transmit FIFO

uint8 u8AHI_UartReadTxFifoLevel(uint8 u8Uart);
220 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
u8AHI_UartReadLineStatus

Description
This function returns line status information in a bitmap for the specified UART.

Note that the following bits are cleared after reading:

E_AHI_UART_LS_ERROR
E_AHI_UART_LS_BI
E_AHI_UART_LS_FE
E_AHI_UART_LS_PE
E_AHI_UART_LS_OE

Parameters
u8Uart Identity of UART:

E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

Returns
Bitmap:

uint8 u8AHI_UartReadLineStatus(uint8 u8Uart);

Bit Description

E_AHI_UART_LS_ERROR This bit will be set if a parity error, framing error
or break indication has been received

E_AHI_UART_LS_TEMT This bit will be set if the Transmit Shift Register
is empty

E_AHI_UART_LS_THRE This bit will be set if the Transmit FIFO is empty

E_AHI_UART_LS_BI This bit will be set if a break indication has been
received (line held low for a whole character)

E_AHI_UART_LS_FE This bit will be set if a framing error has been
received

E_AHI_UART_LS_PE This bit will be set if a parity error has been
received

E_AHI_UART_LS_OE This bit will be set if a receive over-run has
occurred, i.e. the receive buffer is full but
another character arrives

E_AHI_UART_LS_DR This bit will be set if there is data in the Receive
FIFO
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 221

Chapter 22
UART Functions

u8AHI_UartReadModemStatus

Description
This function obtains modem status information from the specified UART as a bitmap
which includes the CTS and ‘CTS has changed’ status (which can be extracted as
described below).

Parameters
u8Uart Identity of UART:

E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

Returns
Bitmap in which:

CTS input status is bit 4 (‘1’ indicates CTS is high, ‘0’ indicates CTS is low).
‘CTS has changed’ status is bit 0 (‘1’ indicates that CTS input has changed). If the
return value logically ANDed with E_AHI_UART_MS_DCTS is non-zero, the CTS input
has changed.

uint8 u8AHI_UartReadModemStatus(uint8 u8Uart);
222 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
u8AHI_UartReadInterruptStatus

Description
This function returns a pending interrupt for the specified UART as a bitmap.

Interrupts are returned one at a time, according to their priorities, so there may need
to be multiple calls to this function. If interrupts are enabled, the interrupt handler
processes this activity and posts each interrupt to the queue or to a callback function.

Parameters
u8Uart Identity of UART:

E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

Returns
Bitmap:

The above table lists the UART interrupts (bits 1-3) from highest to lowest priority.

uint8 u8AHI_UartReadInterruptStatus(uint8 u8Uart);

Bit range Value/Enumeration Description

Bit 0 0 More interrupts pending

1 No more interrupts pending

Bits 1-3 E_JPI_UART_INT_RXLINE (3) Receive line status interrupt (highest prioritry)

E_JPI_UART_INT_RXDATA (2) Receive data available interrupt (next highest priority)

E_JPI_UART_INT_TIMEOUT (6) Timeout interrupt (next highest priority)

E_JPI_UART_INT_TX (1) Transmit FIFO empty interrupt (next highest priority)

E_JPI_UART_INT_MODEM (0) Modem status interrupt (lowest priority)
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 223

Chapter 22
UART Functions

vAHI_UartWriteData

Description
This function writes a data byte to the Transmit FIFO of the specified UART. The data
byte will start to be transmitted as soon as it reaches the head of the FIFO.

If no flow control or manual flow control is being implemented for data transmission,
the data in the Transmit FIFO will be transmitted as soon as possible (irrespective of
the state of the local CTS line). Therefore, the function vAHI_UartWriteData()
should be called only when the destination device is able to receive the data.

On the JN5148 device, if automatic flow control has been enabled for the local CTS
line using the function vAHI_UartSetAutoFlowCtrl(), the data in the Transmit FIFO
will only be transmitted once the CTS line has been asserted. In this case,
vAHI_UartWriteData() can be called at any time to load data into the Transmit FIFO,
provided that there is enough free space in the FIFO.

Refer to the description of u8AHI_UartReadTxFifoLevel() (JN5148 only) or
u8AHI_UartReadLineStatus() for details of how to determine whether the Transmit
FIFO already contains data.

Before this function is called, the UART must be enabled using the function
vAHI_UartEnable(), otherwise an exception will result.

Parameters
u8Uart Identity of UART:

E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

u8Data Byte to transmit

Returns
None

void vAHI_UartWriteData(uint8 u8Uart, uint8 u8Data);
224 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
u8AHI_UartReadData

Description
This function returns a single byte read from the Receive FIFO of the specified
UART. If the FIFO is empty, the returned value is not valid.

Refer to the description of u8AHI_UartReadRxFifoLevel() (JN5148 only) or
u8AHI_UartReadLineStatus() for details of how to determine whether the Receive
FIFO is empty.

Parameters
u8Uart Identity of UART:

E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

Returns
Received byte

uint8 u8AHI_UartReadData (uint8 u8Uart);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 225

Chapter 22
UART Functions

vAHI_Uart0RegisterCallback

Description
This function registers a user-defined callback function that will be called when the
UART0 interrupt is triggered.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32AHI_Init() on waking.

Interrupt handling is described in Appendix A.

Parameters
prUart0Callback Pointer to callback function to be registered

Returns
None

void vAHI_Uart0RegisterCallback(
PR_HWINT_APPCALLBACK prUart0Callback);
226 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_Uart1RegisterCallback

Description
This function registers a user-defined callback function that will be called when the
UART1 interrupt is triggered.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32AHI_Init() on waking.

Interrupt handling is described in Appendix A.

Parameters
prUart1Callback Pointer to callback function to be registered

Returns
None

void vAHI_Uart1RegisterCallback(
PR_HWINT_APPCALLBACK prUart1Callback);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 227

Chapter 22
UART Functions

228 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
23. Timer Functions
This chapter describes the functions that can be used to control the on-chip timers.
The number of timers available depends on the device type:

JN5139 has two timers: Timer 0 and Timer 1
JN5148 has three timers: Timer 0, Timer 1 and Timer 2

They are distinct from the wake timers described in Chapter 8 and tick timer described
in Chapter 9.

The timer functions are listed below, along with their page references:

Function Page
vAHI_TimerEnable 230
vAHI_TimerClockSelect (JN5148 Only) 232
vAHI_TimerConfigureOutputs (JN5148 Only) 233
vAHI_TimerConfigureInputs (JN5148 Only) 234
vAHI_TimerStartSingleShot 235
vAHI_TimerStartRepeat 236
u16AHI_TimerReadCount 240
vAHI_TimerStartDeltaSigma 238
u16AHI_TimerReadCount 240
vAHI_TimerReadCapture 241
vAHI_TimerReadCaptureFreeRunning 242
vAHI_TimerStop 243
vAHI_TimerDisable 244
vAHI_TimerDIOControl 245
vAHI_TimerFineGrainDIOControl (JN5148 Only) 246
u8AHI_TimerFired 247
vAHI_Timer0RegisterCallback 248
vAHI_Timer1RegisterCallback 249
vAHI_Timer2RegisterCallback (JN5148 Only) 250

Note: For information on the timers and guidance on
using the timer functions in JN5148/JN5139 application
code, refer to Chapter 7.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 229

Chapter 23
Timer Functions

vAHI_TimerEnable

Description
This function configures and enables the specified timer, and must be the first timer
function called. The timer is derived from the 16-MHz system clock, which can be
divided down to produce the timer clock. The timer can be used in various modes,
described in Table 2 on page 70.

The parameters of this enable function cover the following features:

Prescaling (u8Prescale): The timer’s source clock is divided down to produce a slower
clock for the timer, the divisor being 2Prescale. Therefore:

Timer clock frequency = Source clock frequency / 2Prescale

Interrupts (bIntRiseEnable and bIntPeriodEnable): Interrupts can be generated:
in Timer or PWM mode, on a low-to-high transition (rising output) and/or on a
high-to-low transition (end of the timer period)
in Counter mode, on reaching target counts

You can register a user-defined callback function for timer interrupts using the function
vAHI_Timer0RegisterCallback() for Timer 0, vAHI_Timer1RegisterCallback() for
Timer 1 or vAHI_Timer2RegisterCallback() for Timer 2. Alternatively, timer interrupts
can be disabled.
Timer output (bOutputEnable): When operating in PWM mode or Delta-Sigma mode,
the timer’s signal is output on a DIO pin (DIO10 for Timer 0, DIO13 for Timer 1, DIO11
for Timer 2), which must be enabled. If this option is enabled, the other DIOs
associated with the timer cannot be used for general-purpose input/output.

Parameters
u8Timer Identity of timer:

E_AHI_TIMER_0 (Timer 0)
E_AHI_TIMER_1 (Timer 1)
E_AHI_TIMER_2 (Timer 2 - JN5148 only)

u8Prescale Prescale index, in range 0 to 16, used in dividing down source
clock (divisor is 2Prescale)

bIntRiseEnable Enable/disable interrupt on rising output (low-to-high):
TRUE to enable
FALSE to disable

bIntPeriodEnable Enable/disable interrupt at end of timer period (high-to-low):
TRUE to enable
FALSE to disable

bOutputEnable Enable/disable output of timer signal on DIO:
TRUE to enable (PWM or Delta-Sigma mode)
FALSE to disable (Timer mode)

void vAHI_TimerEnable(uint8 u8Timer,
uint8 u8Prescale,
bool_t bIntRiseEnable,
bool_t bIntPeriodEnable,
bool_t bOutputEnable);
230 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
Returns
None
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 231

Chapter 23
Timer Functions

vAHI_TimerClockSelect (JN5148 Only)

Description
This function can be used to enable/disable an external clock input for Timer 0 or
Timer 1 on the JN5148 device. If enabled, the external input in taken from DIO8 for
Timer 0 or from DIO11 for Timer 1 (Timer 2 cannot take an external clock input).

Note the following:

This function should only be called when using the timer in Counter mode - in this
mode, the timer is used to count edges on an input clock or pulse train.
Output gating can be enabled when the internal clock is used.

If required, this function must be called after vAHI_TimerEnable().

Parameters
u8Timer Identity of timer:

E_AHI_TIMER_0 (Timer 0)
E_AHI_TIMER_1 (Timer 1)
E_AHI_TIMER_2 (Timer 2 - JN5148 only)

bExternalClock Clock source:
TRUE to use an external source (Counter mode only)
FALSE to use the internal 16-MHz clock

bInvertClock TRUE to gate the output pin when the gate input is high and
invert the clock
FALSE to gate the output pin when the gate input is low and
not invert the clock

Returns
None

void vAHI_TimerClockSelect(uint8 u8Timer,
bool_t bExternalClock,
bool_t bInvertClock);
232 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_TimerConfigureOutputs (JN5148 Only)

Description
This function configures certain parameters relating to the operation of the specified
timer on the JN5148 device in the following modes (described in Table 2 on
page 70):

Timer mode, in which the internal system clock drives the timer’s counter in order to
produce a pulse cycle in either ‘single shot’ or ‘repeat’ mode. The clock may be
temporarily interrupted by a gating input on DIO8 for Timer 0 or DIO11 for Timer 1
(there is no gating input for Timer 2). Clock gating is enabled/disabled using this
function.
Pulse Width Modulation (PWM) mode, in which the PWM signal produced in Timer
mode (see above) is output - this output can be enabled in vAHI_TimerEnable(). The
signal is output on a DIO which depends on the timer selected - DIO10 for Timer 0,
DIO13 for Timer 1 and DIO11 for Timer 2. If required, the output signal can be inverted
using this function.

This function must be called after the specified timer has been enabled through
vAHI_TimerEnable() and before the timer is started.

Parameters
u8Timer Identity of timer:

E_AHI_TIMER_0 (Timer 0)
E_AHI_TIMER_1 (Timer 1)
E_AHI_TIMER_2 (Timer 2)

bInvertPwmOutput Enable/disable inversion of PWM output:
TRUE to enable inversion
FALSE to disable inversion

bGateDisable Enable/disable external gating input for Timer mode:
TRUE to disable clock gating input
FALSE to enable clock gating input

Returns
None

void vAHI_TimerConfigureOutputs(uint8 u8Timer,
bool_t bInvertPwmOutput,
bool_t bGateDisable);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 233

Chapter 23
Timer Functions

vAHI_TimerConfigureInputs (JN5148 Only)

Description
This function configures certain parameters relating to the operation of the specified
timer on the JN5148 device in the following modes (described in Table 2 on
page 70):

Capture mode, in which an external signal is sampled on every tick of the timer. The
results of the capture allow the period and pulse width of the sampled signal to be
obtained. The input signal can be inverted using this function, allowing the low-pulse
width to be measured (instead of the high-pulse width). This external signal is input on
a DIO which depends on the timer selected - DIO9 for Timer 0 and DIO12 for Timer 1
(Timer 2 on the JN5148 device cannot be used for capture mode).
Counter mode, in which the timer is used to count the number of transitions on an
external input (selected using vAHI_TimerClockSelect()). This configure function
allows selection of the transitions on which the count will be performed - on low-to-high
transitions, or on both low-to-high and high-to-low transitions.

This function must be called after the specified timer has been enabled through
vAHI_TimerEnable() and before the timer is started.

Parameters
u8Timer Identity of timer:

E_AHI_TIMER_0 (Timer 0)
E_AHI_TIMER_1 (Timer 1)

bInvCapt Enable/disable inversion of the capture input signal:
TRUE to enable inversion
FALSE to disable inversion

bEventEdge Determines the edge(s) of the external input on which the
count will be incremented in counter mode:
TRUE - on both low-to-high and high-to-low transitions
FALSE - on low-to-high transition

Returns
None

void vAHI_TimerConfigureInputs(uint8 u8Timer,
bool_t bInvCapt,
bool_t bEventEdge);
234 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_TimerStartSingleShot

Description
This function starts the specified timer in ‘single-shot’ mode. The function relates to
Timer mode, PWM mode and Counter mode, described in Table 2 on page 70.

In Timer or PWM mode, during one pulse cycle produced, the timer signal starts low
and then goes high:

1. The output is low until u16Hi clock periods have passed, when it goes high.
2. The output remains high until u16Lo clock periods have passed since the timer was

started and then goes low again (marking the end of the pulse cycle).
If enabled through vAHI_TimerEnable(), an interrupt can be triggered at the low-
high transition and/or the high-low transition.

In Counter mode (Timer 0 and Timer 1 only), this function is used differently:

At a count of u16Hi, an interrupt (E_AHI_TIMER_RISE_MASK) will be generated
(if enabled).
At a count of u16Lo, another interrupt (E_AHI_TIMER_PERIOD_MASK) will be
generated (if enabled) and the timer will stop.

Again, interrupts are enabled through vAHI_TimerEnable().

Parameters
u8Timer Identity of timer:

E_AHI_TIMER_0 (Timer 0)
E_AHI_TIMER_1 (Timer 1)
E_AHI_TIMER_2 (Timer 2 - JN5148 only)

u16Hi Number of clock periods after starting a timer before the
output goes high (Timer or PWM mode) or count at which first
interrupt generated (Counter mode)

u16Lo Number of clock periods after starting a timer before the
output goes low again (Timer or PWM mode) or count at which
second interrupt generated and timer stops (Counter mode)

Returns
None

void vAHI_TimerStartSingleShot(uint8 u8Timer,
uint16 u16Hi,
uint16 u16Lo);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 235

Chapter 23
Timer Functions

vAHI_TimerStartRepeat

Description
This function starts the specified timer in ‘repeat’ mode. The function relates to Timer
mode, PWM mode and Counter mode, described in Table 2 on page 70.

In Timer or PWM mode, during each pulse cycle produced, the timer signal starts
low and then goes high:

1. The output is low until u16Hi clock periods have passed, when it goes high.
2. The output remains high until u16Lo clock periods have passed since the timer was

started and then goes low again.
The above process repeats until the timer is stopped using vAHI_TimerStop().
If enabled through vAHI_TimerEnable(), an interrupt can be triggered at the low-
high transition and/or the high-low transition.

In Counter mode (Timer 0 and Timer 1 only), this function is used differently:

At a count of u16Hi, an interrupt (E_AHI_TIMER_RISE_MASK) will be generated
(if enabled).
At a count of u16Lo, another interrupt (E_AHI_TIMER_PERIOD_MASK) will be
generated (if enabled) and the count will then be re-started from zero.

Again, interrupts are enabled through vAHI_TimerEnable().
The current count can be read at any time using u16AHI_TimerReadCount.

Parameters
u8Timer Identity of timer:

E_AHI_TIMER_0 (Timer 0)
E_AHI_TIMER_1 (Timer 1)
E_AHI_TIMER_2 (Timer 2 - JN5148 only)

u16Hi Number of clock periods after starting a timer before the
output goes high (Timer or PWM mode) or count at which first
interrupt generated (Counter mode)

u16Lo Number of clock periods after starting a timer before the
output goes low again (Timer or PWM mode) or count at which
second interrupt generated (Counter mode)

Returns
None

void vAHI_TimerStartRepeat(uint8 u8Timer,
uint16 u16Hi,
uint16 u16Lo);
236 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_TimerStartCapture

Description
This function starts the specified timer in Capture mode. This mode must first be
configured using the function vAHI_TimerConfigureInputs().
An input signal must be provided on pin DIO9 for Timer 0 or DIO12 for Timer 1
(Capture mode is not available on Timer 2 of the JN5148 device). The incoming
signal is timed and the captured measurements are:

number of clock cycles to the last low-to-high transition of the input signal
number of clock cycles to the last high-to-low transition of the input signal

These values are placed in registers to be read later using the function
vAHI_TimerReadCapture() or vAHI_TimerReadCaptureFreeRunning(). They
allow the input pulse width to be determined.

Parameters
u8Timer Identity of timer:

E_AHI_TIMER_0 (Timer 0)
E_AHI_TIMER_1 (Timer 1)

Returns
None

void vAHI_TimerStartCapture(uint8 u8Timer);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 237

Chapter 23
Timer Functions

vAHI_TimerStartDeltaSigma

Description
This function starts the specified timer in Delta-Sigma mode, which allows the timer
to be used as a low-rate DAC.

To use this mode, the relevant DIO output for the timer (DIO10 for Timer 0, DIO13 for
Timer 1, DIO11 for Timer 2) must be enabled through vAHI_TimerEnable(). In
addition, an RC circuit must be inserted on the DIO output pin in the arrangement
shown below (also see Note below).

The 16-MHz system clock is used as the timer source and the conversion period of
the ‘DAC’ is 65536 clock cycles. In Delta-Sigma mode, the timer outputs a number
of randomly spaced clock pulses as specified by the value being converted. When
RC-filtered, this produces an analogue voltage proportional to the conversion value.

If the RTZ (Return-to-Zero) option is enabled, a low clock cycle is inserted after every
clock cycle, so that there are never two consecutive high clock cycles. This doubles
the conversion period, but improves linearity if the rise and fall times of the outputs
are different from one another.

void vAHI_TimerStartDeltaSigma(uint8 u8Timer,
uint16 u16Hi,
uint16 0x0000,
bool_t bRtzEnable);

Note: For more information on ‘Delta-Sigma’ mode, refer to
the data sheet for your microcontroller. Also, refer to the
Application Note Using JN51xx Timers (JN-AN-1032), which
includes the selection of the above R and C values.

R

C

DIO10, 11 or 13 Vout
238 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
Parameters
u8Timer Identity of timer:

E_AHI_TIMER_0 (Timer 0)
E_AHI_TIMER_1 (Timer 1)
E_AHI_TIMER_2 (Timer 2 - JN5148 only)

u16Hi Number of 16-MHz clock cycles for which the output will be
high during a conversion period, in the range 0 to 65535 (full
period is 65536 clock cycles)

0x0000 Fixed null value
bRtzEnable Enable/disable RTZ (Return-to-Zero) option:

TRUE to enable
FALSE to disable

Returns
None
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 239

Chapter 23
Timer Functions

u16AHI_TimerReadCount

Description
This function obtains the current count value of the specified timer.

Parameters
u8Timer Identity of timer:

E_AHI_TIMER_0 (Timer 0)
E_AHI_TIMER_1 (Timer 1)
E_AHI_TIMER_2 (Timer 2 - JN5148 only)

Returns
Current count value of timer

uint16 u16AHI_TimerReadCount(uint8 u8Timer);
240 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_TimerReadCapture

Description
This function stops the specified timer and then obtains the results from a 'capture'
started using the function vAHI_TimerStartCapture().
The values returned are offsets from when the capture was originally started, as
follows:

number of clock cycles to the last low-to-high transition of the input signal
number of clock cycles to the last high-to-low transition of the input signal

The width of the last pulse can be calculated from the difference of these results,
provided that the results were requested during a low period. However, since it is not
possible to be sure of this, the results obtained from this function may not always be
valid for calculating the pulse width.

If you wish to measure the pulse period of the input signal, you should use the
function vAHI_TimerReadCaptureFreeRunning(), which does not stop the timer.

Parameters
u8Timer Identity of timer:

E_AHI_TIMER_0 (Timer 0)
E_AHI_TIMER_1 (Timer 1)

*pu16Hi Pointer to location which will receive clock period at which last
low-high transition occurred

*pu16Lo Pointer to location which will receive clock period at which last
high-low transition occurred

Returns
None

void vAHI_TimerReadCapture(uint8 u8Timer,
uint16 *pu16Hi,
uint16 *pu16Lo);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 241

Chapter 23
Timer Functions

vAHI_TimerReadCaptureFreeRunning

Description
This function obtains the results from a 'capture' started using the function
vAHI_TimerStartCapture(). This function does not stop the timer.

Alternatively, the function vAHI_TimerReadCapture() can be used, which stops the
timer before reporting the capture measurements.

The values returned are offsets from when the capture was originally started, as
follows:

number of clock cycles to the last low-to-high transition of the input signal
number of clock cycles to the last high-to-low transition of the input signal

The width of the last pulse can be calculated from the difference of these results,
provided that the results were requested during a low period. However, since it is not
possible to be sure of this, the results obtained from this function may not always be
valid for calculating the pulse width.

If you wish to measure the pulse period of the input signal, you should call this
function twice during consecutive pulse cycles. For example, a call to this function
could be triggered by an interrupt generated on a particular type of transition (low-to-
high or high-to-low). The pulse period can then be obtained by calculating the
difference between the results for consecutive low-to-high transitions or the
difference between the results for consecutive high-to-low transitions.

Parameters
u8Timer Identity of timer:

E_AHI_TIMER_0 (Timer 0)
E_AHI_TIMER_1 (Timer 1)

*pu16Hi Pointer to location which will receive clock period at which last
low-high transition occurred

*pu16Lo Pointer to location which will receive clock period at which last
high-low transition occurred

Returns
None

void vAHI_TimerReadCaptureFreeRunning(uint8 u8Timer,
uint16 *pu16Hi,
uint16 *pu16Lo);

Caution: Since it is not possible to be sure of the state of the
input signal when capture started, the results of the first call to
this function after starting capture should be discarded.
242 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_TimerStop

Description
This function stops the specified timer.

Parameters
u8Timer Identity of timer:

E_AHI_TIMER_0 (Timer 0)
E_AHI_TIMER_1 (Timer 1)
E_AHI_TIMER_2 (Timer 2 - JN5148 only)

Returns
None

void vAHI_TimerStop (uint8 u8Timer);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 243

Chapter 23
Timer Functions

vAHI_TimerDisable

Description
This function disables the specified timer. As well as stopping the timer from running,
the clock to the timer block is switched off in order to reduce power consumption. This
means that any subsequent attempt to access the timer will be unsuccessful until
vAHI_TimerEnable() is called to re-enable the block.

Parameters
u8Timer Identity of timer:

E_AHI_TIMER_0 (Timer 0)
E_AHI_TIMER_1 (Timer 1)
E_AHI_TIMER_2 (Timer 2 - JN5148 only)

Returns
None

void vAHI_TimerDisable (uint8 u8Timer);

Caution: An attempt to access the timer while it is disabled
will result in an exception.
244 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_TimerDIOControl

Description
This function enables/disables DIOs for use by the specified timer (Timer 0 or 1):

DIO8, DIO9 and DIO10 for Timer 0
DIO11, DIO12 and DIO13 for Timer 1

Refer to the table at the start of this chapter for the timer signals on these DIOs.

The function configures the set of three DIOs for a timer. By default, all these DIOs
are enabled for timer use. If disabled, the DIOs can be used as GPIOs (General
Purpose Inputs/Outputs). You should perform this configuration before the timers are
enabled using vAHI_TimerEnable(), in order to avoid glitching on the GPIOs during
timer operation.

On the JN5148 device, you can use the function AHI_TimerFineGrainDIOControl()
to configure the use of all the DIOs for all the timers in one call, including Timer 2,
and can individually enable/disable the DIOs.

Parameters
u8Timer Identity of timer:

E_AHI_TIMER_0 (Timer 0)
E_AHI_TIMER_1 (Timer 1)

bDIOEnable Enable/disable use of associated DIOs by timer:
TRUE to enable
FALSE to disable (so available as GPIOs)

Returns
None

void vAHI_TimerDIOControl(uint8 u8Timer,
bool_t bDIOEnable);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 245

Chapter 23
Timer Functions

vAHI_TimerFineGrainDIOControl (JN5148 Only)

Description
This function allows the DIOs associated with the timers on the JN5148 device to be
enabled/disabled for use by the timers. The function allows the DIOs for all the timers
to be configured in one call: Timer 0, Timer 1 and Timer 2.

By default, all these DIOs are enabled for timer use. Therefore, you can use this
function to release those DIOs that you do not wish to use for the timers. The
released DIOs will then be available as GPIOs (General Purpose Inputs/Outputs).
You should perform this configuration before the timers are enabled using
vAHI_TimerEnable(), in order to avoid glitching on the GPIOs during timer
operation.

The DIO configuration information is passed into the function as an 8-bit bitmap. The
individual bit assigments are detailed in the table below. A bit is set to 1 to disable
the corresponding DIO and is set to 0 to enable the DIO for timer use.

Parameters
u8BitMask Bitmap containing DIO configuration information for all timers

(see above)

Returns
None

void vAHI_TimerFineGrainDIOControl(uint8 u8BitMask);

Bit Timer Input/Output and DIO

0 Timer 0 external gate/event input on DIO8

1 Timer 0 capture input on DIO9

2 Timer 0 PWM output on DIO10

3 Timer 1 external gate/event input on DIO11

4 Timer 1 capture input on DIO12

5 Timer 1 PWM output on DIO13

6 Timer 2 PWM output on DIO11

7 Reserved

Note: DIO11 is shared between Timer 1 and Timer 2. If this
DIO is enabled for use by both timers, Timer 2 will take
precedence.
246 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
u8AHI_TimerFired

Description
This function obtains the interrupt status of the specified timer. The function also
clears interrupt status after reading it.

Parameters
u8Timer Identity of timer:

E_AHI_TIMER_0 (Timer 0)
E_AHI_TIMER_1 (Timer 1)
E_AHI_TIMER_2 (Timer 2 - JN5148 only)

Returns
Bitmap:

Returned value logical ANDed with E_AHI_TIMER_RISE_MASK - will be
non-zero if interrupt for low-to-high transition (output rising) has been set
Returned value logical ANDed with E_AHI_TIMER_PERIOD_MASK - will be
non-zero if interrupt for high-to-low transition (end of period) has been set

uint8 u8AHI_TimerFired(uint8 u8Timer);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 247

Chapter 23
Timer Functions

vAHI_Timer0RegisterCallback

Description
This function registers a user-defined callback function that will be called when the
Timer 0 interrupt is triggered.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32AHI_Init() on waking.

Interrupt handling is described in Appendix A.

Parameters
PrTimer0Callback Pointer to callback function to be registered

Returns
None

void vAHI_Timer0RegisterCallback(
PR_HWINT_APPCALLBACK PrTimer0Callback);
248 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_Timer1RegisterCallback

Description
This function registers a user-defined callback function that will be called when the
Timer 1 interrupt is triggered.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32AHI_Init() on waking.

Interrupt handling is described in Appendix A.

Parameters
PrTimer1Callback Pointer to callback function to be registered

Returns
None

void vAHI_Timer1RegisterCallback(
PR_HWINT_APPCALLBACK PrTimer1Callback);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 249

Chapter 23
Timer Functions

vAHI_Timer2RegisterCallback (JN5148 Only)

Description
This function registers a user-defined callback function that will be called when the
Timer 2 interrupt is triggered on the JN5148 device.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32AHI_Init() on waking.

Interrupt handling is described in Appendix A.

Parameters
PrTimer2Callback Pointer to callback function to be registered

Returns
None

void vAHI_Timer2RegisterCallback(
PR_HWINT_APPCALLBACK PrTimer2Callback);
250 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
24. Wake Timer Functions
This chapter details the functions for controlling the wake timers. The JN51xx
microcontrollers include two wake timers, denoted Wake Timer 0 and Wake Timer 1.
These are 35-bit timers on the JN5148 device and 32-bit timers on the JN5139 device.

The wake timers are normally used to time sleep periods and can be programmed to
generate interrupts when the timeout period is reached. They can also be used
outside of sleep periods, while the CPU is running (although there is another set of
timers with more functionality that can operate only while the CPU is running - see
Chapter 7).

The wake timers run at a nominal 32 kHz. On the JN5148 device, their 32-kHz clock
source is selectable using the function bAHI_Set32KhzClockMode() described on
page 150 (this clock selection is preserved during sleep). The wake timers may run up
to 30% fast or slow depending on temperature, supply voltage and manufacturing
tolerance. For situations in which accurate timing is required, a self-calibration facility
is provided to time the 32-kHz clock against the 16-MHz system clock.

The wake timer functions are listed below, along with their page references:

Function Page
vAHI_WakeTimerEnable 252
vAHI_WakeTimerStart (JN5139 Only) 253
vAHI_WakeTimerStartLarge (JN5148 Only) 254
vAHI_WakeTimerStop 255
u32AHI_WakeTimerRead (JN5139 Only) 256
u64AHI_WakeTimerReadLarge (JN5148 Only) 257
u8AHI_WakeTimerStatus 258
u8AHI_WakeTimerFiredStatus 259
u32AHI_WakeTimerCalibrate 260

Note: For guidance on using the wake timer functions in
JN5148/JN5139 application code, refer to Chapter 8.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 251

Chapter 24
Wake Timer Functions

vAHI_WakeTimerEnable

Description
This function allows the wake timer interrupt (which is generated when the timer fires)
to be enabled/disabled. If this function is called for a wake timer that is already
running, it will stop the wake timer.

The wake timer can be subsequently started using the function
vAHI_WakeTimerStart().
Wake timer interrupts are handled by the System Controller callback function,
registered using the function vAHI_SysCtrlRegisterCallback().

Parameters
u8Timer Identity of timer:

E_AHI_WAKE_TIMER_0 (Wake Timer 0)
E_AHI_WAKE_TIMER_1 (Wake Timer 1)

bIntEnable Interrupt enable/disable:
TRUE to enable interrupt when wake timer fires
FALSE to disable interrupt

Returns
None

void vAHI_WakeTimerEnable(uint8 u8Timer,
bool_t bIntEnable);
252 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_WakeTimerStart (JN5139 Only)

Description
This function starts the specified 32-bit wake timer with the specified count value on
the JN5139 device. The wake timer will count down from this value, which is set
according to the desired timer duration. On reaching zero, the timer ‘fires’, rolls over
to 0xFFFFFFFF and continues to count down.

The count value, u32Count, is set as the required number of 32-kHz periods. Thus:

Timer duration (in seconds) = u32Count / 32000

Note that the 32-kHz internal clock, which drives the wake timer, may be running up
to 30% fast or slow. For accurate timings, you are advised to first calibrate the clock
using the function u32AHI_WakeTimerCalibrate() and adjust the specified count
value accordingly.

If you wish to enable interrupts for the wake timer, you must call
vAHI_WakeTimerEnable() before calling vAHI_WakeTimerStart(). The wake timer
can be subsequently stopped using vAHI_WakeTimerStop() and can be read using
u32AHI_WakeTimerRead(). Stopping the timer does not affect interrupts that have
been set using vAHI_WakeTimerEnable().

Parameters
u8Timer Identity of timer:

E_AHI_WAKE_TIMER_0 (Wake Timer 0)
E_AHI_WAKE_TIMER_1 (Wake Timer 1)

u32Count Count value in 32-kHz periods, i.e. 32 is 1 millisecond
(values of 0 and 1 must not be used)

Returns
None

void vAHI_WakeTimerStart(uint8 u8Timer,
uint32 u32Count);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 253

Chapter 24
Wake Timer Functions

vAHI_WakeTimerStartLarge (JN5148 Only)

Description
This function starts the specified 35-bit wake timer with the specified count value on
the JN5148 device. The wake timer will count down from this value, which is set
according to the desired timer duration. On reaching zero, the timer ‘fires’, rolls over
to 0x7FFFFFFFF and continues to count down.

The count value, u64Count, is set as the required number of 32-kHz periods. Thus:

Timer duration (in seconds) = u64Count / 32000

Note that the 32-kHz internal clock, which drives the wake timer, may be running up
to 30% fast or slow. For accurate timings, you are advised to first calibrate the clock
using the function u32AHI_WakeTimerCalibrate() and adjust the specified count
value accordingly.

If you wish to enable interrupts for the wake timer, you must call
vAHI_WakeTimerEnable() before calling vAHI_WakeTimerStartLarge(). The
wake timer can be subsequently stopped using vAHI_WakeTimerStop() and can be
read using u64AHI_WakeTimerReadLarge(). Stopping the timer does not affect
interrupts that have been set using vAHI_WakeTimerEnable().

Parameters
u8Timer Identity of timer:

E_AHI_WAKE_TIMER_0 (Wake Timer 0)
E_AHI_WAKE_TIMER_1 (Wake Timer 1)

u64Count Count value in 32-kHz periods, i.e. 32 is 1 millisecond.
This value must not exceed 0x7FFFFFFFF, and the values 0
and 1 must not be used

Returns
None

void vAHI_WakeTimerStartLarge(uint8 u8Timer,
uint64 u64Count);
254 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_WakeTimerStop

Description
This function stops the specified wake timer.

Note that no interrupt will be generated.

Parameters
u8Timer Identity of timer:

E_AHI_WAKE_TIMER_0 (Wake Timer 0)
E_AHI_WAKE_TIMER_1 (Wake Timer 1)

Returns
None

void vAHI_WakeTimerStop(uint8 u8Timer);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 255

Chapter 24
Wake Timer Functions

u32AHI_WakeTimerRead (JN5139 Only)

Description
This function obtains the current value of the specified 32-bit wake timer counter
(which counts down) on the JN5139 device, without stopping the counter.

Note that on reaching zero, the timer ‘fires’, rolls over to 0xFFFFFFFF and continues
to count down. The count value obtained using this function then allows the
application to calculate the time that has elapsed since the wake timer fired.

Parameters
u8Timer Identity of timer:

E_AHI_WAKE_TIMER_0 (Wake Timer 0)
E_AHI_WAKE_TIMER_1 (Wake Timer 1)

Returns
Current value of wake timer counter

uint32 u32AHI_WakeTimerRead(uint8 u8Timer);
256 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
u64AHI_WakeTimerReadLarge (JN5148 Only)

Description
This function obtains the current value of the specified 35-bit wake timer counter
(which counts down) on the JN5148 device, without stopping the counter.

Note that on reaching zero, the timer ‘fires’, rolls over to 0x7FFFFFFFF and
continues to count down. The count value obtained using this function then allows
the application to calculate the time that has elapsed since the wake timer fired.

Parameters
u8Timer Identity of timer:

E_AHI_WAKE_TIMER_0 (Wake Timer 0)
E_AHI_WAKE_TIMER_1 (Wake Timer 1)

Returns
Current value of wake timer counter

uint64 u64AHI_WakeTimerReadLarge(uint8 u8Timer);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 257

Chapter 24
Wake Timer Functions

u8AHI_WakeTimerStatus

Description
This function determines which wake timers are active. It is possible to have more
than one wake timer active at the same time. The function returns a bitmap where
the relevant bits are set to show which wake timers are active.

Note that a wake timer remains active after its countdown has reached zero (when
the timer rolls over to 0xFFFFFFFF and continues to count down).

Parameters
None

Returns
Bitmap:

Returned value logical ANDed with E_AHI_WAKE_TIMER_MASK_0 will be
non-zero if Wake Timer 0 is active
Returned value logical ANDed with E_AHI_WAKE_TIMER_MASK_1 will be
non-zero if Wake Timer 1 is active

uint8 u8AHI_WakeTimerStatus(void);
258 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
u8AHI_WakeTimerFiredStatus

Description
This function determines which wake timers have fired (by having passed zero). The
function returns a bitmap where the relevant bits are set to show which timers have
fired. Any fired timer status is cleared as a result of this call.

Parameters
None

Returns
Bitmap:

Returned value logical ANDed with E_AHI_WAKE_TIMER_MASK_0 will be
non-zero if Wake Timer 0 has fired
Returned value logical ANDed with E_AHI_WAKE_TIMER_MASK_1 will be
non-zero if Wake Timer 1 has fired

uint8 u8AHI_WakeTimerFiredStatus(void);

Note: If you wish to use this function to check whether a wake
timer caused a wake-up event, you must call it before
u32AHI_Init(). Alternatively, you can determine the wake
source as part of your System Controller callback function.
For more information, refer to Appendix A.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 259

Chapter 24
Wake Timer Functions

u32AHI_WakeTimerCalibrate

Description
This function requests a calibration of the 32-kHz internal clock (on which the wake
timers run) against the more accurate 16-MHz system clock. Note that the 32-kHz
clock has a tolerance of ±30%.

This function uses Wake Timer 0 and takes twenty 32-kHz clock periods to complete
the calibration.

The returned result, n, is interpreted as follows:

n = 10000 ⇒ clock running at 32 kHz
n > 10000 ⇒ clock running slower than 32 kHz
n < 10000 ⇒ clock running faster than 32 kHz

The returned value can be used to adjust the time interval value used to program a
wake timer. If the required timer duration is T seconds, the count value N that must
be specified in vAHI_WakeTimerStart() or vAHI_WakeTimerStartLarge() is given
by N = (10000/n) x 32000 x T.

Parameters
None

Returns
Calibration measurement, n (see above)

uint32 u32AHI_WakeTimerCalibrate(void);
260 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
25. Tick Timer Functions
This chapter details the functions for controlling the Tick Timer on the JN51xx
microcontrollers - this is a hardware timer, derived from the 16-MHz system clock. It
can be used to generate timing interrupts to software.

The Tick Timer can be used to implement:

regular events, such as ticks for software timers or an operating system
a high-precision timing reference
system monitor timeouts, as used in a watchdog timer

The tick timer functions are listed below, along with their page references:

Function Page
vAHI_TickTimerConfigure 262
vAHI_TickTimerInterval 263
vAHI_TickTimerWrite 264
u32AHI_TickTimerRead 265
vAHI_TickTimerIntEnable 266
bAHI_TickTimerIntStatus 267
vAHI_TickTimerIntPendClr 268
vAHI_TickTimerInit (JN5139 Only) 269
vAHI_TickTimerRegisterCallback (JN5148 Only) 270

Note 1: For guidance on using the tick timer functions in
JN5148/JN5139 application code, refer to Chapter 9.

Note 2: On the JN5139 device, the Tick Timer cannot
be used to bring the CPU out of doze mode.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 261

Chapter 25
Tick Timer Functions

vAHI_TickTimerConfigure

Description
This function configures the operating mode of the Tick Timer and enables the timer.
It can also be used to disable the timer.

The Tick Timer counts upwards until the count matches a pre-defined reference
value. This function determines what the timer will do once the reference count has
been reached. The options are:

Continue counting upwards
Restart the count from zero
Stop counting (single-shot mode)

The reference count is set using the function vAHI_TickTimerInterval(). An interrupt
can be enabled which is generated on reaching the reference count - see the
description of vAHI_TickTimerIntEnable().
The Tick Timer will start running as soon as vAHI_TickTimerConfigure() enables it
in one of the above modes, irrespective of the state of its counter. In practice, to use
the Tick Timer:

1. Call vAHI_TickTimerConfigure() to disable the Tick Timer.
2. Call vAHI_TickTimerWrite() to set an appropriate starting value for the count.
3. Call vAHI_TickTimerInterval() to set the reference count.
4. Call vAHI_TickTimerConfigure() again to start the Tick Timer in the desired mode.
On device power-up/reset, the Tick Timer is disabled. However, you are advised to
always follow the above sequence of function calls to start the timer.

If the Tick Timer is enabled in single-shot mode, once it has stopped (on reaching the
reference count), it can be started again simply by setting another starting value
using vAHI_TickTimerWrite().

Parameters
u8Mode Tick Timer operating mode

Action to take on reaching reference count:
E_AHI_TICK_TIMER_CONT (continue counting)
E_AHI_TICK_TIMER_RESTART (restart from zero)
E_AHI_TICK_TIMER_STOP (stop timer)
Disable timer:
E_AHI_TICK_TIMER_DISABLE (disable timer)

Returns
None

void vAHI_TickTimerConfigure(uint8 u8Mode);
262 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_TickTimerInterval

Description
This function sets the 28-bit reference count for the Tick Timer.

This is the value with which the actual count of the Tick Timer is compared. The
action taken when the count reaches this reference value is determined using the
function vAHI_TickTimerConfigure(). An interrupt can be also enabled which is
generated on reaching the reference count - see the function
vAHI_TickTimerIntEnable().

Parameters
u32Interval Tick Timer reference count (in the range 0 to 0x0FFFFFFF)

Returns
None

void vAHI_TickTimerInterval(uint32 u32Interval);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 263

Chapter 25
Tick Timer Functions

vAHI_TickTimerWrite

Description
This function sets the initial count of the Tick Timer. If the timer is enabled, it will
immediately start counting from this value.

By specifying a count of zero, the function can be used to reset the Tick Timer count
to zero at any time.

Parameters
u32Count Tick Timer count (in the range 0 to 0xFFFFFFFF)

Returns
None

void vAHI_TickTimerWrite(uint32 u32Count);
264 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
u32AHI_TickTimerRead

Description
This function obtains the current value of the Tick Timer counter.

Parameters
None

Returns
Value of the Tick Timer counter

uint32 u32AHI_TickTimerRead(void);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 265

Chapter 25
Tick Timer Functions

vAHI_TickTimerIntEnable

Description
This function can be used to enable Tick Timer interrupts, which are generated when
the Tick Timer count reaches the reference count specified using the function
vAHI_TickTimerInterval().
A user-defined callback function, which is invoked when the interrupt is generated,
can be registered using the function vAHI_TickTimerRegisterCallback() for
JN5148 or vAHI_TickTimerInit() for JN5139.

Note that Tick Timer interrupts can be used to wake the CPU from doze mode on the
JN5148 device, but not on the JN5139 device.

Parameters
bIntEnable Enable/disable interrupts:

TRUE to enable interrupts
FALSE to disable interrupts

Returns
None

void vAHI_TickTimerIntEnable(bool_t bIntEnable);
266 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
bAHI_TickTimerIntStatus

Description
This function obtains the current interrupt status of the Tick Timer.

Parameters
None

Returns
TRUE if an interrupt is pending, FALSE otherwise

bool_t bAHI_TickTimerIntStatus(void);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 267

Chapter 25
Tick Timer Functions

vAHI_TickTimerIntPendClr

Description
This function clears any pending Tick Timer interrupt.

Parameters
None

Returns
None

void vAHI_TickTimerIntPendClr(void);
268 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_TickTimerInit (JN5139 Only)

Description
This function registers a user-defined callback function that will be called on a
JN5139 device when the Tick Timer interrupt is triggered.

Note that the callback function will be executed in interrupt context. You must
therefore ensure that it returns to the main program in a timely manner.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32AHI_Init() on waking.

Interrupt handling is described in Appendix A.

Note that the equivalent function for JN5148 is vAHI_TickTimerRegisterCallback().

Parameters
prTickTimerCallback Pointer to callback function to be registered

Returns
None

void vAHI_TickTimerInit(
PR_HWINT_APPCALLBACK prTickTimerCallback);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 269

Chapter 25
Tick Timer Functions

vAHI_TickTimerRegisterCallback (JN5148 Only)

Description
This function registers a user-defined callback function that will be called on the
JN5148 device when the Tick Timer interrupt is triggered.

Note that the callback function will be executed in interrupt context. You must
therefore ensure that it returns to the main program in a timely manner.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32AHI_Init() on waking.

Interrupt handling is described in Appendix A.

Note that the equivalent function for JN5139 is vAHI_TickTimerInit().

Parameters
prTickTimerCallback Pointer to callback function to be registered

Returns
None

void vAHI_TickTimerRegisterCallback(
PR_HWINT_APPCALLBACK prTickTimerCallback);
270 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
26. Watchdog Timer Functions (JN5148 Only)
This chapter describes the functions for configuring and controlling the watchdog timer
on the JN5148 microcontroller.

The watchdog timer functions are listed below, along with their page references:

Function Page
vAHI_WatchdogStart (JN5148 Only) 272
vAHI_WatchdogStop (JN5148 Only) 273
vAHI_WatchdogRestart (JN5148 Only) 274
u16AHI_WatchdogReadValue (JN5148 Only) 275
bAHI_WatchdogResetEvent (JN5148 Only) 276

Note: For information on the watchdog timer and
guidance on using the watchdog timer functions in
JN5148 application code, refer to Chapter 10.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 271

Chapter 26
Watchdog Timer Functions (JN5148 Only)

vAHI_WatchdogStart (JN5148 Only)

Description
This function starts the watchdog timer and sets the timeout period. Note that the
watchdog timer is enabled by default on the JN5148 device and is run with the
maximum possible timeout period of 16392 ms. If this function is called while the
watchdog timer is running, it allows the timer to continue uninterrupted but modifies
the timeout period.

The timeout period of the watchdog timer is determined by an index, specified
through the parameter u8Prescale, and is calculated according to the formulae:

Timeout Period = 8 ms if u8Prescale = 0

Timeout Period = [2(Prescale - 1) + 1] x 8 ms if 1 ≤ u8Prescale ≤ 12

The actual timeout period obtained may be up to 30% less than the calculated value
due to variations in the 32-kHz RC oscillator.

Note that the watchdog timer will continue to run during doze mode but not during
sleep or deep sleep mode, or when the hardware debugger has taken control of the
CPU (it will, however, automatically restart using the same prescale value when the
debugger un-stalls the CPU).

Parameters
u8Prescale Index in the range 0 to 12, which determines the watchdog

timeout period (see above formulae) - gives timeout periods in
the range 8 to 16392 ms

Returns
None

void vAHI_WatchdogStart(uint8 u8Prescale);
272 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_WatchdogStop (JN5148 Only)

Description
This function stops the watchdog timer and freezes the timer count.

Parameters
None

Returns
None

void vAHI_WatchdogStop(void);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 273

Chapter 26
Watchdog Timer Functions (JN5148 Only)

vAHI_WatchdogRestart (JN5148 Only)

Description
This function re-starts the watchdog timer from the beginning of the timeout period.

Parameters
None

Returns
None

void vAHI_WatchdogRestart(void);
274 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
u16AHI_WatchdogReadValue (JN5148 Only)

Description
This function obtains an indication of the progress of the watchdog timer towards its
timeout period.

The returned value is an integer in the range 0 to 255, where:

0 indicates that the timer has just started a new count
255 indicates that the timer has almost reached the timeout period

Thus, each increment of the returned value represents 1/256 of the watchdog period
- for example, a reported value of 128 indicates that the timer is about half-way
through its count.

If this function is called on a transition (increment) of the watchdog counter, the result
will be unreliable. You are therefore advised to call this function repeatedly until two
consecutive results are the same.

Parameters
None

Returns
Integer value in the range 0 to 255, indicating the progress of the watchdog timer

uint16 u16AHI_WatchdogReadValue(void);

Tip: This function is useful during code development and
debug to ensure that the application does not reset the
watchdog timer too close to the watchdog timeout period. The
function should not be needed in the final application.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 275

Chapter 26
Watchdog Timer Functions (JN5148 Only)

bAHI_WatchdogResetEvent (JN5148 Only)

Description
This function determines whether the last device reset was caused by a watchdog
timer expiry event.

Parameters
None

Returns
TRUE if a reset occurred due to a watchdog event, FALSE otherwise

bool_t bAHI_WatchdogResetEvent(void);
276 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
27. Pulse Counter Functions (JN5148 Only)
This chapter details the functions for controlling and monitoring the pulse counters on
the JN5148 device. A pulse counter detects and counts pulses on an external signal
that is input on an associated DIO pin.

Two 16-bit pulse counters are provided on the JN5148 device, Pulse Counter 0 and
Pulse Counter 1. The two counters can be combined together to provide a single 32-
bit counter, if desired.

The pulse counter functions are listed below, along with their page references:

Function Page
bAHI_PulseCounterConfigure (JN5148 Only) 278
bAHI_SetPulseCounterRef (JN5148 Only) 280
bAHI_StartPulseCounter (JN5148 Only) 281
bAHI_StopPulseCounter (JN5148 Only) 282
u32AHI_PulseCounterStatus (JN5148 Only) 283
bAHI_Read16BitCounter (JN5148 Only) 284
bAHI_Read32BitCounter (JN5148 Only) 285
bAHI_Clear16BitPulseCounter (JN5148 Only) 286
bAHI_Clear32BitPulseCounter (JN5148 Only) 287

Note: For information on the pulse counters and
guidance on using the pulse counter functions in
JN5148 application code, refer to Chapter 11.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 277

Chapter 27
Pulse Counter Functions (JN5148 Only)

bAHI_PulseCounterConfigure (JN5148 Only)

Description
This function configures the specified pulse counter on the JN5148 device. The input
signal will automatically be taken from the DIO associated with the specified counter:
DIO1 for Pulse Counter 0 and DIO8 for Pulse Counter 1. The following features are
configured:

Edge detected (bEdgeType): The counter can be configured to detect a pulse on its
rising edge (low-to-high transition) or falling edge (high-to-low transition).
Debounce (u8Debounce): This feature can be enabled so that a number of identical
consecutive input samples are required before a change in the input signal is
recognised. When disabled, the device can sleep with the 32-kHz oscillator off.
Combined counter (bCombine): The two 16-bit pulse counters can be combined into a
single 32-bit pulse counter. The combined counter is configured according to the Pulse
Counter 0 settings (the Pulse Counter 1 settings are ignored) and the input signal is
taken from DIO1.
Interrupts (bIntEnable): Interrupts can be configured to occur when the count passes a
reference value, specified using bAHI_SetPulseCounterRef(). These interrupts are
handled as System Controller interrupts by the callback function registered with
vAHI_SysCtrlRegisterCallback() - also refer to Appendix A.

Parameters
u8Counter Identity of pulse counter:

E_AHI_PC_0 (Pulse Counter 0 or combined counter)
E_AHI_PC_1 (Pulse Counter 1)

bEdgeType Edge type on which pulse detected (and count incremented):
0: Rising edge (low-to-high transition)
1: Falling edge (high-to-low transition)

u8Debounce Debounce setting - number of identical consecutive input samples before
change in input value is recognised:
0: No debounce (maximum input frequency of 100 kHz)
1: 2 samples (maximum input frequency of 3.7 kHz)
2: 4 samples (maximum input frequency of 2.2 kHz)
3: 8 samples (maximum input frequency of 1.2 kHz)

bCombine Enable/disable combined 32-bit counter:
TRUE - Enable combined counter (also set u8Counter to E_AHI_PC_0)
FALSE - Disable combined counter (use separate counters)

bIntEnable Enable/disable pulse counter interrupts:
TRUE - Enable interrupts
FALSE - Disable interrrupts

bool_t bAHI_PulseCounterConfigure(uint8 u8Counter,
bool_t bEdgeType,
uint8 u8Debounce,
bool_t bCombine,
bool_t bIntEnable);
278 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
Returns
TRUE if valid pulse counter specified, FALSE otherwise
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 279

Chapter 27
Pulse Counter Functions (JN5148 Only)

bAHI_SetPulseCounterRef (JN5148 Only)

Description
This function can be used to set the reference value for the specified counter.

If pulse counter interrupts are enabled through bAHI_PulseCounterConfigure(), an
interrupt will be generated when the counter passes the reference value - that is,
when the count reaches (reference value + 1). This value is retained during sleep
and, when generated, the pulse counter interrupt can wake the device from sleep.

The reference value must be 16-bit when specified for the individual pulse counters,
but can be a 32-bit value when specified for the combined counter (enabled through
bAHI_PulseCounterConfigure()). The reference value can be modified at any time.

The pulse counter can increment beyond its reference value and when it reaches its
maximum value (65535, or 4294967295 for the combined counter), it will wrap
around to zero.

Parameters
u8Counter Identity of pulse counter:

E_AHI_PC_0 (Pulse Counter 0 or combined counter)
E_AHI_PC_1 (Pulse Counter 1)

u32RefValue Reference value to be set - as a 16-bit value, it must be
specified in the lower 16 bits of this 32-bit parameter, unless
for the combined counter when a full 32-bit value should be
specified

Returns
TRUE if valid pulse counter and reference count
FALSE if invalid pulse counter or reference count (>16 bits for single counter)

bool_t bAHI_SetPulseCounterRef(uint8 u8Counter,
uint32 u32RefValue);
280 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
bAHI_StartPulseCounter (JN5148 Only)

Description
This function starts the specified pulse counter.

Note that the count may increment by one when this function is called (even though
no pulse has been detected).

Parameters
u8Counter Identity of pulse counter:

E_AHI_PC_0 (Pulse Counter 0 or combined counter)
E_AHI_PC_1 (Pulse Counter 1)

Returns
TRUE if valid pulse counter has been specified and started, FALSE otherwise

bool_t bAHI_StartPulseCounter(uint8 u8Counter);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 281

Chapter 27
Pulse Counter Functions (JN5148 Only)

bAHI_StopPulseCounter (JN5148 Only)

Description
This function stops the specified pulse counter.

Note that the count will freeze when this function is called. Thus, this count can
subsequently be read using bAHI_Read16BitCounter() or
bAHI_Read32BitCounter() for the combined counter.

Parameters
u8Counter Identity of pulse counter:

E_AHI_PC_0 (Pulse Counter 0 or combined counter)
E_AHI_PC_1 (Pulse Counter 1)

Returns
TRUE if valid pulse counter has been specified and stopped, FALSE otherwise

bool_t bAHI_StopPulseCounter(uint8 u8Counter);
282 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
u32AHI_PulseCounterStatus (JN5148 Only)

Description
This function obtains the status of the pulse counters on the JN5148 device. It can
be used to check whether the pulse counters have reached their reference values
(set using the function bAHI_SetPulseCounterRef()).
The status of each pulse counter is returned by this function in a 32-bit bitmap value
- bit 22 for Pulse Counter 0 and bit 23 for Pulse Counter 1. If the combined pulse
counter is in use, its status is returned through bit 22.

If a pulse counter has reached its reference value then once the function has
returned this status, the internal status bit is cleared for the corresponding pulse
counter.

The function can be used to poll the pulse counters. Alternatively, interrupts can be
enabled (through bAHI_PulseCounterConfigure()) that are generated when the
pulse counters pass their reference values.

Parameters
None

Returns
32-bit value in which bit 23 indicates the status of Pulse Counter 1 and bit 22
indicates the status of Pulse Counter 0 or the combined counter. The bit values are
interpreted as follows:

1 - pulse counter has reached its reference value
0 - pulse counter is still counting or is not in use

uint32 u32AHI_PulseCounterStatus(void);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 283

Chapter 27
Pulse Counter Functions (JN5148 Only)

bAHI_Read16BitCounter (JN5148 Only)

Description
This function obtains the current count of the specified 16-bit pulse counter, without
stopping the counter or clearing the count.

Note that this function can only be used to read the value of an individual 16-bit
counter (Pulse Counter 0 or Pulse Counter 1) and cannot read the value of the
combined 32-bit counter. If the combined counter is in use, its count value can be
obtained using the function bAHI_Read32BitCounter().

Parameters
u8Counter Identity of pulse counter:

E_AHI_PC_0 (Pulse Counter 0)
E_AHI_PC_1 (Pulse Counter 1)

*pu16Count Pointer to location to receive 16-bit count

Returns
TRUE if valid pulse counter specified, FALSE otherwise

bool_t bAHI_Read16BitCounter(uint8 u8Counter,
uint16 *pu16Count);
284 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
bAHI_Read32BitCounter (JN5148 Only)

Description
This function obtains the current count of the combined 32-bit pulse counter, without
stopping the counter or clearing the count.

Note that this function can only be used to read the value of the combined 32-bit
pulse counter and cannot read the value of a 16-bit pulse counter used in isolation.
The returned Boolean value of this function indicates if the pulse counters have been
combined. If the combined counter is not use, the count value of an individual 16-bit
pulse counter can be obtained using the function bAHI_Read16BitCounter().

Parameters
*pu32Count Pointer to location to receive 32-bit count

Returns
TRUE if combined 32-bit counter in use, FALSE otherwise

bool_t bAHI_Read32BitCounter(uint32 *pu32Count);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 285

Chapter 27
Pulse Counter Functions (JN5148 Only)

bAHI_Clear16BitPulseCounter (JN5148 Only)

Description
This function clears the count of the specified 16-bit pulse counter.

Note that this function can only be used to clear the count of an individual 16-bit
counter (Pulse Counter 0 or Pulse Counter 1) and cannot clear the count of the
combined 32-bit counter. To clear the latter, use the function
bAHI_Clear32BitPulseCounter().

Parameters
u8Counter Identity of pulse counter:

E_AHI_PC_0 (Pulse Counter 0)
E_AHI_PC_1 (Pulse Counter 1)

Returns
TRUE if valid pulse counter specified, FALSE otherwise

bool_t bAHI_Clear16BitPulseCounter(uint8 const u8Counter);
286 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
bAHI_Clear32BitPulseCounter (JN5148 Only)

Description
This function clears the count of the combined 32-bit pulse counter.

Note that this function can only be used to clear the count of the combined 32-bit
pulse counter and cannot clear the count of a 16-bit pulse counter used in isolation.
To clear the latter, use the function bAHI_Clear16BitPulseCounter().

Parameters
None

Returns
TRUE if combined 32-bit counter in use, FALSE otherwise

bool_t bAHI_Clear32BitPulseCounter(void);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 287

Chapter 27
Pulse Counter Functions (JN5148 Only)

288 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
28. Serial Interface (2-wire) Functions
This chapter details the functions for controlling the 2-wire Serial Interface (SI) on the
JN51xx microcontrollers. The Serial Interface is logic-compatible with similar
interfaces such as I2C and SMbus.

Two sets of functions are described in this chapter, one set for an SI master and
another set for an SI slave:

An SI master is a feature of the JN51xx microcontrollers and functions for
controlling the SI master are described in Section 28.1.
An SI slave is provided only on the JN5148 device and the functions for
controlling the SI slave are described in Section 28.2.

Tip: The protocol used by the Serial Interface is detailed
in the I2C Specification (available from www.nxp.com).

Note: For guidance on using the SI functions in JN5148/
JN5139 application code, refer to Chapter 12.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 289

Chapter 28
Serial Interface (2-wire) Functions

28.1 SI Master Functions
This section details the functions for controlling a 2-wire Serial Interface (SI) master
on a JN51xx microcontroller.

The SI master can implement bi-directional communication with a slave device on the
SI bus (SI slave functions are provided for the JN5148 device and are described in
Section 28.2). Note that the SI bus on the JN5148 device can have more than one
master, but multiple masters cannot use the bus at the same time - to avoid this, an
arbitration scheme is provided.

When enabled, this interface uses DIO14 as a clock and DIO15 as a bi-directional data
line. The clock is scaled from the 16-MHz system clock.

The SI master functions are listed below, along with their page references:

Function Page
vAHI_SiConfigure (JN5139 Only) 291
vAHI_SiMasterConfigure (JN5148 Only) 292
vAHI_SiMasterDisable (JN5148 Only) 293
bAHI_SiMasterSetCmdReg 294
vAHI_SiMasterWriteSlaveAddr 296
vAHI_SiMasterWriteData8 297
u8AHI_SiMasterReadData8 298
bAHI_SiMasterPollBusy 299
bAHI_SiMasterPollTransferInProgress 300
bAHI_SiMasterCheckRxNack 301
bAHI_SiMasterPollArbitrationLost 302
vAHI_SiRegisterCallback 303

Note that the SI function set in earlier releases of this API comprised a subset of the
above functions with slightly different names (the word ‘Master’ was omitted). These
old names are still valid (they are aliased to the new functions) and are as follows:

vAHI_SiSetCmdReg
vAHI_SiWriteData8
vAHI_SiWriteSlaveAddr
u8AHI_SiReadData8
bAHI_SiPollBusy
bAHI_SiPollTransferInProgress
bAHI_SiPollRxNack (previously bAHI_SiCheckRxNack)
bAHI_SiPollArbitrationLost
290 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_SiConfigure (JN5139 Only)

Description
This function is used to enable/disable and configure the 2-wire Serial Interface (SI)
master on the JN5139 device. This function must be called to enable the SI block
before any other SI master function is called.

The operating frequency, derived from the 16-MHz system clock using the specified
prescaler u16PreScaler, is given by:

Operating frequency = 16/[(PreScaler + 1) x 5] MHz

The prescaler is a 16-bit value for the JN5139 device.

Parameters
bSiEnable Enable/disable Serial Interface master:

TRUE - enable
FALSE - disable

bInterruptEnable Enable/disable Serial Interface interrupt:
TRUE - enable
FALSE - disable

u16PreScaler 16-bit clock prescaler (see above)

Returns
None

void vAHI_SiConfigure(bool_t bSiEnable,
bool_t bInterruptEnable,
uint16 u16PreScaler);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 291

Chapter 28
Serial Interface (2-wire) Functions

vAHI_SiMasterConfigure (JN5148 Only)

Description
This function is used to configure and enable the 2-wire Serial Interface (SI) master
on the JN5148 device. This function must be called to enable the SI block before any
other SI master function is called. To later disable the interface, the function
vAHI_SiMasterDisable() must be used.

The operating frequency, derived from the 16-MHz system clock using the specified
prescaler u8PreScaler, is given by:

Operating frequency = 16/[(PreScaler + 1) x 5] MHz

The prescaler is an 8-bit value for the JN5148 device.

A pulse suppression filter can be enabled to suppress any spurious pulses (high or
low) with a pulse width less than 62.5 ns on the clock and data lines.

Parameters
bPulseSuppressionEnable Enable/disable pulse suppression filter:

TRUE - enable
FALSE - disable

bInterruptEnable Enable/disable Serial Interface interrupt:
TRUE - enable
FALSE - disable

u8PreScaler 8-bit clock prescaler (see above)

Returns
None

void vAHI_SiMasterConfigure(
bool_t bPulseSuppressionEnable,
bool_t bInterruptEnable,
uint8 u8PreScaler);
292 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_SiMasterDisable (JN5148 Only)

Description
This function disables (and powers down) the SI master on the JN5148 device, if it
has been previously enabled using the function vAHI_SiMasterConfigure().

Parameters
None

Returns
None

void vAHI_SiMasterDisable(void);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 293

Chapter 28
Serial Interface (2-wire) Functions

bAHI_SiMasterSetCmdReg

Description
This function configures the combination of I2C-protocol commands for a transfer on
the SI bus and starts the transfer of the data held in the SI master’s transmit buffer.

Up to four commands can be used to perform an I2C-protocol transfer - Start, Stop,
Write, Read. This function allows these commands to be combined to form a
complete or partial transfer sequence. The valid command combinations that can be
specified are summarised below.

The above command combinations will result in the function returning TRUE, while
command combinations that are not in the above list are invalid and will result in a
FALSE return code.

The function must be called immediately after vAHI_SiMasterWriteSlaveAddr(),
which puts the destination slave address (for the subsequent data transfer) into the
transmit buffer. It must then be called immediately after vAHI_SiMasterWriteData()
to start the transfer of data (from the transmit buffer).

For more details of implementing a data transfer on the SI bus, refer to Section 12.1.

bool_t bAHI_SiMasterSetCmdReg(bool_t bSetSTA,
bool_t bSetSTO,
bool_t bSetRD,
bool_t bSetWR,
bool_t bSetAckCtrl,
bool_t bSetIACK);

Start Stop Read Write Resulting Instruction to SI Bus

0 0 0 0 No active command (idle)

1 0 0 1 Start followed by Write

1 1 0 1 Start followed by Write followed by Stop

0 1 1 0 Read followed by Stop

0 1 0 1 Write followed by Stop

0 0 0 1 Write only

0 0 1 0 Read only

0 1 0 0 Stop only

Caution: If interrupts are enabled, this function should
not be called from the user-defined callback function
registered via vAHI_SiRegisterCallback().
294 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
Parameters
bSetSTA Generate START bit to gain control of the SI bus (must not be

enabled with STOP bit):
E_AHI_SI_START_BIT
E_AHI_SI_NO_START_BIT

bSetSTO Generate STOP bit to release control of the SI bus (must not
be enabled with START bit):
E_AHI_SI_STOP_BIT
E_AHI_SI_NO_STOP_BIT

bSetRD Read from slave (cannot be enabled with slave write):
E_AHI_SI_SLAVE_READ
E_AHI_SI_NO_SLAVE_READ

bSetWR Write to slave (cannot be enabled with slave read):
E_AHI_SI_SLAVE_WRITE
E_AHI_SI_NO_SLAVE_WRITE

bSetAckCtrl Send ACK or NACK to slave after each byte read:
E_AHI_SI_SEND_ACK (to indicate ready for next byte)
E_AHI_SI_SEND_NACK (to indicate no more data required)

bSetIACK Generate interrupt acknowledge (should not normally be
required as interrupt is cleared by the interrupt handler):
E_AHI_SI_IRQ_ACK
E_AHI_SI_NO_IRQ_ACK (normally the required setting)

Returns
TRUE if specified command combination is legal
FALSE if specified command combination is illegal (will result in no action by device)

Note: This function replaces vAHI_SiMasterSetCmdReg(),
which returns no value. However, the previous function is still
available in the API for backward compatibility.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 295

Chapter 28
Serial Interface (2-wire) Functions

vAHI_SiMasterWriteSlaveAddr

Description
This function is used in setting up communication with a slave device. In this function,
you must specify the address of the slave (see below) and the operation (read or
write) to be performed on the slave. The function puts this information in the SI
master’s transmit buffer, but the information will be not transmitted on the SI bus until
the function bAHI_SiMasterSetCmdReg() is called.

A slave address can be 7-bit or 10-bit, where this address size is set using the
function vAHI_SiSlaveConfigure() called on the slave device.
vAHI_SiMasterWriteSlaveAddr() is used differently for the two slave addressing
modes:

For 7-bit addressing, the parameter u8SlaveAddress must be set to the 7-bit slave
address.
For 10-bit addressing, the parameter u8SlaveAddress must be set to the binary value
011110xx, where xx are the 2 most significant bits of the 10-bit slave address - the code
011110 indicates to the SI bus slaves that 10-bit addressing will be used in the next
communication. The remaining 8 bits of the slave address must subsequently be
specified in a call to vAHI_SiMasterWriteData8().

For more details of implementing a data transfer on the SI bus, refer to Section 12.1.

Parameters
u8SlaveAddress Slave address (see above)
bReadStatus Operation to perform on slave (read or write):

TRUE - configure a read
FALSE - configure a write

Returns
None

void vAHI_SiMasterWriteSlaveAddr(uint8 u8SlaveAddress,
bool_t bReadStatus);
296 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_SiMasterWriteData8

Description
This function writes a single data-byte to the transmit buffer of the SI master.

The contents of the transmit buffer will not be transmitted on the SI bus until the
function bAHI_SiMasterSetCmdReg() is called.

Parameters
u8Out 8 bits of data to transmit

Returns
None

void vAHI_SiMasterWriteData8(uint8 u8Out);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 297

Chapter 28
Serial Interface (2-wire) Functions

u8AHI_SiMasterReadData8

Description
This function obtains a data-byte received over the SI bus.

Parameters
None

Returns
Data read from receive buffer of SI master

uint8 u8AHI_SiMasterReadData8(void);
298 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
bAHI_SiMasterPollBusy

Description
This function checks whether the SI bus is busy (could be in use by another master).

Parameters
None

Returns
TRUE if busy, FALSE otherwise

bool_t bAHI_SiMasterPollBusy(void);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 299

Chapter 28
Serial Interface (2-wire) Functions

bAHI_SiMasterPollTransferInProgress

Description
This function checks whether a transfer is in progress on the SI bus.

Parameters
None

Returns
TRUE if a transfer is in progress, FALSE otherwise

bool_t bAHI_SiMasterPollTransferInProgress(void);
300 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
bAHI_SiMasterCheckRxNack

Description
This function checks whether a NACK or an ACK has been received from the slave
device. If a NACK has been received, this indicates that the SI master should stop
sending data to the slave.

Parameters
None

Returns
TRUE if NACK has occurred
FALSE if ACK has occurred

bool_t bAHI_SiMasterCheckRxNack(void);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 301

Chapter 28
Serial Interface (2-wire) Functions

bAHI_SiMasterPollArbitrationLost

Description
This function checks whether arbitration has been lost (by the local master) on the SI
bus.

Parameters
None

Returns
TRUE if arbitration loss has occurred, FALSE otherwise

bool_t bAHI_SiMasterPollArbitrationLost(void);
302 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_SiRegisterCallback

Description
This function registers a user-defined callback function that will be called when a
Serial Interface interrupt is triggered on the SI master.

Note that this function can be used to register the callback function for a SI slave as
well as for the SI master. The SI interrupt handler will determine whether a SI
interrupt has been generated on a master or slave, and then invoke the relevant
callback function.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32AHI_Init() on waking.

Interrupt handling is described in Appendix A.

Parameters
prSiCallback Pointer to callback function to be registered

Returns
None

void vAHI_SiRegisterCallback(
PR_HWINT_APPCALLBACK prSiCallback);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 303

Chapter 28
Serial Interface (2-wire) Functions

28.2 SI Slave Functions (JN5148 Only)
This section details the functions for controlling a 2-wire Serial Interface (SI) slave on
the JN5148 microcontroller.

The SI slave functions are listed below, along with their page references:

Function Page
vAHI_SiSlaveConfigure (JN5148 Only) 305
vAHI_SiSlaveDisable (JN5148 Only) 307
vAHI_SiSlaveWriteData8 (JN5148 Only) 308
u8AHI_SiSlaveReadData8 (JN5148 Only) 309
vAHI_SiRegisterCallback 310
304 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_SiSlaveConfigure (JN5148 Only)

Description
This function is used to configure and enable the 2-wire Serial Interface (SI) slave on
the JN5148 device. This function must be called before any other SI slave function.
To later disable the interface, the function vAHI_SiSlaveDisable() must be used.

You must specify the address of the slave to be configured and enabled. A 7-bit or
10-bit slave address can be used. The address size must also be specified through
bExtendAddr.

The function allows SI slave interrupts to be enabled on an individual basis using an
8-bit bitmask specified through u8InMaskEnable. The SI slave interrupts are
enumerated as follows:

To obtain the bitmask for u8InMaskEnable, the enumerations for the interrupts to be
enabled can be ORed together.

A pulse suppression filter can be enabled to suppress any spurious pulses (high or
low) with a pulse width less than 62.5 ns on the clock and data lines.

Parameters
u16SlaveAddress Slave address (7-bit or 10-bit, as defined by

bExtendAdd)
bExtendAddr Size of slave address (specified through

u16SlaveAddress):
TRUE - 10-bit address
FALSE - 7-bit address

void vAHI_SiSlaveConfigure(
uint16 u16SlaveAddress,
bool_t bExtendAddr,
bool_t bPulseSuppressionEnable,
uint8 u8InMaskEnable,
bool_t bFlowCtrlMode);

Bit Enumeration Interrupt Description

0 E_AHI_SIS_DATA_RR_MASK Data buffer must be written with data to be read by SI
master

1 E_AHI_SIS_DATA_RTKN_MASK Data taken from buffer by SI master - buffer free for
next data

2 E_AHI_SIS_DATA_WA_MASK Data buffer contains data from SI master to be read by
SI slave

3 E_AHI_SIS_LAST_DATA_MASK Last data transferred (end of burst)

4 E_AHI_SIS_ERROR_MASK I2C protocol error
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 305

Chapter 28
Serial Interface (2-wire) Functions

bPulseSuppressionEnable Enable/disable pulse suppression filter:
TRUE - enable
FALSE - disable

u8InMaskEnable Bitmask of SI slave interrupts to be enabled (see above)
bFlowCtrlMode Flow control mode:

TRUE - use clock stretching to hold bus until space
available to write data
FALSE - use NACK (default)

Returns
None
306 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_SiSlaveDisable (JN5148 Only)

Description
This function disables (and powers down) the SI slave on the JN5148 device, if it has
been previously enabled using the function vAHI_SiSlaveConfigure().

Parameters
None

Returns
None

void vAHI_SiSlaveDisable(void);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 307

Chapter 28
Serial Interface (2-wire) Functions

vAHI_SiSlaveWriteData8 (JN5148 Only)

Description
This function writes a single byte of output data to the data buffer of the SI slave on
the JN5148 device, ready to be read by the SI master.

Parameters
u8Out 8 bits of output data

Returns
None

void vAHI_SiSlaveWriteData8(uint8 u8Out);
308 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
u8AHI_SiSlaveReadData8 (JN5148 Only)

Description
This function reads a single byte of input data from the buffer of the SI slave on the
JN5148 device (where this data byte has been received from the SI master).

Parameters
None

Returns
Input data-byte read from buffer of SI slave

uint8 u8AHI_SiSlaveReadData8(void);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 309

Chapter 28
Serial Interface (2-wire) Functions

vAHI_SiRegisterCallback

Description
This function registers a user-defined callback function that will be called when a
Serial Interface interrupt is triggered on a SI slave.

Note that this function can be used to register the callback function for the SI master
as well as for a SI slave. The SI interrupt handler will determine whether a SI interrupt
has been generated on a master or slave, and then invoke the relevant callback
function.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32AHI_Init() on waking.

Interrupt handling is described in Appendix A.

Parameters
prSiCallback Pointer to callback function to be registered

Returns
None

void vAHI_SiRegisterCallback(
PR_HWINT_APPCALLBACK prSiCallback);
310 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
29. SPI Master Functions
This chapter details the functions for controlling the Serial Peripheral Interface (SPI)
on the JN51xx microcontrollers. The SPI allows high-speed synchronous data transfer
between the microcontroller and peripheral devices. The microcontroller operates as
a master on the SPI bus and all other devices connected to the SPI are expected to
be slave devices under the control of the microcontroller’s CPU.

The SPI master functions are listed below, along with their page references:

Function Page
vAHI_SpiConfigure 312
vAHI_SpiReadConfiguration 314
vAHI_SpiRestoreConfiguration 315
vAHI_SpiSelect 316
vAHI_SpiStop 317
vAHI_SpiStartTransfer32 (JN5139 Only) 319
u32AHI_SpiReadTransfer32 320
vAHI_SpiStartTransfer16 (JN5139 Only) 321
u16AHI_SpiReadTransfer16 322
vAHI_SpiStartTransfer8 (JN5139 Only) 323
u8AHI_SpiReadTransfer8 324
vAHI_SpiContinuous (JN5148 Only) 325
bAHI_SpiPollBusy 326
vAHI_SpiWaitBusy 327
vAHI_SetDelayReadEdge (JN5148 Only) 328
vAHI_SpiRegisterCallback 329

Note 1: For information on the SPI master and guidance
on using the SPI master functions in application code,
refer to Chapter 13.

Note 2: SPI slave functions are detailed in Chapter 30.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 311

Chapter 29
SPI Master Functions

vAHI_SpiConfigure

Description
This function configures and enables the SPI master.

The function allows the number of extra SPI slaves (of the master) to be set. By
default, there is one SPI slave (the Flash memory) with a dedicated IO pin for its
select line. Depending on how many additional slaves are enabled, up to four more
select lines can be set, which use DIO pins 0 to 3. For example, if two additional
slaves are enabled, DIO 0 and 1 will be assigned. Note that once reserved for SPI
use, DIO lines cannot be subsequently released by calling this function again (and
specifying a smaller number of SPI slaves).

The following features are also configurable using this function:

Data transfer order - whether the least significant bit is transferred first or last
Clock polarity and phase, which together determine the SPI mode (0, 1, 2 or 3) and
therefore the clock edge on which data is latched:

SPI Mode 0: polarity=0, phase=0
SPI Mode 1: polarity=0, phase=1
SPI Mode 2: polarity=1, phase=0
SPI Mode 3: polarity=1, phase=1

Clock divisor - the value used to derive the SPI clock from the 16-MHz system clock
SPI interrupt - generated when an API transfer has completed (note that interrupts are
only worth using if the SPI clock frequency is much less than 16 MHz)
Automatic slave selection - enable the programmed slave-select line or lines (see
vAHI_SpiSelect()) to be automatically asserted at the start of a transfer and
de-asserted when the transfer completes. If not enabled, the slave-select lines will
reflect the value set by vAHI_SpiSelect() directly.

Parameters
u8SlaveEnable Number of extra SPI slaves to control. Valid values are 0 to 4

- higher values are truncated to 4
bLsbFirst Enable/disable data transfer with the least significant bit (LSB)

transferred first:
TRUE - enable
FALSE - disable

bPolarity Clock polarity:
FALSE - unchanged
TRUE - inverted

void vAHI_SpiConfigure(uint8 u8SlaveEnable,
bool_t bLsbFirst,
bool_t bPolarity,
bool_t bPhase,
uint8 u8ClockDivider,
bool_t bInterruptEnable,
bool_t bAutoSlaveSelect);
312 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
bPhase Phase:
FALSE - latch data on leading edge of clock
TRUE - latch data on trailing edge of clock

u8ClockDivider Clock divisor in the range 0 to 63 - 16-MHz clock is divided by
2 x u8ClockDivider, but 0 is a special value used when no
clock division is required (to obtain a 16-MHz SPI bus clock)

bInterruptEnable Enable/disable interrupt when an SPI transfer has completed:
TRUE - enable
FALSE - disable

bAutoSlaveSelect Enable/disable automatic slave selection:
TRUE - enable
FALSE - disable

Note that the parameters bPolarity and bPhase are named differently in the library
header file.

Returns
None
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 313

Chapter 29
SPI Master Functions

vAHI_SpiReadConfiguration

Description
This function obtains the current configuration of the SPI bus.

This function is intended to be used in a system where the SPI bus is used in multiple
configurations to allow the state to be restored later using the function
vAHI_SpiRestoreConfiguration(). Therefore, no knowledge is needed of the
configuration details.

Parameters
*ptConfiguration Pointer to location to receive obtained SPI configuration

Returns
None

void vAHI_SpiReadConfiguration(
tSpiConfiguration *ptConfiguration);
314 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_SpiRestoreConfiguration

Description
This function restores the SPI bus configuration using the configuration previously
obtained using vAHI_SpiReadConfiguration().

Parameters
*ptConfiguration Pointer to SPI configuration to be restored

Returns
None

void vAHI_SpiRestoreConfiguration(
tSpiConfiguration *ptConfiguration);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 315

Chapter 29
SPI Master Functions

vAHI_SpiSelect

Description
This function sets the active slave-select line(s) to use.

The slave-select lines are asserted immediately if “automatic slave selection” is
disabled, or otherwise only during data transfers. The number of valid bits in
u8SlaveMask depends on the setting of u8SlaveEnable in a previous call to
vAHI_SpiConfigure(), as follows:

Parameters
u8SlaveMask Bitmap - one bit per slave-select line

Returns
None

void vAHI_SpiSelect(uint8 u8SlaveMask);

u8SlaveEnable Valid bits in u8SlaveMask

0 Bit 0

1 Bits 0, 1

2 Bits 0, 1, 2

3 Bits 0, 1, 2, 3

4 Bits 0, 1, 2, 3, 4
316 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_SpiStop

Description
This function clears any active slave-select lines. It has the same effect as
vAHI_SpiSelect(0).

Parameters
None

Returns
None

void vAHI_SpiStop(void);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 317

Chapter 29
SPI Master Functions

vAHI_SpiStartTransfer (JN5148 Only)

Description
This function starts a data transfer to selected slave(s). The data length for the
transfer can be specified in the range 1 to 32 bits.

It is assumed that vAHI_SpiSelect() has been called to set the slave(s) to
communicate with. If interrupts are enabled for the SPI master, an interrupt will be
generated when the transfer has completed.

The function u32AHI_SpiReadTransfer32() should be used to read the transferred
data, with the data aligned to the right (lower bits).

Parameters
u8CharLen Value in range 0-31 indicating data length for transfer:

0 - 1-bit data
1 - 2-bit data
2 - 3-bit data
:
31 - 32-bit data

u32Out Data to transmit, aligned to the right
(e.g. for an 8-bit transfer, store the data in bits 0-7)

Returns
None

void vAHI_SpiStartTransfer(uint8 u8CharLen, uint32 u32Out);

Note: This function can only be used on the JN5148 device.
For the JN5139 device, individual functions are provided to
start 8-bit, 16-bit and 32-bit transfers.
318 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_SpiStartTransfer32 (JN5139 Only)

Description
This function starts a 32-bit data transfer to selected slave(s). This function can only
be used on the JN5139 device - the equivalent function vAHI_SpiStartTransfer()
must be used on the JN5148 device.

It is assumed that vAHI_SpiSelect() has been called to set the slave(s) to
communicate with. If interrupts are enabled for the SPI master, an interrupt will be
generated when the transfer has completed.

Parameters
u32Out 32 bits of data to transmit

Returns
None

void vAHI_SpiStartTransfer32(uint32 u32Out);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 319

Chapter 29
SPI Master Functions

u32AHI_SpiReadTransfer32

Description
This function obtains the received data after a SPI transfer has completed that was
started using vAHI_SpiStartTransfer32(), vAHI_SpiStartTransfer() or
vAHI_SpiSetContinuous(). In the cases of the last two functions, the read data is
aligned to the right (lower bits).

Parameters
None

Returns
Received data (32 bits)

uint32 u32AHI_SpiReadTransfer32(void);
320 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_SpiStartTransfer16 (JN5139 Only)

Description
This function starts a 16-bit data transfer to selected slave(s). This function can only
be used on the JN5139 device - the equivalent function vAHI_SpiStartTransfer()
must be used on the JN5148 device.

It is assumed that vAHI_SpiSelect() has been called to set the slave(s) to
communicate with. If interrupts are enabled for the SPI master, an interrupt will be
generated when the transfer has completed.

Parameters
u16Out 16 bits of data to transmit

Returns
None

void vAHI_SpiStartTransfer16(uint16 u16Out);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 321

Chapter 29
SPI Master Functions

u16AHI_SpiReadTransfer16

Description
This function obtains the received data after a 16-bit SPI transfer has completed.

Parameters
None

Returns
Received data (16 bits)

uint16 u16AHI_SpiReadTransfer16(void);
322 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_SpiStartTransfer8 (JN5139 Only)

Description
This function starts an 8-bit transfer to selected slaves(s). This function can only be
used on the JN5139 device - the equivalent function vAHI_SpiStartTransfer() must
be used on the JN5148 device.

It is assumed that vAHI_SpiSelect() has been called to set the slave(s) to
communicate with. If interrupts are enabled for the SPI master, an interrupt will be
generated when the transfer has completed. If interrupts are not enabled for the SPI
master, the function bAHI_SpiPollBusy() or vAHI_SpiWaitBusy() can be used to
determine whether the transfer has completed.

Parameters
u8Out 8 bits of data to transmit

Returns
None

void vAHI_SpiStartTransfer8(uint8 u8Out);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 323

Chapter 29
SPI Master Functions

u8AHI_SpiReadTransfer8

Description
This function obtains the received data after a 8-bit SPI transfer has completed.

Parameters
None

Returns
Received data (8 bits)

uint8 u8AHI_SpiReadTransfer8(void);
324 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_SpiContinuous (JN5148 Only)

Description
This function can be used on the JN5148 device to enable/disable continuous read
mode. The function allows continuous data transfers to the SPI master and facilitates
back-to-back reads of the received data. In this mode, incoming data transfers are
automatically controlled by hardware - data is received and the hardware then waits
for this data to be read by the software before allowing the next data transfer.

The data length for an individual transfer can be specified in the range 1 to 32 bits.

If used to enable continuous mode, the function will start the transfers (so there is no
need to call a SPI start transfer function. If used to disable continuous mode, the
function will stop any existing transfers (following the function call, one more transfer
is made before the transfers are stopped).

To determine when data is ready to be read, the application should check whether
the interface is busy by calling the function bAHI_SpiPollBusy(). If it is not busy
receiving data, the data from the previous transfer can be read by calling
u32AHI_SpiReadTransfer32(), with the data aligned to the right (lower bits). Once
the data has been read, the next transfer will automatically occur.

Parameters
bEnable Enable/disable continuous read mode and start/stop

transfers:
TRUE - enable mode and start transfers
FALSE - stop transfers and disable mode

u8CharLen Value in range 0-31 indicating data length for transfer:
0 - 1-bit data
1 - 2-bit data
2 - 3-bit data
:
31 - 32-bit data

Returns
None

void vAHI_SpiContinuous(bool_t bEnable,
uint8 u8CharLen);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 325

Chapter 29
SPI Master Functions

bAHI_SpiPollBusy

Description
This function polls the SPI master to determine whether it is currently busy
performing a data transfer.

Parameters
None

Returns
TRUE if the SPI master is performing a transfer, FALSE otherwise

bool_t bAHI_SpiPollBusy(void);
326 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_SpiWaitBusy

Description
This function waits for the SPI master to complete a transfer and then returns.

Parameters
None

Returns
None

void vAHI_SpiWaitBusy(void);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 327

Chapter 29
SPI Master Functions

vAHI_SetDelayReadEdge (JN5148 Only)

Description
This function can be used on the JN5148 device to introduce a delay to the SCLK
edge used to sample received data. The delay is by half a SCLK period relative to
the normal position (so is the sameedge used by the slave device to transmit the
next data bit).

The function should be used when the round-trip delay of SCLK out to MISO IN is
large compared with half a SCLK period (e.g. fast SCLK, low voltage, slow slave
device), to allow a faster transfer rate to be used than would otherwise be possible.

Parameters
bSetDreBit Enable/disable read edge delay:

TRUE - enable
FALSE - disable

Returns
None

void vAHI_SpiSetDelayReadEdge(bool_t bSetDreBit);
328 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_SpiRegisterCallback

Description
This function registers an application callback that will be called when the SPI
interrupt is triggered.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32AHI_Init() on waking.

Interrupt handling is described in Appendix A.

Parameters
prSpiCallback Pointer to callback function to be registered

Returns
None

void vAHI_SpiRegisterCallback(
PR_HWINT_APPCALLBACK prSpiCallback);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 329

Chapter 29
SPI Master Functions

330 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
30. Intelligent Peripheral (SPI Slave) Functions
This chapter details the functions for controlling the Intelligent Peripheral (IP) interface
of the JN51xx microcontrollers. The IP interface is a SPI (Serial Peripheral Interface)
slave, designed to allow message passing and data transfer.

The IP (SPI slave) functions are listed below, along with their page references:

Function Page
vAHI_IpEnable (JN5148 Version) 332
vAHI_IpEnable (JN5139 Version) 333
vAHI_IpDisable (JN5148 Only) 334
bAHI_IpSendData (JN5148 Version) 335
bAHI_IpSendData (JN5139 Version) 336
bAHI_IpReadData (JN5148 Version) 337
bAHI_IpReadData (JN5139 Version) 338
bAHI_IpTxDone 339
bAHI_IpRxDataAvailable 340
vAHI_IpReadyToReceive (JN5148 Only) 341
vAHI_IpRegisterCallback 342

Note 1: For information on the IP interface (SPI slave)
and guidance on using the IP functions in JN5148/
JN5139 application code, refer to Chapter 14.

Note 2: SPI master functions are detailed in Chapter 29.

Note 3: For more details of the data message format,
refer to the data sheet for your microcontroller.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 331

Chapter 30
Intelligent Peripheral (SPI Slave) Functions

vAHI_IpEnable (JN5148 Version)

Description
This function initialises and enables the Intelligent Peripheral (IP) interface on the
JN5148 device.

The function allows the clock edges to be selected on which receive data will be
sampled and transmit data will be changed (but see Caution below). It also allows
Intelligent Peripheral interrupts to be enabled/disabled.

Parameters
bTxEdge Clock edge that transmit data is changed on (see Caution).

Always set to 0, meaning that data is changed on a negative
clock edge

bRxEdge Clock edge that receive data is sampled on (see Caution).
Always set to 0, meaning that data is sampled on a positive
clock edge

bIntEn Enable/disable Intelligent Peripheral interrupts:
TRUE - enable interrupts
FALSE - disable interrupts

Returns
None

void vAHI_IpEnable(bool_t bTxEdge,
bool_t bRxEdge,
bool_t bIntEn);

Caution: Only one mode of the IP interface is supported -
SPI mode 0. At both ends of the data link, the data to be
transmitted is changed on a negative clock edge and received
data is sampled on a positive clock edge. Therefore, the
parameters bTxEdge and bRxEdge must be set accordingly
(both to 0).
332 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_IpEnable (JN5139 Version)

Description
This function initialises and enables the Intelligent Peripheral (IP) interface on the
JN5139 device. Intelligent Peripheral interrupts are also enabled when this function
is called.

The function allows the clock edges to be selected on which receive data will be
sampled and transmit data will be changed (but see Caution below). It also allows
Intelligent Peripheral interrupts to be enabled/disabled.

The function also requires the byte order (Big or Little Endian) of the data for the IP
interface to be specified.

Parameters
bTxEdge Clock edge that transmit data is changed on (see Caution).

Always set to 0, meaning that data is changed on a negative
clock edge

bRxEdge Clock edge that receive data is sampled on (see Caution).
Always set to 0, meaning that data is sampled on a positive
clock edge

bEndian Byte order (Big or Little Endian) of data over the IP interface:
E_AHI_IP_BIG_ENDIAN
E_AHI_IP_LITTLE_ENDIAN

Returns
None

void vAHI_IpEnable(bool_t bTxEdge,
bool_t bRxEdge,
bool_t bEndian);

Caution: Only one mode of the IP interface is supported -
SPI mode 0. At both ends of the data link, the data to be
transmitted is changed on a negative clock edge and received
data is sampled on a positive clock edge. Therefore, the
parameters bTxEdge and bRxEdge must be set accordingly
(both to 0).
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 333

Chapter 30
Intelligent Peripheral (SPI Slave) Functions

vAHI_IpDisable (JN5148 Only)

Description
This function disables the Intelligent Peripheral (IP) interface on the JN5148 device.

Parameters
None

Returns
None

void vAHI_IpDisable(void);
334 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
bAHI_IpSendData (JN5148 Version)

Description
This function is used on the JN5148 device to copy data from RAM to the IP Transmit
buffer and to indicate that data is ready to be transmitted across the IP interface to
the remote processor (the SPI master).

The function requires the data length to be specified, as well as a pointer to a RAM
buffer containing the data and the byte order (Big or Little Endian) of the data. The
data should be stored in the RAM buffer according to the byte order specified.

The function copies the specified data to the IP Transmit buffer, ready to be sent
when the master device initiates the transfer. The IP_INT pin is also asserted to
indicate to the master that data is ready to be sent.

The data length is transmitted in the first 32-bit word of the data payload. It is the
responsibility of the SPI master receiving the data to retrieve the data length from the
payload.

Parameters
u8Length Length of data to be sent (in 32-bit words)
*pau8Data Pointer to RAM buffer containing the data to be sent
bEndian Byte order (Big or Little Endian) of data over the IP interface:

E_AHI_IP_BIG_ENDIAN
E_AHI_IP_LITTLE_ENDIAN

Returns
TRUE if successful, FALSE if unable to send

bool_t bAHI_IpSendData(uint8 u8Length,
uint8 *pau8Data,
bool_t bEndian);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 335

Chapter 30
Intelligent Peripheral (SPI Slave) Functions

bAHI_IpSendData (JN5139 Version)

Description
This function is used on the JN5139 device to copy data from RAM to the IP Transmit
buffer and to indicate that data is ready to be transmitted across the IP interface to
the remote processor (the SPI master).

The function requires the data length to be specified, as well as a pointer to a RAM
buffer containing the data. The data should be stored in the RAM buffer according to
the byte order (Big or Little Endian) specified in the function vAHI_IpEnable().
The function copies the specified data to the IP Transmit buffer, ready to be sent
when the master device initiates the transfer. The IP_INT pin is also asserted to
indicate to the master that data is ready to be sent.

The data length is transmitted in the first 32-bit word of the data payload. It is the
responsibility of the SPI master receiving the data to retrieve the data length from the
payload.

Parameters
u8Length Length of data to be sent (in 32-bit words)
*pau8Data Pointer to RAM buffer containing the data to be sent

Returns
TRUE if successful, FALSE if unable to send

bool_t bAHI_IpSendData(uint8 u8Length,
uint8 *pau8Data);
336 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
bAHI_IpReadData (JN5148 Version)

Description
This function is used on the JN5148 device to copy received data from the IP Receive
buffer into RAM.

The function must provide a pointer to a RAM buffer to receive the data and a pointer
to a RAM location to receive the data length.

Data is stored in the specified RAM buffer according to the specified byte order (Big
or Little Endian).

After the data has been read, the function vAHI_IpReadyToReceive() can be used
to indicate to the SPI master that the IP interface is ready to receive more data.

Parameters
*pu8Length Pointer to location to receive data length (in 32-bit words)
*pau8Data Pointer to RAM buffer to receive data
bEndian Byte order (Big or Little Endian) for storing data:

E_AHI_IP_BIG_ENDIAN
E_AHI_IP_LITTLE_ENDIAN

Returns
TRUE if data read successfully, FALSE if unable to raed

bool_t bAHI_IpReadData(uint8 *pu8Length,
uint8 *pau8Data,
bool_t bEndian);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 337

Chapter 30
Intelligent Peripheral (SPI Slave) Functions

bAHI_IpReadData (JN5139 Version)

Description
This function is used on the JN5139 device to copy received data from the IP Receive
buffer into RAM.

The function must provide a pointer to a RAM buffer to receive the data and a pointer
to a RAM location to receive the data length.

Data is stored in the specified RAM buffer according to the specified byte order (Big
or Little Endian) specified in the function vAHI_IpEnable().
After the data has been read, the IP interface will indicate to the SPI master that the
interface is ready to receive more data.

Parameters
*pu8Length Pointer to location to receive data length (in 32-bit words)
*pau8Data Pointer to RAM buffer to receive data

Returns
TRUE if data read successfully, FALSE if unable to read

bool_t bAHI_IpReadData(uint8 *pu8Length,
uint8 *pau8Data);
338 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
bAHI_IpTxDone

Description
This function checks whether data copied to the IP Transmit buffer has been sent to
the remote processor (the SPI master).

Parameters
None

Returns
TRUE if data sent, FALSE if incomplete

bool_t bAHI_IpTxDone (void);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 339

Chapter 30
Intelligent Peripheral (SPI Slave) Functions

bAHI_IpRxDataAvailable

Description
This function checks whether data from the remote processor (the SPI master) has
been received in the IP Receive buffer.

Parameters
None

Returns
TRUE if IP Receive buffer contains data, FALSE otherwise

PUBLIC bool_t bAHI_IpRxDataAvailable(void);
340 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_IpReadyToReceive (JN5148 Only)

Description
This function is used to indicate that the IP Receive buffer is free to receive data from
the remote processor (the SPI master).

Parameters
None

Returns
None

void vAHI_IpReadyToReceive(void);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 341

Chapter 30
Intelligent Peripheral (SPI Slave) Functions

vAHI_IpRegisterCallback

Description
This function registers an application callback that will be called when the SPI
interrupt is triggered. The interrupt is generated when either a transmit or receive
transaction has completed.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32AHI_Init() on waking.

Interrupt handling is described in Appendix A.

Parameters
prIpCallback Pointer to callback function to be registered

Returns
None

void vAHI_IpRegisterCallback(
PR_HWINT_APPCALLBACK prIpCallback);
342 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
31. DAI Functions (JN5148 Only)
This chapter details the functions for controlling the 4-wire Digital Audio Interface (DAI)
on the JN5148 microcontroller. This interface allows communication with external
devices that support various digital audio interfaces such as CODECs.

The DAI functions are listed below, along with their page references:

Function Page
vAHI_DaiEnable (JN5148 Only) 344
vAHI_DaiSetBitClock (JN5148 Only) 345
vAHI_DaiSetAudioData (JN5148 Only) 346
vAHI_DaiSetAudioFormat (JN5148 Only) 347
vAHI_DaiConnectToFIFO (JN5148 Only) 348
vAHI_DaiWriteAudioData (JN5148 Only) 349
vAHI_DaiReadAudioData (JN5148 Only) 350
vAHI_DaiStartTransaction (JN5148 Only) 351
bAHI_DaiPollBusy (JN5148 Only) 352
vAHI_DaiInterruptEnable (JN5148 Only) 353
vAHI_DaiRegisterCallback (JN5148 Only) 354

Note 1: For information on the DAI and guidance on
using the DAI functions in JN5148 application code,
refer to Chapter 15.

Note 2: The data path between the CPU and the DAI
can optionally be buffered using the Sample FIFO
interface - the functions for configuring and monitoring
this interface are detailed in Chapter 32.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 343

Chapter 31
DAI Functions (JN5148 Only)

vAHI_DaiEnable (JN5148 Only)

Description
This function can be used to enable or disable the Digital Audio Interface (DAI) - that
is, to power up or power down the interface.

Parameters
bEnable Enable/disable the DAI:

TRUE - enable (power up)
FALSE - disable (power down)

Returns
None

 void vAHI_DaiEnable(bool_t bEnable);
344 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_DaiSetBitClock (JN5148 Only)

Description
This function can be used to configure the DAI bit clock, derived from the 16-MHz
system clock.

The 16-MHz system clock is divided by twice the specified division factor to produce
the bit clock. Division factors can be specified in the range 0 to 63, allowing division
by up to 126. If a zero division factor is specified, the divisor used will be 2. Thus, the
maximum possible bit clock frequency is 8 MHz. The default division factor is 8,
giving a divisor of 16 and a bit clock frequency of 1 MHz.

The bit clock is output on DIO17 to synchronise data between the (master) interface
and an external CODEC. It can be output either permanently or only during data
transfers.

Parameters
u8Div Division factor, in the range 0 to 63 - the 16-MHz system clock

will be divided by 2 x u8Div, or 2 if u8Div=0
bConClock Bit clock output enable:

TRUE - enable clock output permanently
FALSE - enable clock output only during data transfers

Returns
None

void vAHI_DaiSetBitClock(uint8 u8Div, bool_t bConClock);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 345

Chapter 31
DAI Functions (JN5148 Only)

vAHI_DaiSetAudioData (JN5148 Only)

Description
This function configures the size and padding options of a data transfer between the
DAI and an external audio device. These values should be set to match the
requirements of the external device.

The number of data bits in the transfer can be specified in the range 1 to 16 per stereo
channel. The function also allows padding bits (zeros) to be inserted after the data
bits to make the data transfer up to a certain size:

Padding can be enabled/disabled using the parameter bPadDis.
The default padding automatically makes the transfer size up to 16 bits per channel.
Extra padding bits can be added to increase the transfer size per channel to a value
between 17 and 32 bits. This option is enabled using the parameter bExPadEn
(padding must also be enabled through bPadDis).
If extra padding is enabled (through bExPadEn), the number of additional padding bits
needed to achieve the required transfer size is specified through u8ExPadLen. Note
that padding bits will be automatically added to reach 16 bits and the extra padding bits
are those required to increase the transfer size from 16 bits (e.g. add 8 extra padding
bits to achieve a 24-bit transfer size). This option allows data transfer sizes of up to 32
bits per channel (16 data bits and 16 padding bits).

Parameters
u8CharLen Number of data bits per stereo channel:

0: 1 bit
1: 2 bits
:
15: 16 bits

bPadDis Disable/enable automatic data padding:
TRUE - disable padding
FALSE - enable padding

bExPadEn Enable/disable extra data padding for transfer sizes greater
than 16 bits (extra padding bits specified via u8ExPadLen):
TRUE - enable extra padding
FALSE - disable extra padding

u8ExPadLen Number of extra padding bits to increase transfer size from 16
bits to desired size (only valid if bExPadEn set to TRUE):
0: 1 bit
1: 2 bits
:
15: 16 bits

Returns
None

void vAHI_DaiSetAudioData(uint8 u8CharLen,
bool_t bPadDis,
bool_t bExPadEn,
uint8 u8ExPadLen);
346 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_DaiSetAudioFormat (JN5148 Only)

Description
This function is used to configure the audio data format to one of:

Left-justified mode
Right-justified mode

I2S-compatible mode
The function also allows the word-select (WS) signal to be configured - this signal
indicates which stereo channel is being transmitted. Normally, it is asserted (1) for
the right channel and de-asserted (0) for the left channel, as in I2S.

Parameters
u8Mode Transfer mode:

00: I2S-compatible (left-justified, MSB 1 cycle after WS)
01: Left-justified (MSB coincident with assertion of WS)
1x: Right-justified (LSB coincident with de-assertion of WS)

bWsIdle WS setting during idle time:
TRUE - Left channel (so there is always a transition at the end
of the transfer). May be used for right-justified transfer mode
FALSE - Right channel (so there is always a transition at the
start of the transfer).Should be used for left-justified and I2S-
compatible transfer modes

bWsPolarity WS polarity:
1: WS inverted
0: WS not inverted (as in I2S)

Returns
None

void vAHI_DaiSetAudioFormat(uint8 u8Mode,
bool_t bWsIdle,
bool_t bWsPolarity);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 347

Chapter 31
DAI Functions (JN5148 Only)

vAHI_DaiConnectToFIFO (JN5148 Only)

Description
This function can be used to connect the DAI to the Sample FIFO auxiliary interface,
which can be used to store a mono audio sample corresponding to one of the stereo
audio channels of the DAI - the left channel or right channel can be selected.

Timer 2 is configured to provide the timing source for samples transferred via the
DAI. A rising edge on the PWM line of Timer 2 causes a single DAI transfer, with
data transferred to/from the Sample FIFO.

Parameters
u8Mode Enable/disable Sample FIFO auxiliary mode:

TRUE - enable (DAI controlled by Sample FIFO and Timer 2)
FALSE - disable

bChannel Channel to contain data corresponding to mono sample:
TRUE - right channel
FALSE - left channel

Returns
None

void vAHI_DaiConnectToFIFO(bool_t bMode,
bool_t bChannel);
348 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_DaiWriteAudioData (JN5148 Only)

Description
This function writes audio data into the DAI Transmit buffer, ready for transmission
to an external audio device. The left- and right-channel data are specified separately.

The written data can be subsequently transmitted by calling the function
vAHI_DaiStartTransaction().
Note that this write function cannot be used if the auxiliary Sample FIFO interface is
enabled.

Parameters
u16TxDataR Right-channel data to transmit
u16TxDataL Left-channel data to transmit

Returns
None

void vAHI_DaiWriteAudioData(uint16 u16TxDataR,
uint16 u16TxDataL);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 349

Chapter 31
DAI Functions (JN5148 Only)

vAHI_DaiReadAudioData (JN5148 Only)

Description
This function reads audio data received in the DAI Receive buffer from an external
audio device. The left and right channels are extracted separately. This function
should be called following a successful poll using bAHI_DaiPollBusy() or, if
interrupts are enabled, in the user-defined callback function registered using
vAHI_DaiRegisterCallback().
Note that this read function cannot be used if the auxiliary Sample FIFO interface is
enabled.

Parameters
pu16RxDataR Pointer to location where right-channel data will be placed
pu16RxDataL Pointer to location where left-channel data will be placed

Returns
None

void vAHI_DaiReadAudioData(uint16 *pu16RxDataR,
uint16 *pu16RxDataL);
350 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_DaiStartTransaction (JN5148 Only)

Description
This function starts a DAI transaction - that is, a data transfer to/from the attached
external audio device. After calling this function, data is transmitted from the DAI
Transmit buffer to the external device and data from the external device is received
in the DAI Receive buffer.

Note that this function cannot be used when operating the DAI in conjunction with the
auxiliary Sample FIFO interface.

Parameters
None

Returns
None

void vAHI_DaiStartTransaction(void);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 351

Chapter 31
DAI Functions (JN5148 Only)

bAHI_DaiPollBusy (JN5148 Only)

Description
This function can be used to determine whether the DAI is busy performing a data
transfer (including cases where the auxiliary Sample FIFO interface is being used to
control the transfer).

Parameters
None

Returns
Status of the DAI:

TRUE - busy
FALSE - not busy

bool_t bAHI_DaiPollBusy(void);
352 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_DaiInterruptEnable (JN5148 Only)

Description
This function can be used to enable/disable DAI interrupts.

If interrupts are enabled, an interrupt will be generated at the end of each data
transfer via the DAI. If interrupts are disabled, an alternative way of determining
whether a data transfer via the DAI has completed is to call the function
bAHI_DaiPollBusy().

Parameters
bEnable Enable/disable DAI interrupts:

TRUE - enable
FALSE - disable

Returns
None

void vAHI_DaiInterruptEnable(bool_t bEnable);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 353

Chapter 31
DAI Functions (JN5148 Only)

vAHI_DaiRegisterCallback (JN5148 Only)

Description
This function registers a user-defined callback function that will be called when the
DAI interrupt is triggered.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32AHI_Init() on waking.

Interrupt handling is described in Appendix A.

Parameters
prDaiCallback Pointer to callback function to be registered

Returns
None

void vAHI_DaiRegisterCallback(
PR_HWINT_APPCALLBACK prDaiCallback);
354 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
32. Sample FIFO Functions (JN5148 Only)
This chapter details the functions for controlling and monitoring the Sample FIFO
interface of the JN5148 microcontroller. This interface is a 10-deep FIFO that can be
implemented between the CPU and the DAI (Digital Audio Interface). The FIFO can
handle data transfers in either direction (CPU to DAI or DAI to CPU).

The Sample FIFO functions are listed below, along with their page references:

Function Page
vAHI_FifoEnable (JN5148 Only) 356
bAHI_FifoRead (JN5148 Only) 357
vAHI_FifoWrite (JN5148 Only) 358
u8AHI_FifoReadRxLevel (JN5148 Only) 359
u8AHI_FifoReadTxLevel (JN5148 Only) 360
vAHI_FifoSetInterruptLevel (JN5148 Only) 361
vAHI_FifoEnableInterrupts (JN5148 Only) 362
vAHI_FifoRegisterCallback (JN5148 Only) 363

Note: For information on the Sample FIFO interface and
guidance on using the Sample FIFO functions in
JN5148 application code, refer to Chapter 16.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 355

Chapter 32
Sample FIFO Functions (JN5148 Only)

vAHI_FifoEnable (JN5148 Only)

Description
This function can be used to enable or disable the Sample FIFO interface.

Parameters
bEnable Enable/disable the Sample FIFO interface:

TRUE - enable
FALSE - disable

Returns
None

void vAHI_FifoEnable(bool_t bEnable);
356 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
bAHI_FifoRead (JN5148 Only)

Description
This function can be used to read the next available received data sample from the
Sample FIFO.

Parameters
pu16RxData Pointer to the location to receive the read value

Returns
TRUE: Read value is valid
FALSE: Reda value is invalid

bool_t bAHI_FifoRead(uint16 *pu16RxData);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 357

Chapter 32
Sample FIFO Functions (JN5148 Only)

vAHI_FifoWrite (JN5148 Only)

Description
This function can be used to write a data value to the Sample FIFO for transmission.

Parameters
u16TxBuffer 16-bit data value to be written to the FIFO

Returns
None

void vAHI_FifoWrite(uint16 u16TxBuffer);
358 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
u8AHI_FifoReadRxLevel (JN5148 Only)

Description
This function can be used to obtain the Receive level of the Sample FIFO.

Parameters
None

Returns
FIFO Receive level obtained

uint8 u8AHI_FifoReadRxLevel(void);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 359

Chapter 32
Sample FIFO Functions (JN5148 Only)

u8AHI_FifoReadTxLevel (JN5148 Only)

Description
This function can be used to obtain the Transmit level of the Sample FIFO.

Parameters
None

Returns
FIFO Transmit level obtained

uint8 u8AHI_FifoReadTxLevel(void);
360 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_FifoSetInterruptLevel (JN5148 Only)

Description
This function can be used to set the Receive and Transmit interrupt levels for the
Sample FIFO:

The fill-level of the FIFO above which a Receive interrupt will be triggered (to signal
that the FIFO should be read)
The fill-level of the FIFO below which a Transmit interrupt will be triggered (to signal
that the FIFO should be re-filled)

Sample FIFO interrupts are enabled using vAHI_FifoEnableInterrupts().

Parameters
u8RxIntLevel FIFO fill-level above which a Receive interrupt will occur
u8TxIntLevel FIFO fill-level below which a Transmit interrupt will occur
bDataSource Peripheral with which Sample FIFO interface exchanges data:

TRUE - connect to DAI
FALSE - reserved (do not use)

Returns
None

void vAHI_FifoSetInterruptLevel(uint8 u8RxIntLevel,
uint8 u8TxIntLevel,
bool_t bDataSource);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 361

Chapter 32
Sample FIFO Functions (JN5148 Only)

vAHI_FifoEnableInterrupts (JN5148 Only)

Description
This function can be used to individually enable/disable the four types of Sample
FIFO interrupt:

Receive Interrupt: This is generated when the FIFO fill-level rises above a threshold
pre-defined using vAHI_FifoSetInterruptLevel(). This interrupt can be used to prompt
a read of the FIFO to collect received data.
Transmit Interrupt: This is generated when the FIFO fill-level falls below a threshold
pre-defined using vAHI_FifoSetInterruptLevel(). This interrupt can be used to prompt
a write to the FIFO to provide further data to be transmitted.
Receive Overflow Interrupt: This is generated when the FIFO has been filled to its
maximum capacity and an attempt has been made to add more received data to the
FIFO. This interrupt can be used to prompt a read of the FIFO to collect received data.
Transmit Empty Interrupt: This is generated when the FIFO becomes empty and
there is no more data to be transmitted. This interrupt can be used to prompt a write to
the FIFO to provide further data to be transmitted.

Parameters
bRxAbove Enable/disable Receive interrupts:

TRUE - enable
FALSE - disable

bTxBelow Enable/disable Transmit interrupts:
TRUE - enable
FALSE - disable

bRxOverflow Enable/disable Receive Overflow interrupts:
TRUE - enable
FALSE - disable

bTxEmpty Enable/disable Transmit Empty interrupts:
TRUE - enable
FALSE - disable

Returns
None

void vAHI_FifoEnableInterrupts(bool_t bRxAbove,
bool_t bTxBelow,
bool_t bRxOverflow,
bool_t bTxEmpty);
362 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_FifoRegisterCallback (JN5148 Only)

Description
This function registers a user-defined callback function that will be called when the
Sample FIFO interface interrupt is triggered.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32AHI_Init() on waking.

Interrupt handling is described in Appendix A.

Parameters
prFifoCallback Pointer to callback function to be registered

Returns
None

void vAHI_FifoRegisterCallback(
PR_HWINT_APPCALLBACK prFifoCallback);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 363

Chapter 32
Sample FIFO Functions (JN5148 Only)

364 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
33. External Flash Memory Functions
This chapter describes functions for erasing and programming a sector of an external
Flash memory device. JN51xx modules are supplied with Flash memory devices
fitted, but the functions can also be used with custom modules which have different
Flash devices.

For some operations, two versions of the relevant function are provided, as follows:

A function designed to interact with a 128-KB Flash device in which the
application data is stored in the final sector (Sector 3), e.g. the ST M25P10A
Flash device fitted to JN5139 modules - these functions are designed to access
Sector 3 only and all addresses are offsets from the start of Sector 3.
A function designed to interact with a 128-KB or 512-KB Flash device, and
which is able to access any sector - it is usual to store application data in the
final sector (detailed in Section 17.1 for the different Flash devices).

The Flash memory functions are listed below, along with their page references:

Function Page
bAHI_FlashInit 366
bAHI_FlashErase (JN5139 Only) 367
bAHI_FlashEraseSector 368
bAHI_FlashProgram (JN5139 Only) 369
bAHI_FullFlashProgram 370
bAHI_FlashRead (JN5139 Only) 370
bAHI_FullFlashRead 372
vAHI_FlashPowerDown 373
vAHI_FlashPowerUp 374

Note 1: To access sectors other than the final sector,
you should refer to the data sheet for the Flash device to
obtain the necessary sector details. However, be careful
not to erase essential data such as application code.
The application is stored from the start of the Flash
memory (thus, starting in Sector 0).

Note 2: For guidance on using the Flash memory
functions in JN5148/JN5139 application code, refer to
Chapter 17.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 365

Chapter 33
External Flash Memory Functions

bAHI_FlashInit

Description
This function selects the type of external Flash memory device to be used.

The Flash memory device can be one of four supported device types or a custom
device. In the latter case, a custom table of functions must be supplied for interaction
with the device. Auto-detection of the Flash device type can also be selected.

Parameters
flashType Type of Flash memory device, one of:

E_FL_CHIP_ST_M25P10_A (ST M25P10A)
E_FL_CHIP_ST_M25P40_A (ST M25P40)
E_FL_CHIP_SST_25VF010 (SST 25VF010)
E_FL_CHIP_ATMEL_AT25F512 (Atmel AT25F512)
E_FL_CHIP_CUSTOM (custom device)
E_FL_CHIP_AUTO (auto-detection)

*pCustomFncTable Pointer to the custom function table for a custom Flash device
(E_FL_CHIP_CUSTOM). If a supported Flash device is used,
set to NULL.

Returns
TRUE if initialisation was successful, FALSE if failed

bool_t bAHI_FlashInit(
teFlashChipType flashType,
tSPIflashFncTable *pCustomFncTable);
366 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
bAHI_FlashErase (JN5139 Only)

Description
This function erases the 32-KB sector of Flash memory (JN5139 only) used to store
application data, by setting all bits to 1. The function does not affect sectors
containing application code.

Parameters
None

Returns
TRUE if sector erase was successful, FALSE if erase failed

bool_t bAHI_FlashErase(void);

Caution: This function can only be used with 128-KB Flash
memory devices with four 32-KB sectors (numbered 0 to 3),
where application data is stored in Sector 3.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 367

Chapter 33
External Flash Memory Functions

bAHI_FlashEraseSector

Description
This function erases the specified sector of Flash memory by setting all bits to 1.

The function can be used with 128-KB and 512-KB Flash memory devices with up to
8 sectors. Refer to the datasheet of the Flash memory device for details of its sectors.

Parameters
u8Sector Number of the sector to be erased (in the range 2 to 7)

Returns
TRUE if sector erase was successful, FALSE if erase failed

bool_t bAHI_FlashEraseSector(uint8 u8Sector);

Caution: Be careful not to erase essential data such as
application code. The application is stored from the start of
the Flash memory. It is therefore normally held in Sectors 0, 1
and 2 of a 128-KB device, and in Sectors 0 and 1 of a 512-KB
device.
368 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
bAHI_FlashProgram (JN5139 Only)

Description
This function programs a block of Flash memory (JN5139 only) by clearing the
appropriate bits from 1 to 0.

This mechanism does not allow bits to be set from 0 to 1. It is only possible to set bits
to 1 by erasing the entire sector - therefore, before using this function, you must call
the function bAHI_FlashErase().

Parameters
u16Addr Address offset of first Flash memory byte to be programmed

(offset from start of 32-KB block)
u16Len Number of bytes to be programmed (integer in the range 1 to

0x8000)
*pu8Data Pointer to start of data block to be written to Flash memory

Returns
TRUE if write was successful
FALSE if write failed or input parameters were invalid

bool_t bAHI_FlashProgram(uint16 u16Addr,
uint16 u16Len,
uint8 *pu8Data);

Caution: This function can only be used with 128-KB Flash
memory devices with four 32-KB sectors (numbered 0 to 3),
where application data is stored in Sector 3. Consequently,
the start address specified in this function is an offset within
this area, i.e. it starts at 0.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 369

Chapter 33
External Flash Memory Functions

bAHI_FullFlashProgram

Description
This function programs a block of Flash memory by clearing the appropriate bits from
1 to 0. The function can be used to access any sector of a 128-KB or 512-KB Flash
memory device.

This mechanism does not allow bits to be set from 0 to 1. It is only possible to set bits
to 1 by erasing the entire sector - therefore, before using this function, you must call
the function bAHI_FlashEraseSector().

Parameters
u32Addr Address of first Flash memory byte to be programmed
u16Len Number of bytes to be programmed (integer in the range 1 to

0x8000)
*pu8Data Pointer to start of data block to be written to Flash memory

Returns
TRUE if write was successful
FALSE if write failed

bool_t bAHI_FullFlashProgram(uint32 u32Addr,
uint16 u16Len,
uint8 *pu8Data);
370 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
bAHI_FlashRead (JN5139 Only)

Description
This function reads data from the application data area of Flash memory (JN5139
only).

If the function parameters are invalid (e.g. by trying to read beyond end of sector),
the function returns without reading anything.

Parameters
u16Addr Address offset of first Flash memory byte to be read (offset

from start of 32-KB block)
u16Len Number of bytes to be read (integer in the range 1 to 0x8000)
*pu8Data Pointer to start of buffer to receive read data

Returns
TRUE if read was successful
FALSE if read failed or input parameters were invalid

bool_t bAHI_FlashRead(uint16 u16Addr,
uint16 u16Len,
uint8 *pu8Data);

Caution: This function can only be used with 128-KB Flash
memory devices with four 32-KB sectors (numbered 0 to 3),
where application data is stored in Sector 3. Consequently,
the start address specified in this function is an offset within
this area, i.e. it starts at 0.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 371

Chapter 33
External Flash Memory Functions

bAHI_FullFlashRead

Description
This function reads data from the application data area of Flash memory. The
function can be used to access any sector of a 128-KB or 512-KB Flash memory
device.

If the function parameters are invalid (e.g. by trying to read beyond end of sector),
the function returns without reading anything.

Parameters
u32Addr Address of first Flash memory byte to be read
u16Len Number of bytes to be read: integer in range 1 to 0x8000
*pu8Data Pointer to start of buffer to receive read data.

Returns
TRUE (always)

bool_t bAHI_FullFlashRead(uint32 u32Addr,
uint16 u16Len,
uint8 *pu8Data);
372 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
vAHI_FlashPowerDown

Description
This function sends a ‘power down’ command to the Flash memory device attached
to the JN5148/JN5139 device. This allows further power savings to be made when
the microcontroller is put into a sleep mode (other than deep sleep mode, for which
the Flash memory device is powered down automatically).

The following Flash devices are supported by this function:

ST M25P10A - for JN5148 and JN5139 devices
ST M25P40 - for JN5148 device only

If the function is called for an unsupported Flash device, the function will return
without doing anything.

If the Flash device is to be unpowered while the JN5148/JN5139 device is sleeping,
this function must be called before vAHI_Sleep() is called to put the CPU into sleep
mode. However, note that in the case of deep sleep mode, the Flash device is
automatically powered down before the JN5148/JN5139 enters deep sleep mode
and therefore there is no need to call vAHI_FlashPowerDown().
If you use this function before entering ‘sleep without memory held’ then the boot
loader will automatically power up the Flash memory device during the wake-up
sequence. However, if you use the function before entering ‘sleep with memory held’
then the boot loader will not power up Flash memory on waking. In the latter case,
you must power up the device using vAHI_FlashPowerUp() after waking and before
attempting to access the Flash memory.

Parameters
None

Returns
None

void vAHI_FlashPowerDown(void);
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 373

Chapter 33
External Flash Memory Functions

vAHI_FlashPowerUp

Description
This function sends a ‘power up’ command to the Flash memory device attached to
the JN5148/JN5139 device.

The following Flash devices are supported by this function:

ST M25P10A - for JN5148 and JN5139 devices
ST M25P40 - for JN5148 device only

If the function is called for an unsupported Flash device, the function will return
without doing anything.

This function must be called when the JN5148/JN5139 device wakes from ‘sleep
without memory held’ if the Flash device was powered down using
vAHI_FlashPowerDown() before the JN5148/JN5139 device entered sleep mode.

However, note that in the case of ‘sleep with memory held’ and deep sleep mode, the
Flash device is automatically powered up when the JN5148/JN5139 wakes from
sleep and therefore there is no need to call vAHI_FlashPowerUp().

Parameters
None

Returns
None

void vAHI_FlashPowerUp(void);
374 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
Part III:
Appendices
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 375

376 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
A. Interrupt Handling
Interrupts from the on-chip peripherals are handled by a set of peripheral-specific
callback functions. These user-defined functions can be introduced using the
appropriate callback registration functions of the Integrated Peripherals API. For
example, you can write your own interrupt handler for UART0 and then register this
callback function using the vAHI_Uart0RegisterCallback() function. The full list of
peripheral interrupt sources and the corresponding callback registration functions is
provided in the table below.

 * JN5148 device only
** Includes DIO, comparator, wake timer, pulse counter, random number and brownout interrupts
*** Used for both SI master and SI slave interrupts

Interrupt Source Callback Registration Function

System Controller ** vAHI_SysCtrlRegisterCallback()

Analogue Peripherals (ADC) vAHI_APRegisterCallback()

UART 0 vAHI_Uart0RegisterCallback()

UART 1 vAHI_Uart1RegisterCallback()

Timer 0 vAHI_Timer0RegisterCallback()

Timer 1 vAHI_Timer1RegisterCallback()

Timer 2 * vAHI_Timer2RegisterCallback()

Tick Timer vAHI_TickTimerRegisterCallback() *
vAHI_TickTimerInit()

Serial Interface (2-wire) vAHI_SiRegisterCallback() ***

SPI Master vAHI_SpiRegisterCallback()

Intelligent Peripheral vAHI_IpRegisterCallback()

Digital Audio Interface * vAHI_DaiRegisterCallback()

Sample FIFO Interface * vAHI_FifoRegisterCallback()

Encryption Engine Refer to AES Coprocessor API Reference Manual (JN-RM-2013)

Table 8: Interrupt Sources and Callback Registration Functions

Note: A callback function is executed in interrupt
context. You must therefore ensure that the function
returns to the main program in a timely manner.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 377

Appendices
A.1 Callback Function Prototype and Parameters
The user-defined callback functions for all peripherals must be designed according to
the following prototype:

The parameters of this function prototype are as follows:

u32DeviceId identifies the peripheral that generated the interrupt. The list of
possible sources is given in Table 8. Enumerations for these sources are
provided in the API and are detailed in Appendix B.1.
u32ItemBitmap is a bitmap that identifies the specific cause of the interrupt
within the peripheral block identified through u32DeviceId above. Masks are
provided in the API that allow particular interrupt causes to be checked for. The
UART interrupts are an exception as, in their case, an enumerated value is
passed via this parameter instead of a bitmap. The masks and enumerations
are deatiled in Appendix B.2.

A.2 Callback Behaviour
Before invoking one of the callback functions, the API clears the source of the
interrupt, so that there is no danger of the same interrupt causing the processor to
enter a state of permanently trying to handle the same interrupt (due to a poorly written
callback function). This also means that it is possible to have a NULL callback function.

The UARTs are the exception to this rule. When generating a 'receive data available'
or 'time-out indication' interrupt, the UARTs will only clear the interrupt once the data
has been read from the UART receive buffer. It is therefore vital that if UART interrupts
are to be enabled, the callback function handles the 'receive data available' and 'time-
out indication' interrupts by reading the data from the UART before returning.

Caution: Registered callback functions are only
preserved during sleep modes in which RAM remains
powered. If RAM is powered off during sleep and
interrupts are required, any callback functions must be
re-registered before calling u32AHI_Init() on waking.

void vHwDeviceIntCallback(uint32 u32DeviceId,
uint32 u32ItemBitmap);

Note: If the Application Queue API is being used, the
above issue with the UART interrupts is handled by this
API, so the application does not need to deal with it. For
more information on this API, refer to the Application
Queue API Reference Manual (JN-RM-2025).
378 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
A.3 Handling Wake Interrupts
A JN51xx microcontroller can be woken from sleep by any of the following sources:

Wake timer
DIO
Comparator
Pulse counter (JN5148 only)

For the device to be woken by one of the above wake sources, interrupts must be
enabled for that source at some point before the device goes to sleep.

Interrupts from all of the above sources are handled by the user-defined System
Controller callback function which is registered using the function
vAHI_SysCtrlRegisterCallback(). The callback function must be registered before
the device goes to sleep. However, in the case of sleep without RAM held, the
registered callback function will be lost during sleep and must therefore be re-
registered on waking, as part of the cold start routine before the initialisation function
u32AHI_Init() is called. If there are any System Controller interrupts pending, the call
to u32AHI_Init() will result in the callback function being invoked and the interrupts
being cleared. An interrupt bitmap u32ItemBitmap is passed into the callback function
and the particular source of the interrupt (DIO, wake timer, etc) can be obtained from
this bitmap by logical ANDing it with masks provided in the API and detailed in
Appendix A.1.

The above wake sources are outlined below.

Wake Timer
There are two wake timers (0 and 1) on the JN51xx microcontrollers. These timers run
at a nominal 32 kHz and are able to operate during sleep periods. When a running
wake timer expires during sleep, an interrupt can be generated which wakes the
device. Control of the wake timers is described in Chapter 8.

Interrupts for a wake timer can be enabled using vAHI_WakeTimerEnable(). The
timed period for a wake timer is set when the wake timer is started.

The function u8AHI_WakeTimerFiredStatus() is provided to indicate whether a
particular wake timer has fired. If used to determine whether a wake timer caused a
wake-up event, this function must be called before u32AHI_Init() - see Note above.

Note: As an alternative, for some wake sources ‘Status’
functions are available which can be used to determine
whether a particular source was responsible for a wake-
up event (see below). However, if used, these functions
must be called before any pending interrupts are
cleared and therefore before u32AHI_Init() is called.
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 379

Appendices
DIO
There are 21 DIO lines (0-20) on the JN51xx microcontrollers. The device can be
woken from sleep on the change of state of any DIOs that have been configured as
inputs and as wake sources. Control of the DIOs is described in Chapter 5.

The directions of the DIOs (input or output) are configured using the function
vAHI_DioSetDirection(). Wake interrupts can then be enabled on DIO inputs using
the function vAHI_DioWakeEnable(). The change of state (rising or falling edge) on
which each DIO interrupt will be generated is configured using the function
vAHI_DioWakeEdge().
The function u32AHI_DioWakeStatus() is provided to indicate whether a DIO caused
a wake-up event. If used, this function must be called before u32AHI_Init() - see Note
above.

Comparator
There are two comparators (1 and 2) on the JN5148 and JN5139 devices. The device
can be woken from sleep by a comparator interrupt when either of the following events
occurs:

The comparator’s input voltage rises above the reference voltage.
The comparator’s input voltage falls below the reference voltage.

Control of the comparators is described in Section 4.3.

Interrupts for a comparator are configured and enabled using the function
vAHI_ComparatorIntEnable().
A function u8AHI_ComparatorWakeStatus() is provided to indicate whether a
comparator caused a wake-up event. If used, this function must be called before
u32AHI_Init() - see Note above.

Pulse Counter (JN5148 Only)
There are two pulse counters (0 and 1) on the JN5148 device. These counters are
able to run during sleep periods. When a running pulse counter reaches its reference
count during sleep, an interrupt can be generated which wakes the device. Control of
the pulse counters is described in Chapter 11.

Interrupts for a pulse counter can be enabled when the pulse counter is configured
using the function bAHI_PulseCounterConfigure().
380 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
B. Interrupt Enumerations and Masks
This appendix details the enumerations and masks used in the parameters of the
interrupt callback function described in Appendix A.1.

B.1 Peripheral Interrupt Enumerations (u32DeviceId)
The device ID, u32DeviceId, is an enumerated value indicating the peripheral that
generated the interrupt. The enumerations are detailed in Table 9 below.

 * JN5148 device only
** Used for both SI master and SI slave interrupts

Enumeration Interrupt Source Callback Registration Function

E_AHI_DEVICE_SYSCTRL System Controller vAHI_SysCtrlRegisterCallback()

E_AHI_DEVICE_ANALOGUE Analogue Peripherals vAHI_APRegisterCallback()

E_AHI_DEVICE_UART0 UART 0 vAHI_Uart0RegisterCallback()

E_AHI_DEVICE_UART1 UART 1 vAHI_Uart1RegisterCallback()

E_AHI_DEVICE_TIMER0 Timer 0 vAHI_Timer0RegisterCallback()

E_AHI_DEVICE_TIMER1 Timer 1 vAHI_Timer1RegisterCallback()

E_AHI_DEVICE_TIMER2 Timer 2 * vAHI_Timer2RegisterCallback()

E_AHI_DEVICE_TICK_TIMER Tick Timer vAHI_TickTimerRegisterCallback() *
vAHI_TickTimerInit()

E_AHI_DEVICE_SI ** Serial Interface (2-wire) vAHI_SiRegisterCallback() **

E_AHI_DEVICE_SPIM SPI Master vAHI_SpiRegisterCallback()

E_AHI_DEVICE_INTPER Intelligent Peripheral vAHI_IpRegisterCallback()

E_AHI_DEVICE_I2S Digital Audio Interface * vAHI_DaiRegisterCallback()

E_AHI_DEVICE_AUDIOFIFO Sample FIFO Interface * vAHI_FifoRegisterCallback()

E_AHI_DEVICE_AES Encryption Engine Refer to AES Coprocessor API Refer-
ence Manual (JN-RM-2013)

Table 9: u32DeviceId Enumerations
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 381

Appendices
B.2 Peripheral Interrupt Sources (u32ItemBitmap)
The parameter u32ItemBitmap is a 32-bit bitmask indicating the individual interrupt
source within the peripheral (except for the UARTs, for which the parameter returns
an enumerated value). The bits and their meanings are detailed in the tables below.

 * JN5148 device only

Mask (Bit) Description

E_AHI_SYSCTRL_CKEM_MASK (31) * System clock source has been changed

E_AHI_SYSCTRL_RNDEM_MASK (30) A new value has been generated by the Ran-
dom Number Generator (JN5148 only)

E_AHI_SYSCTRL_COMP1_MASK (29)
E_AHI_SYSCTRL_COMP0_MASK (28)

Comparator (0 and 1) events

E_AHI_SYSCTRL_WK1_MASK (27)
E_AHI_SYSCTRL_WK0_MASK (26)

Wake Timer events

E_AHI_SYSCTRL_VREM_MASK (25) *
E_AHI_SYSCTRL_VFEM_MASK (24) *

Brownout condition entered
Brownout condition exited

E_AHI_SYSCTRL_PC1_MASK (23)
E_AHI_SYSCTRL_PC0_MASK (22)

Pulse Counter (0 or 1) has reached its pre-con-
figured reference value (JN5148 only)

E_AHI_DIO20_INT (20)
E_AHI_DIO19_INT (19)
E_AHI_DIO18_INT (18)
.
.
.
E_AHI_DIO0_INT (0)

Digital IO (DIO) events

Table 10: System Controller

Mask (Bit) Description

E_AHI_AP_ACC_INT_STATUS_MASK (1 and 0) Asserted in ADC accumulation mode to indi-
cate that conversion is complete and the accu-
mulated sample is available

E_AHI_AP_CAPT_INT_STATUS_MASK (0) Asserted in all ADC modes to indicate that an
individual conversion is complete and the
resulting sample is available

Table 11: Analogue Peripherals
382 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide

Mask (Bit) Description

E_AHI_TIMER_RISE_MASK (1) Interrupt status, generated on timer rising edge
(low-to-high transition) - will be non-zero if
interrupt for timer rising output has been set

E_AHI_TIMER_PERIOD_MASK (0) Interrupt status, generated on end of timer
period (high-to-low transition) - will be non-zero
if interrupt for end of timer period has been set

Table 12: Timers (identical for all timers)

Mask (Bit) Description

0 Single source for Tick-timer interrupt, therefore
returns 1 every time

Table 13: Tick Timer

Mask (Bit) Description

E_AHI_SIM_RXACK_MASK (7) Asserted if no acknowledgement is received
from the addressed slave

E_AHI_SIM_BUSY_MASK (6) Asserted if a START signal is detected
Cleared if a STOP signal is detected

E_AHI_SIM_AL_MASK (5) Asserted to indicate loss of arbitration

E_AHI_SIM_ICMD_MASK (2) Asserted to indicate invalid command

E_AHI_SIM_TIP_MASK (1) Asserted to indicate transfer in progress

E_AHI_SIM_INT_STATUS_MASK (0) Interrupt status - interrupt indicates loss of arbi-
tration or that byte transfer has completed

Table 14: Serial Interface (2-wire) Master

Mask (Bit) Description

E_AHI_SIS_ERROR_MASK (4) I2C protocol error

E_AHI_SIS_LAST_DATA_MASK (3) Last data transferred (end of burst)

E_AHI_SIS_DATA_WA_MASK (2) Buffer contains data to be read by SI slave

E_AHI_SIS_DATA_RTKN_MASK (1) Data taken from buffer by SI master
(buffer free for next data to be loaded)

E_AHI_SIS_DATA_RR_MASK (0) Buffer needs loading with data for SI master

Table 15: Serial Interface (2-wire) Slave
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 383

Appendices

For the UART interrupts, u32ItemBitmap returns the following enumerated values:

Table 20 lists the UART interrupts from highest priority to lowest priority.

Mask (Bit) Description

E_AHI_SPIM_TX_MASK (0) Transfer has completed

Table 16: SPI Master

Mask (Bit) Description

E_AHI_DAI_INT_MASK (0) End of data transfer via the DAI

Table 17: Digitial Audio Interface

Mask (Bit) Description

E_AHI_INT_RX_FIFO_HIGH_MASK (3) Rx FIFO is nearly full and needs to be read

E_AHI_INT_TX_FIFO_LOW_MASK (2) Tx FIFO is nearly empty and needs more data

E_AHI_INT_RX_FIFO_OVERFLOW_MASK (1) Rx FIFO is full/overflowing and must be read

E_AHI_INT_TX_FIFO_EMPTY_MASK (0) Tx FIFO is empty and needs data

Table 18: Sample FIFO Interface

Mask (Bit) Description

E_AHI_IP_INT_STATUS_MASK (6) Transaction has completed, i.e. slave-select
goes high and TXGO or RXGO has gone low

E_AHI_IP_TXGO_MASK (1) Asserted when transmit data is copied to the
internal buffer and cleared when it has been
transmitted

E_AHI_IP_RXGO_MASK (0) Asserted when device is in ready-to-receive
state and cleared when data reception is
complete

Table 19: Intelligent Peripheral

Enumerated Value Description (and Priority)

E_AHI_UART_INT_RXLINE (3) Receive line status (highest priority)

E_AHI_UART_INT_RXDATA (2) Receive data available (next highest priority)

E_AHI_UART_INT_TIMEOUT (6) Time-out indication (next highest priority)

E_AHI_UART_INT_TX (1) Transmit FIFO empty (next highest priority)

E_AHI_UART_INT_MODEM (0) Modem status (lowest priority)

Table 20: UART (identical for both UARTs)
384 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

 JN51xx Integrated Peripherals API
User Guide
Revision History

Version Date Comments

1.0 16-July-2010 First release

2.0 24-Nov-2010 Information incorporated from former Integrated Peripherals API
Reference Manual (JN-RM-2001)
JN-UG-3066 v2.0 © NXP Laboratories UK 2010 385

JN51xx Integrated Peripherals API
User Guide

Important Notice
Jennic reserves the right to make corrections, modifications, enhancements, improvements and other changes to its
products and services at any time, and to discontinue any product or service without notice. Customers should obtain
the latest relevant information before placing orders, and should verify that such information is current and complete.
All products are sold subject to Jennic's terms and conditions of sale, supplied at the time of order acknowledgment.
Information relating to device applications, and the like, is intended as suggestion only and may be superseded by
updates. It is the customer's responsibility to ensure that their application meets their own specifications. Jennic makes
no representation and gives no warranty relating to advice, support or customer product design.
Jennic assumes no responsibility or liability for the use of any of its products, conveys no license or title under any
patent, copyright or mask work rights to these products, and makes no representations or warranties that these
products are free from patent, copyright or mask work infringement, unless otherwise specified.
Jennic products are not intended for use in life support systems/appliances or any systems where product malfunction
can reasonably be expected to result in personal injury, death, severe property damage or environmental damage.
Jennic customers using or selling Jennic products for use in such applications do so at their own risk and agree to fully
indemnify Jennic for any damages resulting from such use.
All trademarks are the property of their respective owners.

NXP Laboratories UK Ltd
(Formerly Jennic Ltd)

Furnival Street
Sheffield
S1 4QT

United Kingdom

Tel: +44 (0)114 281 2655
Fax: +44 (0)114 281 2951
E-mail: info@jennic.com

For the contact details of your local Jennic office or distributor, refer to the Jennic web site:

www.nxp.com/jennic
386 © NXP Laboratories UK 2010 JN-UG-3066 v2.0

	Contents
	About this Manual
	Organisation
	Conventions
	Acronyms and Abbreviations
	Related Documents
	Feedback Address

	Part I: Concept and Operational Information
	1. Overview
	1.1 JN5148/JN5139 Integrated Peripherals
	1.2 JN51xx Integrated Peripherals API
	1.3 Using this Manual

	2. General Functions
	2.1 API Initialisation
	2.2 Radio Configuration
	2.2.1 Radio Transmission Power
	2.2.2 High-Power Modules
	2.2.3 Over-Air Transmission Properties (JN5148 Only)

	2.3 Random Number Generator (JN5148 Only)

	3. System Controller
	3.1 Clock Management
	3.1.1 System Clock Selection (JN5148 Only)
	3.1.2 CPU Clock Frequency Selection (JN5148 Only)
	3.1.3 System Clock Start-up following Sleep (JN5148 Only)
	3.1.4 32-kHz Clock Selection

	3.2 Power Management
	3.2.1 Power Domains
	3.2.2 Digital Logic Domain Clock
	3.2.3 Low-Power Modes
	3.2.4 Power Status

	3.3 Voltage Brownout (JN5148 Only)
	3.3.1 Configuring Brownout Detection
	3.3.2 Monitoring Brownout

	3.4 Resets
	3.5 System Controller Interrupts

	4. Analogue Peripherals
	4.1 ADC
	4.1.1 Single-Shot Mode
	4.1.2 Continuous Mode
	4.1.3 Accumulation Mode (JN5148 Only)

	4.2 DACs
	4.3 Comparators
	4.3.1 Comparator Interrupts and Wake-up
	4.3.2 Comparator Low-Power Mode

	4.4 Analogue Peripheral Interrupts

	5. Digital Inputs/Outputs (DIOs)
	5.1 Using the DIOs
	5.1.1 Setting the Directions of the DIOs
	5.1.2 Setting DIO Outputs
	5.1.3 Setting DIO Pull-ups
	5.1.4 Reading the DIOs

	5.2 DIO Interrupts and Wake-up
	5.2.1 DIO Interrupts
	5.2.2 DIO Wake-up

	6. UARTs
	6.1 UART Signals and Pins
	6.2 UART Operation
	6.2.1 2-wire Mode
	6.2.2 4-wire Mode (with Flow Control)

	6.3 Configuring the UARTs
	6.3.1 Enabling a UART
	6.3.2 Setting the Baud-rate
	6.3.3 Setting Other UART Properties
	6.3.4 Enabling Interrupts

	6.4 Transferring Serial Data in 2-wire Mode
	6.4.1 Transmitting Data (2-wire Mode)
	6.4.2 Receiving Data (2-wire Mode)

	6.5 Transferring Serial Data in 4-wire Mode
	6.5.1 Transmitting Data (4-wire Mode, Manual Flow Control)
	6.5.2 Receiving Data (4-wire Mode, Manual Flow Control)
	6.5.3 Automatic Flow Control (4-wire Mode) [JN5148 Only]

	6.6 Break Condition (JN5148 Only)
	6.7 UART Interrupt Handling

	7. Timers
	7.1 Modes of Timer Operation
	7.2 Setting up a Timer
	7.2.1 Selecting DIOs
	7.2.2 Enabling a Timer
	7.2.3 Selecting the Clock

	7.3 Starting and Operating a Timer
	7.3.1 Timer and PWM Modes
	7.3.2 Delta-Sigma Mode (NRZ and RTZ)
	7.3.3 Capture Mode
	7.3.4 Counter Mode (JN5148 Only)

	7.4 Timer Interrupts

	8. Wake Timers
	8.1 Using a Wake Timer
	8.1.1 Enabling and Starting a Wake Timer
	8.1.2 Stopping a Wake Timer
	8.1.3 Reading a Wake Timer
	8.1.4 Obtaining Wake Timer Status

	8.2 Clock Calibration

	9. Tick Timer
	9.1 Tick Timer Operation
	9.2 Using the Tick Timer
	9.2.1 Setting Up the Tick Timer
	9.2.2 Running the Tick Timer

	9.3 Tick Timer Interrupts

	10. Watchdog Timer (JN5148 Only)
	10.1 Watchdog Operation
	10.2 Using the Watchdog Timer
	10.2.1 Starting the Timer
	10.2.2 Resetting the Timer

	11. Pulse Counters (JN5148 Only)
	11.1 Pulse Counter Operation
	11.2 Using a Pulse Counter
	11.2.1 Configuring a Pulse Counter
	11.2.2 Starting and Stopping a Pulse Counter
	11.2.3 Monitoring a Pulse Counter

	11.3 Pulse Counter Interrupts

	12. Serial Interface (SI)
	12.1 SI Master
	12.1.1 Enabling the SI Master
	12.1.2 Writing Data to SI Slave
	12.1.3 Reading Data from SI Slave
	12.1.4 Waiting for Completion

	12.2 SI Slave (JN5148 Only)
	12.2.1 Enabling the SI Slave and its Interrupts
	12.2.2 Receiving Data from the SI Master
	12.2.3 Sending Data to the SI Master

	13. Serial Peripheral Interface (SPI Master)
	13.1 SPI Modes
	13.2 Slave Selection
	13.3 Using the Serial Peripheral Interface
	13.3.1 Performing a Data Transfer
	13.3.2 Performing a Continuous Transfer (JN5148 Only)

	13.4 SPI Interrupts

	14. Intelligent Peripheral Interface (SPI Slave)
	14.1 IP Interface Operation
	14.2 Using the IP Interface
	14.3 IP Interrupts

	15. Digital Audio Interface (DAI) [JN5148 Only]
	15.1 DAI Operation
	15.1.1 DAI Signals and DIOs
	15.1.2 Audio Data Format
	15.1.3 Data Transfer Modes

	15.2 Using the DAI
	15.2.1 Enabling the DAI
	15.2.2 Configuring the Bit Clock
	15.2.3 Configuring the Data Format
	15.2.4 Enabling DAI Interrupts
	15.2.5 Transferring Data

	15.3 Using the DAI with the Sample FIFO Interface

	16. Sample FIFO Interface (JN5148 Only)
	16.1 Sample FIFO Operation
	16.2 Using the Sample FIFO Interface
	16.2.1 Enabling the Interface
	16.2.2 Configuring and Enabling Interrupts
	16.2.3 Configuring and Starting the Timer
	16.2.4 Buffering Data

	16.3 Example FIFO Operation

	17. External Flash Memory
	17.1 Flash Memory Organisation and Types
	17.2 Function Types
	17.3 Operating on Flash Memory
	17.3.1 Erasing Data from Flash Memory
	17.3.2 Reading Data from Flash Memory
	17.3.3 Writing Data to Flash Memory

	17.4 Controlling Power to Flash Memory

	Part II: Reference Information
	18. General Functions
	u32AHI_Init
	bAHI_PhyRadioSetPower
	vAppApiSetBoostMode (JN5139 Only)
	vAHI_HighPowerModuleEnable
	vAHI_ETSIHighPowerModuleEnable (JN5148 Only)
	vAHI_AntennaDiversityOutputEnable
	vAHI_BbcSetHigherDataRate (JN5148 Only)
	vAHI_BbcSetInterFrameGap (JN5148 Only)
	vAHI_StartRandomNumberGenerator (JN5148 Only)
	vAHI_StopRandomNumberGenerator (JN5148 Only)
	u16AHI_ReadRandomNumber (JN5148 Only)
	bAHI_RndNumPoll (JN5148 Only)
	vAHI_SetStackOverflow (JN5148 Only)

	19. System Controller Functions
	u8AHI_PowerStatus
	vAHI_CpuDoze
	vAHI_Sleep
	vAHI_ProtocolPower
	vAHI_ExternalClockEnable (JN5139 Only)
	bAHI_Set32KhzClockMode (JN5148 Only)
	vAHI_SelectClockSource (JN5148 Only)
	bAHI_GetClkSource (JN5148 Only)
	bAHI_SetClockRate (JN5148 Only)
	u8AHI_GetSystemClkRate (JN5148 Only)
	vAHI_EnableFastStartUp (JN5148 Only)
	vAHI_PowerXTAL (JN5148 Only)
	vAHI_BrownOutConfigure (JN5148 Only)
	bAHI_BrownOutStatus (JN5148 Only)
	bAHI_BrownOutEventResetStatus (JN5148 Only)
	u32AHI_BrownOutPoll (JN5148 Only)
	vAHI_SwReset
	vAHI_DriveResetOut
	vAHI_ClearSystemEventStatus
	vAHI_SysCtrlRegisterCallback

	20. Analogue Peripheral Functions
	20.1 Common Analogue Peripheral Functions
	vAHI_ApConfigure
	vAHI_ApSetBandGap
	bAHI_APRegulatorEnabled
	vAHI_APRegisterCallback

	20.2 ADC Functions
	vAHI_AdcEnable
	vAHI_AdcStartSample
	vAHI_AdcStartAccumulateSamples (JN5148 Only)
	bAHI_AdcPoll
	u16AHI_AdcRead
	vAHI_AdcDisable

	20.3 DAC Functions
	vAHI_DacEnable
	vAHI_DacOutput
	bAHI_DacPoll
	vAHI_DacDisable

	20.4 Comparator Functions
	vAHI_ComparatorEnable
	vAHI_ComparatorDisable
	vAHI_ComparatorLowPowerMode
	vAHI_ComparatorIntEnable
	u8AHI_ComparatorStatus
	u8AHI_ComparatorWakeStatus

	21. DIO Functions
	vAHI_DioSetDirection
	vAHI_DioSetOutput
	u32AHI_DioReadInput
	vAHI_DioSetPullup
	vAHI_DioSetByte (JN5148 Only)
	u8AHI_DioReadByte (JN5148 Only)
	vAHI_DioInterruptEnable
	vAHI_DioInterruptEdge
	u32AHI_DioInterruptStatus
	vAHI_DioWakeEnable
	vAHI_DioWakeEdge
	u32AHI_DioWakeStatus

	22. UART Functions
	vAHI_UartEnable
	vAHI_UartDisable
	vAHI_UartSetBaudRate
	vAHI_UartSetBaudDivisor
	vAHI_UartSetClocksPerBit (JN5148 Only)
	vAHI_UartSetControl
	vAHI_UartSetInterrupt
	vAHI_UartSetRTSCTS
	vAHI_UartSetRTS (JN5148 Only)
	vAHI_UartSetAutoFlowCtrl (JN5148 Only)
	vAHI_UartSetBreak (JN5148 Only)
	vAHI_UartReset
	u8AHI_UartReadRxFifoLevel (JN5148 Only)
	u8AHI_UartReadTxFifoLevel (JN5148 Only)
	u8AHI_UartReadLineStatus
	u8AHI_UartReadModemStatus
	u8AHI_UartReadInterruptStatus
	vAHI_UartWriteData
	u8AHI_UartReadData
	vAHI_Uart0RegisterCallback
	vAHI_Uart1RegisterCallback

	23. Timer Functions
	vAHI_TimerEnable
	vAHI_TimerClockSelect (JN5148 Only)
	vAHI_TimerConfigureOutputs (JN5148 Only)
	vAHI_TimerConfigureInputs (JN5148 Only)
	vAHI_TimerStartSingleShot
	vAHI_TimerStartRepeat
	vAHI_TimerStartCapture
	vAHI_TimerStartDeltaSigma
	u16AHI_TimerReadCount
	vAHI_TimerReadCapture
	vAHI_TimerReadCaptureFreeRunning
	vAHI_TimerStop
	vAHI_TimerDisable
	vAHI_TimerDIOControl
	vAHI_TimerFineGrainDIOControl (JN5148 Only)
	u8AHI_TimerFired
	vAHI_Timer0RegisterCallback
	vAHI_Timer1RegisterCallback
	vAHI_Timer2RegisterCallback (JN5148 Only)

	24. Wake Timer Functions
	vAHI_WakeTimerEnable
	vAHI_WakeTimerStart (JN5139 Only)
	vAHI_WakeTimerStartLarge (JN5148 Only)
	vAHI_WakeTimerStop
	u32AHI_WakeTimerRead (JN5139 Only)
	u64AHI_WakeTimerReadLarge (JN5148 Only)
	u8AHI_WakeTimerStatus
	u8AHI_WakeTimerFiredStatus
	u32AHI_WakeTimerCalibrate

	25. Tick Timer Functions
	vAHI_TickTimerConfigure
	vAHI_TickTimerInterval
	vAHI_TickTimerWrite
	u32AHI_TickTimerRead
	vAHI_TickTimerIntEnable
	bAHI_TickTimerIntStatus
	vAHI_TickTimerIntPendClr
	vAHI_TickTimerInit (JN5139 Only)
	vAHI_TickTimerRegisterCallback (JN5148 Only)

	26. Watchdog Timer Functions (JN5148 Only)
	vAHI_WatchdogStart (JN5148 Only)
	vAHI_WatchdogStop (JN5148 Only)
	vAHI_WatchdogRestart (JN5148 Only)
	u16AHI_WatchdogReadValue (JN5148 Only)
	bAHI_WatchdogResetEvent (JN5148 Only)

	27. Pulse Counter Functions (JN5148 Only)
	bAHI_PulseCounterConfigure (JN5148 Only)
	bAHI_SetPulseCounterRef (JN5148 Only)
	bAHI_StartPulseCounter (JN5148 Only)
	bAHI_StopPulseCounter (JN5148 Only)
	u32AHI_PulseCounterStatus (JN5148 Only)
	bAHI_Read16BitCounter (JN5148 Only)
	bAHI_Read32BitCounter (JN5148 Only)
	bAHI_Clear16BitPulseCounter (JN5148 Only)
	bAHI_Clear32BitPulseCounter (JN5148 Only)

	28. Serial Interface (2-wire) Functions
	28.1 SI Master Functions
	vAHI_SiConfigure (JN5139 Only)
	vAHI_SiMasterConfigure (JN5148 Only)
	vAHI_SiMasterDisable (JN5148 Only)
	bAHI_SiMasterSetCmdReg
	vAHI_SiMasterWriteSlaveAddr
	vAHI_SiMasterWriteData8
	u8AHI_SiMasterReadData8
	bAHI_SiMasterPollBusy
	bAHI_SiMasterPollTransferInProgress
	bAHI_SiMasterCheckRxNack
	bAHI_SiMasterPollArbitrationLost
	vAHI_SiRegisterCallback

	28.2 SI Slave Functions (JN5148 Only)
	vAHI_SiSlaveConfigure (JN5148 Only)
	vAHI_SiSlaveDisable (JN5148 Only)
	vAHI_SiSlaveWriteData8 (JN5148 Only)
	u8AHI_SiSlaveReadData8 (JN5148 Only)
	vAHI_SiRegisterCallback

	29. SPI Master Functions
	vAHI_SpiConfigure
	vAHI_SpiReadConfiguration
	vAHI_SpiRestoreConfiguration
	vAHI_SpiSelect
	vAHI_SpiStop
	vAHI_SpiStartTransfer (JN5148 Only)
	vAHI_SpiStartTransfer32 (JN5139 Only)
	u32AHI_SpiReadTransfer32
	vAHI_SpiStartTransfer16 (JN5139 Only)
	u16AHI_SpiReadTransfer16
	vAHI_SpiStartTransfer8 (JN5139 Only)
	u8AHI_SpiReadTransfer8
	vAHI_SpiContinuous (JN5148 Only)
	bAHI_SpiPollBusy
	vAHI_SpiWaitBusy
	vAHI_SetDelayReadEdge (JN5148 Only)
	vAHI_SpiRegisterCallback

	30. Intelligent Peripheral (SPI Slave) Functions
	vAHI_IpEnable (JN5148 Version)
	vAHI_IpEnable (JN5139 Version)
	vAHI_IpDisable (JN5148 Only)
	bAHI_IpSendData (JN5148 Version)
	bAHI_IpSendData (JN5139 Version)
	bAHI_IpReadData (JN5148 Version)
	bAHI_IpReadData (JN5139 Version)
	bAHI_IpTxDone
	bAHI_IpRxDataAvailable
	vAHI_IpReadyToReceive (JN5148 Only)
	vAHI_IpRegisterCallback

	31. DAI Functions (JN5148 Only)
	vAHI_DaiEnable (JN5148 Only)
	vAHI_DaiSetBitClock (JN5148 Only)
	vAHI_DaiSetAudioData (JN5148 Only)
	vAHI_DaiSetAudioFormat (JN5148 Only)
	vAHI_DaiConnectToFIFO (JN5148 Only)
	vAHI_DaiWriteAudioData (JN5148 Only)
	vAHI_DaiReadAudioData (JN5148 Only)
	vAHI_DaiStartTransaction (JN5148 Only)
	bAHI_DaiPollBusy (JN5148 Only)
	vAHI_DaiInterruptEnable (JN5148 Only)
	vAHI_DaiRegisterCallback (JN5148 Only)

	32. Sample FIFO Functions (JN5148 Only)
	vAHI_FifoEnable (JN5148 Only)
	bAHI_FifoRead (JN5148 Only)
	vAHI_FifoWrite (JN5148 Only)
	u8AHI_FifoReadRxLevel (JN5148 Only)
	u8AHI_FifoReadTxLevel (JN5148 Only)
	vAHI_FifoSetInterruptLevel (JN5148 Only)
	vAHI_FifoEnableInterrupts (JN5148 Only)
	vAHI_FifoRegisterCallback (JN5148 Only)

	33. External Flash Memory Functions
	bAHI_FlashInit
	bAHI_FlashErase (JN5139 Only)
	bAHI_FlashEraseSector
	bAHI_FlashProgram (JN5139 Only)
	bAHI_FullFlashProgram
	bAHI_FlashRead (JN5139 Only)
	bAHI_FullFlashRead
	vAHI_FlashPowerDown
	vAHI_FlashPowerUp

	Part III: Appendices
	A. Interrupt Handling
	B. Interrupt Enumerations and Masks

