

©Copyright 2011 WIZnet Co.,Ltd. All rights reserved.

TCP Application note for W5200

Version 1.0

© 2011 WIZnet Co.,Ltd. All Rights Reserved.

For more information, visit our website at http://www.wiznet.co.kr

© Copyright 2011 WIZnet Co.,Ltd. All rights reserved. Ver. 1.0 2

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

Table of Contents
1 Introduction ... 3

2 TCP/IP SOCKET ... 3

2.1 OPEN.. 5

2.2 LISTEN .. 6

2.3 CONNECT .. 6

2.4 SEND .. 7

2.5 RECEIVE .. 10

2.6 DISCONNECT... 10

2.7 CLOSE .. 11

3 TCP Loopback Program .. 12

3.1 Server Mode ... 12

3.2 Client Mode ... 15

4 TCP Loopback Program Demonstration ... 18

4.1 Setting for Running TCP Loopback .. 18

4.1.1 Physical Connection .. 19

4.1.2 Network Configuration .. 20

4.1.3 Compile .. 21

4.1.4 Download .. 22

4.1.5 Setting for Serial Terminal .. 25

4.2 AX1 .. 26

4.2.1 AX1 Setting for TCP Server .. 26

4.2.2 AX1 Setting for TCP Client .. 27

4.3 Demonstration .. 29

4.3.1 TCP Server Demonstration .. 29

4.3.2 TCP Client Demonstration .. 30

Document History Information .. 31

© Copyright 2011 WIZnet Co.,Ltd. All rights reserved. Ver. 1.0 3

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

1 Introduction

The TCP (Transmission Control Protocol) controls data communication between networks. As one of the

main protocols that forms the internet, more details are written in RFC 793 of IETF (Internet

Engineering Task Force). TCP is a protocol that runs above IP; TCP guarantees the data transmission and

allows receiving data in the order it was sent.

Since W7100 supports TCP protocol in the Transport Layer, user can use TCP/IP protocol without any

composition.

2 TCP/IP SOCKET

User can use all eight SOCKETs provided by W5200 as TCP protocol. If the user wishes to use W5200 as

TCP Protocol, user must first create the SOCKET that is going to be used. When creating SOCKET,

SOCKET number, protocol to be used, port number to be used, and the flag to be set is required. This

document is going to explain about TCP protocol; the protocol that is going to be used should set the

Sn_MR (SOCKET n Mode Register in W5200.h) to Sn_MR_TCP (0x01). The SOCKET number means the

existing eight SOCKETs and user can randomly number each one from 0 to 7. The port number that is

going to be used can be assigned by user for the TCP protocol. There will be no problem if the above

requirements for creating a SOCKET were assigned by using the SOCKET() function from WIZnet.

Since the TCP protocol of W5200 supports both sever mode and client mode, user can select one and

use for its application. The difference between server mode and client mode are shown below.

Fig. 2.1 TCP Server & TCP Client

© Copyright 2011 WIZnet Co.,Ltd. All rights reserved. Ver. 1.0 4

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

As shown in Figure 2.1, all actions are the same except for one; whether the status is the LISTEN() or

CONNECT() after opening the SOCKET. When TCP protocol runs in server mode, the SERVER will wait for

CLIENT’s connection request in LISTEN status. However, when TCP protocol runs in client mode, the

CLIENT will try to connect to server in CONNECT status. Once the connection is successful, the status of

SOCKET will change to ESTABLISHED(SOCK_ESTABLISHED, 0x17) status. SOCKETs that connect after this

point can stay connected and exchange data until the SOCKET is closed.

The SOCKET lifecycle in server mode is consisted of OPEN, LISTEN, SEND, RECEIVE, DISCONNECT, and

CLOSE. The SOCKET lifecycle in client mode is consisted of OPEN, CONNECT, SEND, RECEIVE,

DISCONNECT, and CLOSE. Starting from section 2.1, the operations from each SOCKET Lifecycle will be

explained in detail with example source code (Pseudo code).

© Copyright 2011 WIZnet Co.,Ltd. All rights reserved. Ver. 1.0 5

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

2.1 OPEN

The first step of creating a SOCKET for both SERVER and CLIENT mode is OPEN. To create SOCKETn (the

n th SOCKET), use the SOCKET() function to set the SOCKET number, protocol, port number, and flag.

Since the protocol is TCP, set the protocol to Sn_MR_TCP(0x01). Setting of port number differs

depending on whether it is server mode or client mode. When server mode is being used, server can set

the source port number that the client is using. But when client mode is being used, it is best to choose

a random port number and increase one number at a time until the SOCKET is connected since there can

be a destination port number already in use. The flag of the TCP protocol is for ‘No Delayed Ack flag’

and etc. In general, it is set to 0. More details on protocol types, flag types, and etc. are explained in

‘Sn_MR value’ of ‘W5200.h,’ that is provided by WIZnet.

After all settings are completed, check Sn_SR(n) register to see whether the status of SOCKETn is

changed to SOCK_INIT(0x13). User can use getSn_SR(SOCKETn) function when checking Sn_SR(n) register.

If the status of SOCKETn is SOCK_INIT(0x13), SOCKET is created properly. If it is not created, user should

recreate the SOCKET.

/* Method 1 : Server mode */

/* sets Protocol Number */

s = 0; // set SOCKET 0

/* OPEN SOCKET 0 */

socket(s, Sn_MR_TCP, port, mode);

while(getSn_SR(s) != SOCK_INIT);

/* Method 2 : Client mode */

/* sets Protocol Number */

s = 0; // set SOCKET 0

/* sets port number */

any_port = 1000;

/* OPEN SOCKET 0 */

socket(s, Sn_MR_TCP, any_port++, mode);

while(getSn_SR(s) != SOCK_INIT);

Example 2.1 Open Socket

© Copyright 2011 WIZnet Co.,Ltd. All rights reserved. Ver. 1.0 6

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

2.2 LISTEN

The LISTEN step is only used during SERVER mode. After creating SOCKETn, change the status of

SOCKET to LISTEN so that the CLIENT can connect. In order to change the status of SOCKET from

SOCK_INIT(0x13) to LISTEN status, user can directly set the Sn_CR_LISTEN(0x02) to the Sn_CR(n) register

or can use the LISTEN(n) function from ‘SOCKET.c.’ After the status changes to LISTEN the status of

SOCKET will change to SOCK_LISTEN(0x14). Then, SOCKET will wait until there is a request to connect

from CLIENT. Once CLIENT is connected, the status of SOCKET will change again to

SOCK_ESTABLISHED(0x17). Then finally data transmission is possible with the CLIENT.

s = 0; // set SOCKET 0

listen(s);

Example 2.2 set LISTEN state

2.3 CONNECT

The CONNECT stage is used during CLIENT mode to connect to the SERVER. The SOCKET number that is

going to be used, destination IP, and destination port number are required to CONNECT. Set these

requirements by using CONNECT() function; and once the connection is successful, the status of SOCKET

will change to SOCK_ESTABLISHED(0x17).

s = 0; // set SOCKET 0

Serverip[4] = {192, 168, 11, 3}; // set Server(destination) IP

Serverport = 3000; // set Server(destination) port

connect(s, Serverip, Serverport);

Example 2.3 set CONNECT state

© Copyright 2011 WIZnet Co.,Ltd. All rights reserved. Ver. 1.0 7

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

2.4 SEND

In the case of TCP protocol, the connection between the peer is already established before sending

data; therefore, not much information is required when sending data. Set the SOCKET number, address

of the data that is going to be sent, data size, the use of resend (ON, OFF) when Windowfull occurs. The

address of the data that is going to be sent is usually set by selecting the area, putting the data in, and

setting the area with pointer.

In order to confirm the data transmission after the SEND command, the data length to be sent and the

data length that is actually sent must be identical. The data length that is actually sent can be

calculated by checking the Sn_TX_RD register value before and after the SEND command. The SEND

process will complete if the data length to be sent and the data length actually sent matches identically.

However, if not, Windowfull will occur in the peer’s buffer and this means that parts of the data are not

successfully sent. If Windowfull occurs in the send() process of the example code, the data is sent in

unit of 1 byte and as much as the number of WINDOWFULL_MAX_RETRY_NYM untill the peer’s buffer is

ready to send the remaining data. After the data is sent, wait for a period of time

(WINDOWFULL_WAIT_TIME), and check whether the send process was successful by comparing the data

length to be sent and the data length actually sent. The send process will be completed if the data

lengths match. Be aware that a loss of data can occur if data copy is operated during th process. Close

the socket since there can be problems of the network if the number of retry exceeds the

WINDOWFULL_MAX_RETRY_NUM.

Modify WINDOWFULL_WAIT_TIME, WINDOWFULL_MAX_RETRY_NUM, and Socket close according to

user’s network when dealing with Windowfull operation. If needed, WINDOWFULL_WAIT_TIME can be set

longer or user can close Socket right away when Windowfull occurs.

Below are the steps for Send Process.

1. Start SEND Command by using Data Length.

2. Calculate the Data Length that is actually sent.

If the total Data Length is 10 and the Data Length that is sent is 7, the remaining Data

Length (=Sn_TX_RD_after_SEND-Sn_TX_RD_befor_SEND) is 3.

3. Repeat the Send Command until the sum of the Data Length that is actually sent

equals the Data Length to be sent.

Note: Do not operate Data Copy until the value of Return equals the value of Data Length

to be sent.

© Copyright 2011 WIZnet Co.,Ltd. All rights reserved. Ver. 1.0 8

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

Start

Send_data_len !=

Sent_data_len

Next Process

Time out

Delay time

Calculate free

buffer size

Data copy

Sn_CR_SEND

Wait to process

the command

Send()

Calculate free

buffer size

Data copy

Sn_CR_SEND

Wait to process

the command

Send()

Init. Windowfull MAX Retry count

Init. Windowfull Delay time

Retry count++

< Windowfull occurrence >

Yes

※ : Do not execute

※

※

Retry count = 0

No

Retry count <=

MAX Retry count
Yes

No

Send_data_len !=

Sent_data_len

Yes

No

Send() return

Actual

Sent_data_length

Data length

scheduled to send :

Send_data_length

Fig. 2.2 SEND() : Windowfull handling process

© Copyright 2011 WIZnet Co.,Ltd. All rights reserved. Ver. 1.0 9

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

/* Send data to connected peer. */

// TX_RX_MAX_BUF_SIZE must be smaller than the maximum size of the TX buffer

s = 0; // set SOCKET 0

* data_buf; // set position of data buffer

RSR_len = getSn_RX_RSR(s); // set length for send

sent_data_len = send(s, data_buf, RSR_len, WINDOWFULL_FLAG_OFF); // send data and save the length

/* only assert when windowfull */

if(sent_data_len != received_len)

{

 Init_windowfull_retry_cnt(s); // windowfull_retry_cnt[s] set 0

 While(sent_data_len != received_len)

 {

 tmp_retry_cnt = incr_windowfull_retry_cnt(s);

 // default WINDOWFULL_MAX_RETRY_NUM = 3

 if(tmp_retry_cnt <= WINDOWFULL_MAX_RETRY_NUM)

{

 // try to send the remaining data

 sent_data_len += sent(s, data_buf, received_len, WINDOWFULL_FLAG_ON);

 Delay_ms(WINDOWFULL_WAIT_TIME); // default delay = 1 sec

 }

 else

 {

 // if the 'Windowfull' occers and then send retry 3 times over, socket close

 close(s);

 while(1);

 }

 }

}

Example 2.4 SEND DATA

© Copyright 2011 WIZnet Co.,Ltd. All rights reserved. Ver. 1.0 10

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

2.5 RECEIVE

RECEIVE is similar in usage method to SEND, but it checks the Sn_RX_RSR(n). The RECEIVE step is to

move the data, which came into the RX buffer, to the user’s data area. Therefore, user must check

whether the value of Sn_RX_RSR(n) is larger than 0 before the RECEIVE step. If the value of

Sn_RX_RSR(n) is larger than 0, it means that the data is in the RX buffer. User must use getSn_RX_RSR(n)

function to check whether the data is received or not before the RECEIVE step.

/* Check received data */

// len indicates the received data size in the RX buffer.

// len must be smaller than the maximum size of the RX buffer

s = 0; // set SOCKET 0

* data_buf; // set position of data buffer

if ((RSR_len = getSn_RX_RSR(s)) > 0)

/* Received data */

// RSR_len is a length included the DATA packet.

received_len = recv(s, data_buf, RSR_len);

Example 2.5 RECEIVE DATA

2.6 DISCONNECT

There are two ways of closing a created SOCKET, and one is DISCONNECT(n). The DISCONNECT(n) is not

used to just directly close the SOCKET; rather, it is used to send a disconnect-request (FIN packet) to a

peer and wait for a disconnect-reply (FIN/ACK packet) to change the status of SOCKET to

SOCK_CLOSED(0x00), and ultimately close the SOCKET. When a disconnect request comes in, W5200

generates a FIN/ACK packet to allow the peer to close SOCKET. If there is no answer from the peer after

disconnect-request(FIN packet) is generated, TCP timeout occurs and after that, the status of SOCKET

changes to SOCKET_CLOSED(0x00). When the user wants to DISCONNECT, use DISCONNECT(n) function

and choose the SOCKET number that will generate the disconnect request.

s = 0; // set SOCKET 0

disconnect(s);

Example 2.6 SET DISCONNECT

© Copyright 2011 WIZnet Co.,Ltd. All rights reserved. Ver. 1.0 11

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

2.7 CLOSE

Unlike DISCONNECT, CLOSE directly changes the SOCKET to SOCK_CLOSED(0x00). User can use the

CLOSE(n) function and choose the SOCKET number; it closes the SOCKET regardless of the peer. If a RST

packet comes from a peer, SOCKET will unconditionally change to SOCK_CLOSED(0x00). Once the

SOCKET changes to SOCK_CLOSED(0x00), that SOCKET is not usable unless it is opened again.

s = 0; // set SOCKET 0

close(s);

Example 2.7 SET CLOSE

© Copyright 2011 WIZnet Co.,Ltd. All rights reserved. Ver. 1.0 12

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

3 TCP Loopback Program

3.1 Server Mode

TCP Loopback can check the performance of TCP protocol by using TCP protocol to send back the data

that came in from a peer. This section will explain the example of Loopback in SERVER mode. The

example codes are as followed.

void loopback_tcps(SOCKET s, uint16 port)

{

 uint16 RSR_len;

 uint16 received_len;

 uint8 * data_buf = TX_BUF;

 uint16 sent_data_len = 0;

 uint8 tmp_retry_cnt = 0;

 switch (getSn_SR(s))

 {

 case SOCK_ESTABLISHED: /* if connection is established */

 if(ch_status[s]==1)

 {

 ch_status[s] = 2;

 }

 if ((RSR_len = getSn_RX_RSR(s)) > 0) /* check Rx data */

 {

 /* if Rx data size is lager than TX_RX_MAX_BUF_SIZE */

if (RSR_len > TX_RX_MAX_BUF_SIZE) RSR_len = TX_RX_MAX_BUF_SIZE;

received_len = recv(s, data_buf, RSR_len); /* read the received data */

/* sent the received data */

sent_data_len = send(s, data_buf, received_len,

(bool)WINDOWFULL_FLAG_OFF);

if(sent_data_len != received_len) /* only assert when windowfull */

 {

 init_windowfull_retry_cnt(s);

 while(sent_data_len != received_len)

 {

tmp_retry_cnt = incr_windowfull_retry_cnt(s);

© Copyright 2011 WIZnet Co.,Ltd. All rights reserved. Ver. 1.0 13

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

 if(tmp_retry_cnt <= WINDOWFULL_MAX_RETRY_NUM)

 {

 sent_data_len += send(s, data_buf,

received_len, (bool)WINDOWFULL_FLAG_ON);

 Delay_ms(WINDOWFULL_WAIT_TIME);

 }

 else

 {

 close(s);

 while(1);

 }

 }

 }

 }

 break;

 case SOCK_CLOSE_WAIT: /* If the client request to close */

 printf("\r\n%d : CLOSE_WAIT", s);

 if ((RSR_len = getSn_RX_RSR(s)) > 0) /* check Rx data */

 {

 /* if Rx data size is lager than TX_RX_MAX_BUF_SIZE */

 if (RSR_len > TX_RX_MAX_BUF_SIZE) RSR_len = TX_RX_MAX_BUF_SIZE;

 received_len = recv(s, data_buf, RSR_len); /* read the received data */

 }

 disconnect(s);

 ch_status[s] = 0;

 break;

 case SOCK_CLOSED: /* if a socket is closed */

 if(!ch_status[s])

 {

 printf("\r\n%d : Loop-Back TCP Server Started. port : %d", s, port);

 ch_status[s] = 1;

 }

 if(socket(s,Sn_MR_TCP,port,0x00) == 0) /* reinitialize the socket */

 {

 printf("\r\n%d : Fail to create socket.",s);

 ch_status[s] = 0;

© Copyright 2011 WIZnet Co.,Ltd. All rights reserved. Ver. 1.0 14

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

 }

 break;

 case SOCK_INIT: /* if a socket is initiated */

 listen(s);

 break;

 default:

 break;

 }

}

Example 3.1 SET LOOPBACK SERVER

As shown in the example above, all functions from the SOCKET Lifecycle are used except the connect()

function. At first use the getSn_SR(s) function to check the status of SOCKET. After W5200 is reset, all

SOCKETs are in SOCK_CLOSED(0x00) status. Therefore, use the close(s) function to completely close the

SOCKET, and use the socket(s, Sn_MR_TCP, port, 0x00) function to newly create SOCKET. If created

properly, status will be SOCK_INIT, and then use the listen(s) function to change the SOCKET into LISTEN

status. Once connected with a peer, SOCKET will change to SOCK_ESTABLISHED and wait for data. All

received data are in the RX buffer. Use the recv(s, data_buf, len) function to save the length of received

data in data_buf. Then use the send(s, data_buf, len) function to send back the data to the client. The

client can compare the data before/after exchange and check whether the communication is working

properly. If the received data length (received_len) and sent data length (sent_data_len) does not

match each other, there is a possibility of the peer’s Windowfull and Send Retry must be done as

explained in section 2.4 to resend all remaining data.

The default WINDOWFULL_WAIT_TIME of the implemented Loopback example code is set to 1000ms,

and WINDOWFULL_MAX_RETRY_NUM is set to 3; the Socket will close if the WINDOWFULL_MAX_

RETRY_NUM exceeds 3 before the entire send process is not completed due to windowfull.

© Copyright 2011 WIZnet Co.,Ltd. All rights reserved. Ver. 1.0 15

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

3.2 Client Mode

This section will explain the example of Loopback in CLIENT mode. The example codes are as followed.

#define tick_second 1

void loopback_tcpc(SOCKET s, uint16 port)

{

 uint16 RSR_len;

 uint16 received_len;

uint8 * data_buf = TX_BUF;

 uint16 sent_data_len = 0;

 uint8 tmp_retry_cnt = 0;

 switch (getSn_SR(s))

 {

 case SOCK_ESTABLISHED: /* if connection is established */

 if(ch_status[s]==1)

 {

 printf("\r\n%d : Connected",s);

 ch_status[s] = 2;

 }

 if ((RSR_len = getSn_RX_RSR(s)) > 0) /* check Rx data */

 {

 /* if Rx data size is lager than TX_RX_MAX_BUF_SIZE */

 if (RSR_len > TX_RX_MAX_BUF_SIZE) RSR_len = TX_RX_MAX_BUF_SIZE;

 received_len = recv(s, data_buf, RSR_len); /* read the received data */

/* sent the received data */

sent_data_len = send(s, data_buf, received_len,

(bool)WINDOWFULL_FLAG_OFF);

 if(sent_data_len != received_len) /* ohly assert when windowfull */

 {

 init_windowfull_retry_cnt(s);

 while(sent_data_len != received_len)

 {

 tmp_retry_cnt = incr_windowfull_retry_cnt(s);

 if(tmp_retry_cnt <= WINDOWFULL_MAX_RETRY_NUM)

 {

© Copyright 2011 WIZnet Co.,Ltd. All rights reserved. Ver. 1.0 16

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

 sent_data_len += send(s, data_buf,

received_len, (bool)WINDOWFULL_FLAG_ON);

 Delay_ms(WINDOWFULL_WAIT_TIME);

 }

 else

 {

 close(s);

 while(1);

 }

 }

 }

 }

 break;

 case SOCK_CLOSE_WAIT: /* If the client request to close */

 printf("\r\n%d : CLOSE_WAIT", s);

 if ((RSR_len = getSn_RX_RSR(s)) > 0) /* check Rx data */

 {

 /* if Rx data size is lager than TX_RX_MAX_BUF_SIZE */

 if (RSR_len > TX_RX_MAX_BUF_SIZE) RSR_len = TX_RX_MAX_BUF_SIZE;

 received_len = recv(s, data_buf, RSR_len); /* read the received data */

 }

 disconnect(s);

 ch_status[s] = 0;

 break;

 case SOCK_CLOSED: /* if a socket is closed */

 if(!ch_status[s])

 {

 printf("\r\n%d : Loop-Back TCP Client Started. port: %d", s, port);

 ch_status[s] = 1;

 }

 if(socket(s, Sn_MR_TCP, port, 0x00) == 0) /* reinitialize the socket */

 {

 printf("\a%d : Fail to create socket.",s);

 ch_status[s] = 0;

 }

 break;

 case SOCK_INIT: /* if a socket is initiated */

 /* For TCP client's connection request delay : 3 sec */

© Copyright 2011 WIZnet Co.,Ltd. All rights reserved. Ver. 1.0 17

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

 if(time_return() - presentTime >= (tick_second * 3)) {

 /* Try to connect to TCP server(Socket, DestIP, DestPort) */

connect(s, Chconfig_Type_Def.destip, Chconfig_Type_Def.port);

presentTime = time_return();

 }

 break;

 default:

 break;

 }

}

Example 3.2 SET LOOPBACK CLIENT

The example codes for TCP client are very similar to the example codes of TCP server. The only

difference is that in case of SOCK_INIT, use the connect() function to connect to server instead of

listen() function.

The Loopback test is implemented in polling method; TCP client continuously uses connect() function

to connect with Server. Since the repetition of request for connection with network can cause overhead,

timer interrupt is used to enable connection request in every 3 seconds.

© Copyright 2011 WIZnet Co.,Ltd. All rights reserved. Ver. 1.0 18

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

4 TCP Loopback Program Demonstration

The demonstration of TCP Loopback will be covered in this section. Download the TCP loopback

application binary file or Source code and follow the demonstration steps (For more details, please refer

to the ‘W5200E01-M3 User’s Guide’).

The status of the W5200E01-M3 board is shown in serial message using the serial terminal; users can

check the connection status with the serial message.

Since the use of Serial terminal program and Telnet Client depends on the user’s OS, check the

Windows version according to Table 4.1. If the user uses Windows Vista or 7, additional program settings

are required.

Tab. 4.1 Windows setting for serial terminal

Serial terminal program

Windows XP or older version
The Hyper terminal is included as Windows basic application

program. Use the Hyper terminal to check serial message.

Windows Vista /

Windows 7

The Hyper terminal program is not included as basic application

program. Other serial terminal program must be used. TeraTerm can

be used as open serial terminal program, and the port settings are

identical as Hyper terminal.

TeraTerm is an open serial terminal program with BSD license.

TeraTerm can be downloaded at http://ttssh2.sourceforge.jp/

This document will use Hyper terminal, which is the most used serial terminal program, to check the

serial message of W5200E01-M3 when performing TCP Loopback test.

4.1 Setting for Running TCP Loopback

Connect USB mini cable and LAN cable to W5200E01-M3 for TCP Loopback demonstration. Use ‘Flash

Loader Demonstrator’ from STMicroelectronics to load the TCP Loopback binary image on W5200E01-M3

board. Please refer to the ‘W5200E01-M3 User’s Guide’ for more details on how to use W5200E01-M3 and

Flash Loader Demonstrator.

The process of loading image to W5200E01-M3 is as followed.

1. Connect the USB mini cable and LAN cable to W5200E01-M3.

2. Modify the provided source code from the IAR Compiler according to the user’s network.

3. Compile the modified source code and create an application image.

© Copyright 2011 WIZnet Co.,Ltd. All rights reserved. Ver. 1.0 19

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

4. Select PROG, and use the Flash Loader Demonstrator to download the created image to

the board.

5. After the download is complete, change the PROG S/W to RUN. Set the Serial terminal

port and check the application.

4.1.1 Physical Connection

Once the user’s PC and W5200E01-M3 is connected through USB mini cable, the COM port is assigned to

W5200E01-M3. Check the assigned COM port in order to use Flash Loader Demonstrator to download

image on the board. The document uses COM 15 as COM port, but this can change according to the

user’s setting.

User can check the COM port at [Control Panel – Device Manager].

Fig. 4.1 Check the COM port in Windows device manager

© Copyright 2011 WIZnet Co.,Ltd. All rights reserved. Ver. 1.0 20

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

4.1.2 Network Configuration

Once the COM port is checked, prepare the binary image to program the board. The Tcp Loopback

source code is implemented using the IAR Embedded Workbench IDE and is provided at WIZnet’s

homepage / [SUPPORT – Download]. The network information of the board is included in the main.c file

of the source code, and the network information must be modified according to the user’s settings.

/* main.c */

…

/* Configure Network Information of W5200 */

uint8 MAC[6] = {0x00, 0x08, 0xDC, 0x01, 0x02, 0x03}; // MAC Address

uint8 IP[4] = {192, 168, 11, 4}; // IP Address

uint8 GateWay[4] = {192, 168, 11, 1}; // Gateway Address

uint8 SubNet[4] = {255, 255, 255, 0}; // SubnetMask Address

…

/* FOR TCP Client */

/* Configure Network Information of TEST PC */

uint8 Dest_IP[4] = {192, 168, 11, 3}; // DST_IP Address

uint16 Dest_PORT = 3000; // DST_IP port

…

Test MAC address and IP address have been used in this document for demonstration purpose. The IP

address of the Test PC was set to 192.168.11.3; the IP address of the board and gateway must be set

according to the Test PC. Users have to check or change IP address of PC: [Local Area Connection –

Properties – Internet Protocol – Properties]

© Copyright 2011 WIZnet Co.,Ltd. All rights reserved. Ver. 1.0 21

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

Fig. 4.2 Internet Protocol Properties

The test MAC address is 00:08:DC:01:02:03 and test IP address is 192.168.11.4 for W5200e01-M3. When

setting the network, enter the identical Gateway as the Test PC’s.

After setting the network, use ping test to check the communication between W5200E01-M3 and the

network. Open the command window and enter [ping 192.168.11.4], and if W5200e01-M3 is connected,

the screen will appear as shown in Figure 3.4.

Fig. 4.3 Ping Test at Command Prompt

If the ping test is successful, network settings are completed.

4.1.3 Compile

Once the network setting is completed, the source code must be compiled and linked in order to

create the TCP Loopback firmware image for programming W5200E01-M3. Use [Project – Make] from the

menu of IAR Embedded Workbench IDE or press the [F7] key to operate the ‘Make’ process, and then the

© Copyright 2011 WIZnet Co.,Ltd. All rights reserved. Ver. 1.0 22

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

W5200EVB_App.bin file will be created in the project directory’s [\Debug\Exe].

 Fig. 4.4 Compile on IAR Embedded Workbench IDE

4.1.4 Download

The process of downloading the created W5200EVB_App.bin file to the W5200E01-M3 board is as

followed.

1. Create W5200EVB_App.bin in IAR complier

2. Select PROG for PROG S/W of W5200E01-M3 and reset the board

3. Run the Flash Loader Demonstrator and set serial port

4. Select Target device (STM32_Med-density_64K)

5. Select ‘Download to device’ and set the image file path

(image file path : [\Work\App\Debug\Exe] / located in project directory)

6. Once download is completed, change the PROG S/W to RUN and reset the board

© Copyright 2011 WIZnet Co.,Ltd. All rights reserved. Ver. 1.0 23

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

Fig. 4.5 Flash Loader Demonstrator setting

Select the COM port that is connected with W5200E01-M3 for Port Name. The settings must be done

according to user’s PC’s serial communication settings.

Fig. 4.6 Select Binary image for Flash Loader Demonstrator

© Copyright 2011 WIZnet Co.,Ltd. All rights reserved. Ver. 1.0 24

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

Fig 3.7 Download to device

Start the download from @ 0x08000000 of the memory address.

User may use a different starting address for download if needed.

Fig. 4.8 Download Completetion

© Copyright 2011 WIZnet Co.,Ltd. All rights reserved. Ver. 1.0 25

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

4.1.5 Setting for Serial Terminal

Once the image is successfully loaded to W5200E01-M3, set the serial terminal to test the board. As

mentioned earlier, Hyper Terminal, which is the most used serial terminal, will be used to check the

board’s serial message. Run the Hyper terminal to set the Port information for communication with the

board. Click the [Properties] in File menu and select COM port. Press the [Configure] button. The screen

will appear as shown in Figure 4.9.

Fig. 4.9 Hyper terminal setting

The Loopback test for w5200E01-M3 is ready after the settings in Table 4.2 Is done.

Table. 4.2 Hyper terminal setting

Port Settings Value

Bits/sec(Baud rate) 115200

Data bits 8

Parity None

Stop bits 1

Flow control Hardware

© Copyright 2011 WIZnet Co.,Ltd. All rights reserved. Ver. 1.0 26

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

4.2 AX1

4.2.1 AX1 Setting for TCP Server

When W5200E01-M3 runs in server mode, use AX1 program in PC to connect to W5200E01-M3 as a TCP

client. In the AX1, select the TCP => CONNCET menu for connecting to the W5200E01-M3, using peer IP

address 192.168.11.4 and peer port 5000.

Once connection is successful, select TCP => SEND menu and send data as shown in Figure 4.10 Since

W5200E01-M3 is the server, the AX1 program window will show the client’s status.

User can download AX1 program at WIZnet’s website www.wiznet.co.kr.

Fig 4.10 AX1 Peer IP & Port Setting

Fig. 4.11 AX1 Send data

© Copyright 2011 WIZnet Co.,Ltd. All rights reserved. Ver. 1.0 27

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

4.2.2 AX1 Setting for TCP Client

When W5200E01-M3 runs in client mode, users must use AX1 program in PC as a TCP server. Then,

connect W5200E01-M3 to the server port that is set by the AX1 program. If the server port number is

opened as 5000 in AX1 (listen state), W5200E01-M3 will connect to server IP address and server port

(192.168.11.xxx, 5000). Note that the IP address must be the IP address of the PC that opened AX1.

Once connection is successful, select TCP => SEND menu and send data as shown in Figure 4.13 since

W5200E01-M3 is the client, the AX1 program window will show the server’s status.

Fig. 4.12 AX1 Port Number Setting for Listen

Fig. 4.13 AX1 TCP Client Connected

© Copyright 2011 WIZnet Co.,Ltd. All rights reserved. Ver. 1.0 28

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

Fig. 4.14 AX1 Send Data

© Copyright 2011 WIZnet Co.,Ltd. All rights reserved. Ver. 1.0 29

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

4.3 Demonstration

4.3.1 TCP Server Demonstration

After all settings for TCP server, click the TCP send. Then the AX1 shows process of the client PC as in

the Fig. 4.16 it shows the size of SEND/RECEIVE data. Also the Hyper Terminal shows the process of

iMCU7100EVB.

Fig 4.15 TCP Server Demonstration (Hyper terminal)

Fig.4.16 TCP Server Demonstration (AX1)

© Copyright 2011 WIZnet Co.,Ltd. All rights reserved. Ver. 1.0 30

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

4.3.2 TCP Client Demonstration

After all settings for TCP client, click the TCP send. Then the AX1 shows process of the server PC as in

the Fig. 4.18 It shows the size of SEND/RECEIVE data. Also the Hyper Terminal shows the process of the

client iMCU7100EVB.

Fig 4.17 TCP Client Demonstration (Hyper terminal)

Fig. 4.18 TCP Client Demonstration (AX1)

© Copyright 2011 WIZnet Co.,Ltd. All rights reserved. Ver. 1.0 31

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

TCP Application note for W
5200

Document History Information

Version Date Descriptions

Ver. 1.0 Apr. 2011 Release with W5200 launching

Copyright Notice
Copyright 2011 WIZnet Co.,Ltd. All Rights Reserved.

Technical Support: support@wiznet.co.kr

Sales & Distribution: sales@wiznet.co.kr

For more information, visit our website at http://www.wiznet.co.kr

