PRODUCT MANUAL

Dynamic C

Integrated C Development System
For Rabbit 2000 and 3000 Microprocessors

User’s Manual

019-0125_K

Dynamic C User’s Manual

©2011 Digi International® Inc.
All rights reserved.

Rabbit, Dynamic C, Rabbit 2000, Rabbit 3000, RabbitSys, Digi, Digi International,
Digi International Company, and the Digi and Rabbit logos are trademarks or regis-
tered trademarks of Digi International, Inc. in the United States and other countries
worldwide. All other trademarks are the property of their respective owners.

Information in this document is subject to change without notice and does not rep-
resent a commitment on the part of Digi International.

Digi provides this document "as is," without warranty of any kind, expressed or
implied, including, but not limited to, the implied warranties of fitness or merchant-
ability for a particular purpose. Digi may make improvements and/or changes in
this manual or in the product(s) and/or the program(s) described in this manual at
any time.

This product could include technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these changes may be incorporated
in new editions of the publication.

The latest revision of this manual is available at www.digi.com.

http://www.digi.com/support
http://www.digi.com/support/

RABBIT = PRODUCT MANUAL

Table of Contents

1. Installing Dynamic C..........cccoovviiviiiiiinnnnns 9 4.14 Storage Classescccoeverruerererererreeenenens 37
1.1 Requirements.........ccceeeverereereeerereerenenennnns 9 4.15 POINTETS .o 37
1.2 ASSUMPLIONSvovvveveeeecveeeveie e 9 4.16 Pointers to Functions, Indirect Calls........ 38

2. Introduction to Dynamic C.............cccoovvnnee. 11 417 Argument Passing.........coeoveovsesicse 39

; 4.18 Program FIOWccccovvveviienieiiienieeiene 40

2.1 The Nature of Dynamic Cccoceee.... 11 4.18.1 Loobs 40
20,1 SPEEd.omorrreeeeeeeeeeesee 11 418 Qonto T

) ; .18.2 Continue and Break 41

2.2 Dynamic C Enhancements and Differences . 4.18.3 Branchin 4

2 ‘1o Fur.lcti.o Branchin gg -

2.3 Rabbit and Z180 Comparison.c.. 14 4.20 Global INitialiZatio ..o 45

3. Quick Tutorialccoeveieieiiieeeceeeeee 15 4.21 LADIari€sooveeveveeeerieeereeeeveeeeee e 46

3.1 Run DEMOIL.C.....ccvviiiiiiieeeeeeee 16 4211 LIB.DIRooovvveiieiieeiieiieeiene 47
3.1.1 Single Steppingcc.cecvvvervrrerenene. 17 4.22 Headerscooovevveveveieiiiiicinesesieeeene 47
3.1.2 Watch Expression............coc.cuene.e.. 17 4.23 ModUIESoveviieieieieieiecee e 47
3.1.3 Breakpoint..........ccoeveeeeevererrnnennnes 17 4.23.1 The Parts of a Module................ 48
3.1.4 Editing the Program 18 4.23.2 Module Sample Code................. 50
3.2 RunDEMO2.C ..o, 18 4.23.3 Important NOtescccevvervenee. 51
3.2.1 Watching Variables Dynamically. 18 4.24 Function Description Headers 52
3.3 Run DEMO3.Cooovvviiieeieceeeeeeeene 19 4.25 Support Files.......cccveievvieieieieeieciieienene 52
3.3.1 Cooperative Multitasking............. 19 5. Multitasking with Dynamic C 53
3.4 Run DEMOA4.C.......ovvieiieeiieeeeeeee e 20 . . .
3.4.1 Trace Macros. ... a1 5.1 Cooperatl've Multitaskingccccoceevuenene 53
3.5 Summary of Features.................... ” 52 A Real-Tlmei Problem........ R 54
5.2.1 Solving the Real-Time Problem

4, Language.......cccevvereereniereieieieieieeeeeeneee s 23 with a State Machine.............cc.......... 55
4.1 C Language Elements.........c..ccccceevrvenenen. 23 5.3 Costatementsc.ceceruerververreruerueneeeneen 56
4.2 Punctuation TOKENS............ccoceeereeerenennnn. 24 5.3.1 Solving the Real-Time Problem
4.3 DaAA...cececerieerieeieieieeieieie e 25 with Costatementscocooevnrnnen. 56

4.3.1 Data Type Limits............cccocvuvne.ne. 25 5.3.2 Costatement Syntax 57
4.4 NEAIMES ...oeeereeieieieieeeeeieieseeeeeeeeeeseseseseeenas 26 5.3.3 Control Statements....................... 57
4.5 MACTOS ..t 27 5.4 Advanced Costatement Topics 59
4.5.1 Macro Operators # and ##............ 27 5.4.1 The CoData Structure 59
4.5.2 Nested Macro Definitions............. 28 5.4.2 CoData Fieldsccccecveevveerunennee. 60
4.5.3 Macro Restrictions 29 5.4.3 Pointer to CoData Structure.......... 61
4.6 NUMDETS. ...c.curueereeieieerieenineeinieinieieeeseseieeenas 29 5.4.4 Functions for Use With Named
4.7 Strings and Character Data....................... 30 Costatementseeeeeeereeeeneneennens 61
4.7.1 String Concatenation.................... 30 5.4.5 Firsttime Functionscccc.c.. 62
4.7.2 Character Constants 31 5.4.6 Shared Global Variables............... 62
4.8 Statements.........ccccovveveevereeeereeeereeeereererennas 32 5.5 Cofunctionscceceviviiiiniiniiininn 62
4.9 Declarationsceeveeveeeeeeeeeeeieeeeeeeeennn 32 5.5.1 Cofunction Syntaxc.ccoeueeee 62
4.10 FUNCHONSveoveeveeeeeeeeeeeeeeeeeeeeee e 33 5.5.2 Calling Restrictions.............c....... 63
4. 11 ProtOtyPeS....cvevrereeeeeieeereeeeeeevereeeeseeenenes 33 5.5.3 CoData Structure..........cccccoevevnee. 64
4.12 Type Definitions.............cccvevvvevereeerevennnen. 34 5.5.4 Firsttime Functions 64
4.13 Aggregate Data TyPeS......cocveveveveeeveverenne. 35 5.5.5 Types of Cofunctions................... 64
4.13.1 AITAY oo 35 5.5.6 Types of Cofunction Calls 66
4.13.2 SrUCtUIe ..o, 36 5.5.7 Special Code Blocks...........c......... 67
4.13.3 UNION et 36 5.5.8 Solving the Real-Time Problem
4.13.4 COMPOSILES....oovevrerreirrererieieanas 36 with Cofunctions..........ccceernnnnn. 68

Dynamic C User’s Manual digi.com 3

www.digi.com

5.6 Patterns of Cooperative Multitasking 68

5.7 Timing Considerations............cccceeeeerueenees 69

5.7.1 waitfor Accuracy Limits............... 69

5.8 Overview of Preemptive Multitasking......70

5.9 Slice Statementscocevveveecvereeeeeennenn 70

5.9.1 Slice SyntaX.......cccceevveveereeneenennen. 70

5.9.2USALE .couviiiieiiiiieeeeec e 70

5.9.3 Restrictionscecevveeverveveeeennnenn 71

5.9.4 Slice Data Structure..........c..c........ 71

5.9.5 Slice Internals.........ccccevevveeennnnene 71

5.10 LC/OS-IL.cuiiiiiiieeeee e 74

5.10.1 Changes to pC/OS-II.................. 74
5.10.2 Tasking Aware Interrupt Service

Routines (TA-ISR)cccccvevvvevreeinnne. 76

5.10.3 Library Reentrancy..................... 82

5.10.4 How to Get a nC/OS-II Application

Running.......coccoeeevvenceniieiieeeees 83

5.10.5 Compeatibility with TCP/IP......... 88

5.10.6 Debugging Tipscccccevveveernennee. 89

5.11 SUMMATY ..ooeviiiiiieeieeeeee e 89

6. Debugging with Dynamic C...............cccco....... 91

6.1 Debugging Features Prior to Dynamic C 991
6.2 Debugging Features Introduced in Dynamic

C 0 s 92

6.3 Debugging Toolscccoveeeevvieeeneiereens 93
6.3.1 printf()...cceeeenieieieieeeeeeee, 93

6.3.2 Software Breakpoints 94

6.3.3 Single Stepping.........cceecevveeeeennnne 96

6.3.4 Watch Expressions...........cceeuvenee.. 97

6.3.5 Evaluate Expressions.................... 98

6.3.6 Memory Dumpcccccvvevvenneennnen. 99
6.3.7TMAPFile....coocoviiiiicece, 100

6.3.8 Execution Trace.........c.ccecuevuennee 102

6.3.9 Symbolic Stack Trace................. 103
6.3.10 Assert Macrocccceeeeuveenns 104

6.3.11 Miscellaneous Debugging Tools.....

104

6.4 Where to Look for Debugger Features ...107
6.4.1 Run and Inspect Menus............... 108

6.4.2 Options Menu..........ccceeveverueennns 108

6.4.3 Window Menu........cccccceevennne. 108

6.5 Debug Strategieseceveeeerreeververnenns 109
6.5.1 Good Programming Practices.....109

6.5.2 Finding the Bug..........cceevvruenen. 110

6.6 Reference to Other Debugging Information .
112

7. The Virtual Driver..........ccococoeveieieeiciiee, 113
7.1 Default Operation............ceceevveeverrerenenne. 113

7.2 Calling GLOBAL INIT()......cccvevnnene. 113

7.3 Global Timer Variables............cccovvneee.. 114

7.3.1 Example: Timing Loop............... 114

7.3.2 Example: Delay Loop................. 115

7.4 Watchdog Timerscccccvevevveeeerverenennn. 116

7.4.1 Hardware Watchdog.................... 116

7.4.2 Virtual Watchdogs...........ccue..e. 116
7.5 Preemptive Multitasking Drivers............ 117
8. Run-Time Errorscccccoovevnevnivncvcnenee 119
8.1 Run-Time Error Handling....................... 119
8.1.1 Error Code Ranges..................... 119
8.1.2 Fatal Error Codesc.cccceuenee. 120
8.2 User-Defined Error Handler 121
8.2.1 Replacing the Default Handler... 121
8.3 Run-Time Error Logging........ccccoeevenvenne. 122
8.3.1 Error Log Buffer...........cccceee.e. 122
8.3.2 Initialization and Defaults........... 123
8.3.3 Configuration Macros 123
8.3.4 Error Logging Functions............. 124
8.3.5 Examples of Error Log Use........ 124
9. Memory Management..............c.coceevrvrrrrenenene. 125
9.1 Memory Mapcceceevvieenieniieiiienienieene 125
9.1.1 Memory Mapping Control 126
9.1.2 Macro to Use Second Flash for Code

126
9.2 Extended Memory Functions.................. 126
9.3 Code Placement in Memory 126
9.4 Dynamic Memory Allocation.................. 127
10. File Systems..........ccccovevviviereiriierercceeeieeene 129
TO.T FS2 e 129
10.1.1 General Usagecccceevueneenen. 129
10.1.2 Application Requirements........ 131
10.1.3 File System API Functions....... 134
10.1.4 Setting up and Partitioning the File
SYSEM c.veivieiieeiierieeieeeeeiee e 135
10.1.5 File Identifiersccccceeevruenee 137
10.1.6 Skeleton Program Using FS2...139
10.2 FAT File System.......ccccceevervenerienennene 140
10.2.1 Overview of FAT Documentation ..

141

10.2.2 Running Your First FAT Sample

Programccocceeviiniiiiiiiiiicenen, 141
10.2.3 More Sample Programs............ 148
10.2.4 FAT Operationscccceeueee. 154
10.2.5 More FAT Information.............. 164
11. Using Assembly Language............c.ccuu..... 171
11.1 Mixing Assembly and C............ccceeneee 171
11.1.1 Embedded Assembly Syntax....171
11.1.2 Embedded C Syntax.................. 172
11.1.3 Setting Breakpoints in Assembly ...

172
11.2 Assembler and Preprocessor 173
11.2.1 Comments........cccoceeveenieecnuennn. 173
11.2.2 Defining Constants................... 173
11.2.3 Multiline Macros..........ccccec... 175
11.2.4 Labels ...ccoeeveeneiiececeenee 175
11.2.5 Special Symbols............cocue.... 175
11.2.6 C Variablesccccevererencnnne 176

digi.com

Table of Contents

www.digi.com

11.3 Stand-Alone Assembly Code................. 177 (723] 1<) S 210
11.3.1 Stand-Alone Assembly Code in 1011014 1 O UUSP 211
Extended Memory 177 ;gg;‘unc ... %} i
11.3.2 Example of Sand-Alone Assembly Segehain I
COde.niiniiiiiii 178 shared........ccoooveeveeeeeeeeeee e, 212
11.4 Embedded Assembly Code.................... 178 SHOTT .o 213
11.4.1 The Stack Frame.........oomvvenn.... 178 SIZE veereenreeereeieestreereestaeereeteesae b 213
11.4.2 Embedded Assembly Example 180 :lleee(zlf ... %}g
1143 The Disassembled Cade Window . R
181 SEIUCE. ..vvviieec e 214
11.4.4 Local Variable Access.............. 182 SWItCH ..o 215
11.5 C Calling Assemblycccocvververnen.. 183 typedef ... 215
11.5.1 Passing Parameters..........ooonn.... 183 unl(?n ... 216
11.5.2 Location of Return Results 133 UNSIGNEA ... 216
- U AR ST USCIX 1vvveereereestreereenseeeseesseesseesseenseens 216
11.5.3 Returning a Structure 183 VO 1o 217
11.6 Assembly Calling Ccecvrierenennee. 185 VOLALIIE oot 217
1 1 7 Interrupt Routines in Assembly 186 Wa!tfor ... 2 1 7
11.7.1 Steps Followed by an ISR 186 waitfordone
11.7.2 Modifvine Interrunt Vectors. ... 187) (WEA) e 218
o ymng pt vectors.... WHILC. .+ e 218
11.8 Common Problems.............ccccoceniniin. 192 XAAA ..o 219
D401 1 s LN 220
12. KeYWOIdScooviviireiiiiieieveiceeieeeeeve e 193 O 270
abandon ... 193 VICI e 221
abprt .. 193 12 1 Compiler Directives 222
ahgn ... 194 FASIIL oo 222
BIWRYS_Ofl.coscsvsvs s 194 HCLaSS oo 222
ANYMEM .evvieeiieeieeeeieeneeeereereesaeenseenns 194
asm 195 fidebug
.. #nodebug OO OT U UT T UTURRT 223
ﬁ‘éto -- %gg BACEINE rvreeseeseeeeeeeeeeeeeeeeeeeeseeeeeseneees 223
b ralr<n """""""""""""""""""""""""""" 196 #endasmc..cooeeeeeeiiieeiieeeeeeee 223
TOAK s 166 HEALA] ..o 223
L 1 96 #GLOBALilNIT 224
Cise """"""""""""""""""""""""""""" 197 FECITOT ... eeeeeeeee e 224
[0 3 HUNCCRAIN oo 224
COTUNC . 197 Hif
COMSL Lottt 198 #elif
CONEINUE ...eeeeeeeirreeeeeeeiereeeeeeeareeeeeeeanns 199
#else
(10 1] £21 (TR 199 #endlf ... 225
ge‘gugl ~~~ ;gg TS SO 225
@ AU s 500 e L AT 226
1O ... 200 #interleave
LS i e 301 #nointerleave 226
22}[16121' """""""""""""""""""""""""""""" 201 #makechain.......ccccvvevivieiniiiiiiiiieeee, 226
FIESEME oo eeeeeeeeeen 202 AEMMAD. oo 227
a 202 HPIAZMA ..ot 227
[0 Y21 TSN HP1eCOMDILE oo 228
for 203 P p
""""""""""""""""""""""""""""""""" 503 #undefcoovviiiiinn. 228
lgtPtO -- S04 FAISE everreverercenennssseesensesnenns e 228
il’lit_Ol’l ... %845‘- #use;#);louseix 229
!nt .. 50 FEWATTIS oo 229
e R R S HWAINE oo 229
INCITUPL_VECLOT v 206 e O, 229
Hﬁallv -- 2o T S 230
MAIN.c.eceieiieeeeieiiereeeeeee et 208 13. OPETALOLS ... 231
NOAEDUG ...c.vvieiieiieciieeece e 209 13.1 Arithmetic Operatorsc..co.cov..... 232
TIOTST.ceceeeeireeeeeecieee et eeere e e eeanes 209 + 232
NOUSEIX 1evvveeieeiiieeeeeeeceieeeeeeeeeeeeeeeeennees 200 T
NULL .. 209 .. 232
protected .. 2 1 0 e etteeeeaeeeereeeereerernnn—aaaaareeraaaanees 233
Dynamic C User’s Manual digi.com 5

www.digi.com

s 234
ettt s e 234
D0ttt e 234

13.2 Assignment Operators............ccceeueeueenee. 235
e esareaeeae st esaeane et s e n Rt s ks e e 235
s 235

o ettt 235

i SRR 235
oottt s san e e saesanes 235

0™ ettt e 235

ST ettt 235

SDT et e 236

I eeeteameeneser e an et nare e sansane e e ses 236

A ieeeesaeetesaeane st et et s e s e 236

S trere e seearete et re s e e 236

13.3 Bitwise Operators........cccceevereeeeeneeecense. 236
Sttt e 236

DD et e 236
et e 237

D ettt e 237

| vt 237
ettt ettt e 237

13.4 Relational Operators..........ccccceeeereeencenee. 238
ettt e 238
Sttt e 238

D et e 238
STttt e 238

13.5 Equality Operators...........ccceevueeeeneencenne. 239
e seteueeaesaetesaeane et e st s s e e 239

o e 239

13.6 Logical Operators.........ccceeveeeeeeeneeencense. 239
Q& 239

[ettt 239
e e 240

13.7 Postfix EXpressionsccccecceeeerueruennee. 240
() e 240

[T e 240

(dOt) ceveeereeieeerreccee 240

P et 241

13.8 Reference/Dereference Operators 241
e 241
ettt ettt ettt 241

13.9 Conditional Operatorsccceeeeeueenee. 242
et 242

13.10 Other Operatorsccceeeereeeeeneecenne. 243
(574515 TSR 243
SIZEOT. i 243

) ettt ettt ettt sttt ettt ettt nes 244

14. Graphical User Interface...........cccccerurnennne. 245
14.1 Editing .c.oooveeeieininininencececiceceeeee 245
14.2 MENUScocviiiiiiiieiciceeeceee e 246
14.2.1 Using Keyboard Shortcuts........ 246
14.2.2 File Menu.......ccccoveveveveneeuennnn 247

14.2.3 Edit Menu.......cccocevveeerenencnnne 249

14.2.4 Compile Menu.........cccceceeneeneen. 253

14.2.5 Run Menu.........ccceceeeveennenueenne 255

14.2.6 Inspect Menu.........ccoeeevueenneennn 257
14.2.7 Options Menu..........cccceevenennen. 261
Environment Options.................... 261

Editor Tabcccovveierieeenee, 261

Gutter & Margin Tab 264

Display Tab.....cccceeevveeeenee. 266

Syntax Colors Tab.................... 267

Code Templates Tab................. 268

Debug Windows Tab................ 269

Print/Alerts Tab..........ccccceunee. 276

Project Options.........cccceveveeenennnee. 277
Communications Tab............... 277

Compiler Tabcccceeveeeeennee. 279

Debugger Tab.........ccccceveeeennen. 285

Defines Tab......ccccocevverenennnee. 288

Targetless Tabcccccveeeenee. 290

14.2.8 Window Menu...........ccccueueee. 293

14.2.9 Help Menu........cccceevvivenennnne 299

15. Command Line Interface..........c.cccccovureneeee. 303
15.1 Default Statescoceevevveveeceeeeeeinnennenn 303
15.2 User INput......ccceoeeeieeciieeieeiiecieeieeeeenn 303
15.3 Saving Output to a Filecccccecenene. 304
15.4 Command Line Switchesc........ 304

15.4.1 Switches Without Parameters... 304
15.4.2 Switches Requiring a Parameter312

15.5 EXamples......ccovevveeceenieeieeiie e 320

15.6 Command Line RFU............cccccooiine. 321
16.Project Filescccocovveeieceiceeecceeen 325
16.1 Project File Names........ccccceceeverienennnee 325
16.1.3 Active Project......ccccoeevvevuvennnns 325

16.2 Updating a Project Filecceeeueeneen. 326

16.3 Menu Selections.........cocceveereerereeniennens 326

16.4 Command Line Usage..........ccccceoueruenene 327

17. Hints and Tipsccocoevereverereeirieeeeeeeeenns 329
17.1 A User-Defined BIOS...........ccccooeene. 329

17.2 Efficiencyccvevveecieeniieeieciie e 330
17.2.1 Nodebug Keyword 330

17.2.2 In-line I/O...oooeieiiieie 331

17.3 Run-time Storage of Data 331
17.3.1 User Block......ccccoevueninennnnnn. 332

17.3.2 Flash File System...................... 332

17.3.3 WriteFlash2ccccooevennee. 332

17.3.4 Battery-Backed RAM............... 332

17.4 Root Memory Reduction Tips................ 333
17.4.1 Increasing Root Code Space333

17.4.2 Increasing Root Data Space335

Appendix A: Macros and Global Variables 337
Macros Defined by the Compiler.............. 337
Macros Defined in the BIOS or Configuration
Librariesoccoevereveenenenenenenenieene 340

digi.com

Table of Contents

www.digi.com

Global Variables..........ccooevuvieiiiiciiieiiiinnns 341

Exception Typescecveeereereeneieereeeeene 342
Rabbit Registersccccceveeeeeneeiereeieene 342
Appendix B: Map File Generation 343
GIammar.........c.cocoevevevininiineneneieeneaes 343

Appendix C: Security Software & Utility Programs
345

Rabbit Embedded Security Pack............... 345

AES e 345

SSL e 345

Dynamic C Utilities.......c.cccveeeverereerueennnenns 346

Library File Encryptioncccccc....... 346

File Compression Utility 347

Font and Bitmap Converter Utility349

Rabbit Field Utilitycccceoeeeeieennne 349

Appendix D: Additional Documentation......... 355
INAEX .o 357

Dynamic C User’s Manual

digi.com

www.digi.com

digi.com Table of Contents

www.digi.com

RABBIT = PRODUCT MANUAL

1. INSTALLING DYNAMIC C

Insert the installation disk or CD in the appropriate disk drive on your PC. The installation should begin
automatically. If it doesn’t, issue the Windows “Run...” command and type the following command

<disk>:\SETUP

The installation program will begin and guide you through the installation process.

1.1 Requirements

Dynamic C requires an IBM-compatible PC running Windows 2000 or later with at least one free COM or
USB port.

Please note that Windows Vista is supported by Dynamic C out of the box if there is only one processor in
the host PC or laptop. With multiple processors (a.k.a., dual cores) present in the host system, you must
check Windows “Processor Affinity” setting in order to ensure Vista compatibility with Dynamic C. Tech-
nical note TN257 “Running Dynamic C with Windows Vista” has instructions for modifying the “Proces-
sor Affinity” setting. This technical note is available on the Digi website:

www.digi.com/support/

Starting with Dynamic C 9.60, the “Processor Affinity” setting is set automatically.

1.2 Assumptions

It is assumed that the reader has a working knowledge of:

¢ The basics of operating a software program and editing files under Windows on a PC.
¢ Programming in a high-level language.

e Assembly language and architecture for controllers.

Refer to one or both of the following texts for a full treatment of C:
® The C Programming Language by Kernighan and Ritchie (published by Prentice-Hall).
o (C: A Reference Manual by Harbison and Steel (published by Prentice-Hall).

Dynamic C User’s Manual digi.com 9

http://www.digi.com/support/
www.digi.com

10

digi.com

Installing Dynamic C

www.digi.com

RABEBIT <ot PRODUCT MANUAL

2. INTRODUCTION TO DYNAMIC C

Dynamic C is an integrated development system for writing embedded software. It is designed for use with
Rabbit controllers and other controllers based on the Rabbit microprocessor.

2.1 The Nature of Dynamic C

Dynamic C integrates the following development functions:

e Editing

e Compiling

e Linking

e Loading

¢ Debugging

into one program. In fact, compiling, linking and loading are one function. Dynamic C has an easy-to-use,
built-in, full-featured text editor. Dynamic C programs can be executed and debugged interactively at the

source-code or machine-code level. Pull-down menus and keyboard shortcuts for most commands make
Dynamic C easy to use.

Dynamic C also supports assembly language programming. It is not necessary to leave C or the develop-
ment system to write assembly language code. C and assembly language may be mixed together.

Debugging under Dynamic C includes the ability to use printf commands, watch expressions and
breakpoints. Watch expressions can be used to compute C expressions involving the target’s program vari-
ables or functions. Watch expressions can be evaluated while stopped at a breakpoint or while the target is
running its program. Dynamic C 9 introduces advanced debugging features such as execution and stack
tracing. Execution tracing can be used to follow the execution of debuggable statements, including such
information as function/file name, source code line and column numbers, action performed, time stamp of
action performed and register contents. Stack tracing shows function call sequences and parameter values.

Dynamic C provides extensions to the C language (such as shared and protected variables, costatements
and cofunctions) that support real-world embedded system development. Dynamic C supports cooperative
and preemptive multitasking.

Dynamic C comes with many function libraries, all in source code. These libraries support real-time pro-
gramming, machine level /O, and provide standard string and math functions.

2.1.1 Speed

Dynamic C compiles directly to memory. Functions and libraries are compiled and linked and downloaded
on-the-fly. On a fast PC, Dynamic C might load 30,000 bytes of code in five seconds at a baud rate of
115,200 bps.

Dynamic C User’s Manual digi.com 11

www.digi.com

2.2 Dynamic C Enhancements and Differences

Dynamic C differs from a traditional C programming system running on a PC or under UNIX. The reason?
To better help customers write the most reliable embedded control software possible. It is not possible to
use standard C in an embedded environment without making adaptations. Standard C makes many
assumptions that do not apply to embedded systems. For example, standard C implicitly assumes that an
operating system is present and that a program starts with a clean slate, whereas embedded systems may
have battery-backed memory and may retain data through power cycles. Rabbit has extended the C lan-
guage in a number of areas.

2.2.1 Dynamic C Enhancements
Many enhancements have been added to Dynamic C. Some of these are listed below.

Function Chaining, a concept unique to Dynamic C, allows special segments of code to be embedded
within one or more functions. When a named function chain executes, all the segments belonging to
that chain execute. Function chains allow software to perform initialization, data recovery, or other
kinds of tasks on request.

Costatements allow cooperative, parallel processes to be simulated in a single program.
Cofunctions allow cooperative processes to be simulated in a single program.

Slice Statements allow preemptive processes in a single program.

Dynamic C supports embedded assembly code and stand-alone assembly code.

Dynamic C has keywords that help protect data shared between different contexts (shared) or stored in
battery-backed memory (protected).

Dynamic C has a set of features that allow the programmer to make the fullest use of xmem (extended
memory). The compiler supports a 1 MB physical address space.

Normally, Dynamic C takes care of memory management, but there are instances where the program-
mer will want to take control of it. Dynamic C has keywords and directives to help put code in the
proper place, such as: root, xmem, and #memmap.

See Chapter 9 for further details on memory management.

12

digi.com Introduction to Dynamic C

www.digi.com

2.2.2 Dynamic C Differences

The main differences in Dynamic C are summarized in the list below and discussed in detail in Chapter 4.
“Language” and Chapter 12. “Keywords”.

If a variable is explicitly initialized in a declaration (e.g., int x = 0;), it is stored in flash memory
(EEPROM) and cannot be changed by an assignment statement. Such a declaration will generate a
warning that may be suppressed using the const keyword:

const int x = 0

To initialize static variables in Static RAM (SRAM) use # GLOBAL INIT sections. Note that other C
compilers will automatically initialize all static variables to zero that are not explicitly initialized before
entering the main function. Dynamic C programs do not do this because in an embedded system you
may wish to preserve the data in battery-backed RAM on reset

The numerous include files found in typical C programs are not used because Dynamic C has a library
system that automatically provides function prototypes and similar header information to the compiler
before the user’s program is compiled. This is done via the #use directive. This is an important topic
for users who are writing their own libraries. Those users should refer to Section 4.23, “Modules” for
more information.

When declaring pointers to functions, arguments should not be used in the declaration. Arguments may
be used when calling functions indirectly via pointer, but the compiler will not check the argument list
in the call for correctness. See Section 4.16 for more information

Bit fields are not supported.

Separate compilation of different parts of the program is not supported or needed.

Dynamic C User’s Manual digi.com 13

www.digi.com

2.3 Rabbit and Z180 Comparison

A major difference in the way Dynamic C interacts with a Rabbit-based board compared to a Z180 or
386EX board is that Dynamic C expects no BIOS kernel to be present on the target when it starts up.
Dynamic C stores the BIOS kernel as a C source file. Dynamic C compiles and loads it to the Rabbit target
when it starts. This is accomplished using the Rabbit CPU’s bootstrap mode and a special programming
cable provided in all Rabbit product development kits. This method has numerous advantages.

e A socketed flash is no longer needed. BIOS updates can be made without a flash-EPROM burner since
Dynamic C can communicate with a target that has a blank flash EPROM. Blank flash EPROM can be
surface-mounted onto boards, reducing manufacturing costs for both Rabbit and other board develop-
ers. BIOS updates can then be made available on the Web.

¢ Advanced users can see and modify the BIOS kernel directly.

¢ Board developers can design Dynamic C compatible boards around the Rabbit CPU by simply follow-
ing a few simple design guidelines and using a “skeleton” BIOS provided by Rabbit.

* A major feature is the ability to program and debug over the Internet or local Ethernet. This requires
either the use of a RabbitLink board, available alone or as an option with Rabbit-based development
kits, or the use of RabbitSys.

14 digi.com Introduction to Dynamic C

www.digi.com

RABBIT = PRODUCT MANUAL

3. QUICK TUTORIAL

Sample programs are provided in the Dynamic C Samples folder, which is in the root directory where
Dynamic C was installed. The Samples folder contains many subfolders, as shown in Figure 3.1. Sample
programs are provided in source code format. You can open the source code file in Dynamic C and read
the comment block at the top of the sample program for a description of its purpose and other details.
Comments are also provided throughout the source code. This documentation, provided by the software
engineers, is a rich source of information.

Figure 3.1 Screenshot of Samples Folder

Lok in: I _4 Samples j ﬁl

[EAES Encryption _dmtarget _Gps

| 1EI12000 I dmunit _lze

| 1BI2100 _IDOWN_LOAD _llcam

| 1BIZ500 _ 1EmaH andling £ | nitrLipks

| I Cofunc _IFR __lJackrab

|| Costate £ FileSpztem [LCD_Keppad

KN i

File name: I Open I
Filez of wpe: II: Source [*.c) j Cancel |

The subfolders contain sample programs that illustrate the use of the various Dynamic C libraries. For
example, the subfolders “Cofunc” and “Costate” have sample programs illustrating the use of
COFUNC.LIB and COSTATE . LIB, libraries that support cooperative multitasking using Dynamic C lan-
guage extensions. Besides its subfolders, the Samples folder also contains some sample programs to dem-
onstrate various aspects of Dynamic C. For example, the sample program Pong.c demonstrates output
to the Stdio window.

In the rest of this chapter we examine four sample programs in some detail.

Dynamic C User’s Manual digi.com 15

www.digi.com

3.1 Run DEMO1.C

This sample program will be used to illustrate some of the functions of Dynamic C. Open the file
Samples/DEMOL . C using the File menu or the keyboard shortcut <Ctrl+O>. The program will appear
in a window, as shown in Figure 3.2 (minus some comments). Use the mouse to place the cursor on the
function name print £ in the program and press <Ctrl+H>. This brings up a Function Description window
forprintf (). You can do this with all functions in the Dynamic C libraries, including libraries you
write yourself.

Figure 3.2 Sample Program DEMO1.C

% C:\DC_960%5amples’DEMO1.C][]

fﬁ-:(-ﬁ-:(-ﬁ-:(-ﬁ-:(-************************

demol. c
E=World, 2000

Sample program for Dyvhnamic © Premier tutorial
:i-si-:i-si-si-si-si-:i-si-:i-si-:i-si-si-si-si-:i-si-:i-si-si-si-si-:i-si-:i-si-:i-si-si-si-***********************K

mainil] |

int i, 3j:

i = 0;

while (1] {
i++:

for [(j=0; J<20000; J+44+):;

printf(™i = Fdvyn™, i):

To run DEMO1 . C compile it using the Compile menu, and then run it by selecting “Run” in the
H Run menu. (The keyboard shortcut <F9> will compile and run the program. You may also use the
green triangle toolbar button as a substitute for <F9>.)

The value of the counter should be printed repeatedly to the Stdio window if everything went well. If this
doesn’t work, review the following points:

¢ The target should be ready, indicated by the message “BIOS successfully compiled...” If you did not
receive this message or you get a communication error, recompile the BIOS by pressing <Ctrl+Y> or
select “Reset Target / Compile BIOS” from the Compile menu.

¢ A message reports “No Rabbit Processor Detected” in cases where the wall transformer is not con-
nected or not plugged in.

¢ The programming cable must be connected to the controller. (The colored wire on the programming
cable is closest to pin 1 on the programming header on the controller). The other end of the program-
ming cable must be connected to the PC serial port. The COM port specified in the Communications

16 digi.com Quick Tutorial

www.digi.com

dialog box must be the same as the one the programming cable is connected to. (The Communications
dialog box is accessed via the Communications tab of the Options | Project Options menu.)

¢ To check if you have the correct serial port, press <Ctrl+Y>. If the “BIOS successfully compiled ...”
message does not display, choose a different serial port in the Communications dialog box until you
find the serial port you are plugged into. Don’t change anything in this menu except the COM number.
The baud rate should be 115,200 bps and the stop bits should be 1.

3.1.1 Single Stepping

To experiment with single stepping, we will first compile DEMO1 . C to the target without run-
‘J ning it. This can be done by clicking the compile button on the task bar. This is the same as press-
ing F5. Both of this actions will compile according to the setting of “Default Compile Mode.”
(See “Default Compile Mode” in Chapter 14, for how to set this parameter.) Alternatively you may select
Compile | Compile to Target from the main menu.

After the program compiles a highlighted character (green) will appear at the first executable
statement of the program. Press the <F8> key to single step (or use the toolbar button). Each time
the <F8> key is pressed, the cursor will advance one statement. When you get to the statement:
for (j=0, j< ...,itbecomes impractical to single step further because you would have to press
<F8> thousands of times. We will use this statement to illustrate watch expressions.

3.1.2 Watch Expression

Watch expressions may only be added, deleted or updated in run mode. To add a watch expres-
ﬂ sion click on the toolbar button pictured here, or press <Ctrl+W> or choose “Add Watch” from
~ the Inspect menu. The Add Watch Expression popup box will appear. Type the lower case letter
“” and click on either “Add” or “OK.” The former keeps the popup box open, the latter closes it. Either
way the Watches window appears. This is where information on watch expressions will be displayed. Now
continue single stepping. Each time you do, the watch expression (7) will be evaluated and printed in the
Watches window. Note how the value of “j”” advances when the statement j ++ is executed.

3.1.3 Breakpoint

Move the cursor to the start of the statement:
for (3=0; j<20000; J++);

To set a breakpoint on this statement, press <F2> or select “Toggle Breakpoint” from the Run menu. A red
highlight appears on the first character of the statement. To get the program running at full speed, press
<F9>. The program will advance until it hits the breakpoint. The breakpoint will start flashing both red and
green colors.

To remove the breakpoint, press <F2> or select “Toggle Breakpoint” on the Run menu. To continue pro-
gram execution, press <F9>. You will see the value of “i” displayed in the Stdio window repeatedly until
program execution is halted.

You can set breakpoints while the program is running by positioning the cursor to a statement and using
the <F2> key. If the execution thread hits the breakpoint, a breakpoint will take place. You can toggle the
breakpoint with the <F2> key and continue execution with the <F9> key.

Dynamic C User’s Manual digi.com 17

www.digi.com

Starting with Dynamic C 9, you can also set breakpoints while in edit mode. Breakpoint information is not
only retained when going back and forth from edit mode to debug mode, it is stored when a file is closed
and restored when the file is re-opened.

3.1.4 Editing the Program

Press <F4>to put Dynamic C into edit mode. Use the “Save as” choice on the File menu to save the file
with a new name so as not to change the original demo program. Save the file as MYTEST . C. Now change
the number 20000 in the for statement to 10000. Then use the <F9> key to recompile and run the pro-
gram. The counter displays twice as quickly as before because you reduced the value in the delay loop.

3.2 Run DEMO2.C

Go back to edit mode and open the program DEMO?2 . C. This program is the same as the first program,
except that a variable k has been added along with a statement to increment “k” by the value of “i”” each
time around the endless loop. Compile and run DEMO2 . C.

3.2.1 Watching Variables Dynamically
Press <Ctrl+W> to open the “Add Watch Expression” popup box.

Type “k” in the text entry box, then

click “OK” (or “Add”) to add the
expression “k” to the top of the list of Wakch Espression Ik j
watch expressions. Now press
<Ctrl+U>, the keyboard shortcut for
updating the watch window. Each
time you press <Ctrl+U>, you will see
the current value of k.

ok | Cancel | Help |

Add another expression to the watch window:
k*5

Then press <Ctrl+U> several times to observe the watch expressions “k” and “k*5.”

18 digi.com Quick Tutorial

www.digi.com

3.3 Run DEMO3.C

The example below, sample program DEMO3 . C, uses costatements. A costatement is a way to perform a
sequence of operations that involve pauses or waits for some external event to take place.

3.3.1 Cooperative Multitasking

Cooperative multitasking is a way to perform several different tasks at virtually the same time. An exam-
ple would be to step a machine through a sequence of tasks and at the same time carry on a dialog with the
operator via a keyboard interface. Each separate task voluntarily surrenders its compute time when it does
not need to perform any more immediate activity. In preemptive multitasking control is forcibly removed
from the task via an interrupt.

Dynamic C has language extensions to support both types of multitasking. For cooperative multitasking
the language extensions are costatements and cofunctions. Preemptive multitasking is accomplished with
slicing or by using the pC/OS-II real-time kernel.

Advantages of Cooperative Multitasking

Unlike preemptive multitasking, in cooperative multitasking variables can be shared between different
tasks without taking elaborate precautions. Cooperative multitasking also takes advantage of the natural
delays that occur in most tasks to more efficiently use the available processor time.

The DEMO3. C sample program has two independent tasks. The first task prints out a message to Stdio
once per second. The second task watches to see if the keyboard has been pressed and prints the entered
key.

main () {

int secs; // seconds counter
secs = 0; // Iinitialize counter
(1) while (1) { // endless loop

// First task will print the seconds elapsed.
(2) costate {

secs++; // increment counter
(3) waitfor (DelayMs (1000)); // wait one second
printf ("$d seconds\n", secs); // print elapsed seconds

(4) }
// Second task will check if any keys have been pressed.

costate {

(5) if (!kbhit()) abort; // key been pressed?
printf (" key pressed = %c\n", getchar());
}
(6) } // end of while loop
} // end of main

The numbers in the left margin are reference indicators and not part of the code. Load and run the pro-
gram. The elapsed time is printed to the Stdio window once per second. Push several keys and note how
they are reported.

Dynamic C User’s Manual digi.com 19

www.digi.com

The elapsed time message is printed by the costatement starting at the line marked (2). Costatements need
to be executed regularly, often at least every 25 ms. To accomplish this, the costatements are enclosed in a
while loop. The while loop starts at (1) and ends at (6). The statement at (3) waits for a time delay, in
this case 1000 ms (one second). The costatement executes each pass through the while loop. When a
waitfor condition is encountered the first time, the current value of MS TIMER is saved and then on
each subsequent pass the saved value is compared to the current value. If a wait for condition is not
encountered, then a jump is made to the end of the costatement (4), and on the next pass of the loop, when
the execution thread reaches the beginning of the costatement, execution passes directly to the waitfor
statement. Once 1000 ms has passed, the statement after the waitfor is executed. A costatement can
wait for a long period of time, but not use a lot of execution time. Each costatement is a little program with
its own statement pointer that advances in response to conditions. On each pass through the while loop
as few as one statement in the costatement executes, starting at the current position of the costatement’s
statement pointer. Consult Chapter 5 for more details.

The second costatement in the program checks to see if an alpha-numeric key has been pressed and, if one
has, prints out that key. The abort statement is illustrated at (5). If the abort statement is executed, the
internal statement pointer is set back to the first statement in the costatement, and a jump is made to the
closing brace of the costatement.

Observe the value of secs while the program is running.To illustrate the use of snooping, use the watch
window to observe secs while the program is running. Add the variable secs to the list of watch expres-
sions, then press <Ctrl+U> repeatedly to observe as secs increases.

3.4 Run DEMOA4.C

The sample program DEMOA4 . C uses execution tracing. This is one of the advanced debugging features
introduced in Dynamic C 9. Tracing records program state information based on options you choose in the
Debugger tab of the Project Options dialog. The information captured from the target by Dynamic C’s
tracing feature is displayed in the Trace window, available from the Window menu. To make the target
send trace information, you must turn on tracing either from the INSPECT menu or from within your pro-
gram using one of the macros described here.

To use this sample program, first go to the
Debugger tab of the Project Options dialog,
select Enable Tracing, and choose Full for
the Trace Level. Click OK to save and close “ 0= M “ = “ e lﬁ AR ST

L= Dynamic C Dist. 9.00

File Edit Caompile Run Inspect|opting Wiindow Help

the dialog, then compile and run DEMO4 . C. “ = B = = Project Options

When the program finishes, the Trace win-
dow will open and you can examine its
entries. The Trace window can be opened
anytime after the program is compiled, but execution speed is slightly affected if the window is open while
the program is running.

Toolbars r

20 digi.com Quick Tutorial

www.digi.com

3.4.1 Trace Macros

Trace macros provide more fine-grained control than the menu options.

_TRACE

The TRACE macro creates one entry in the trace buffer containing the program state information at the
time the macro executes. It is useful if you want to monitor one statement closely rather than follow the
flow of part of a program. In Demo4 . c, TRACE is executed at lines 45 and 77, as you can see in the
screenshot in Figure 3.3.

Figure 3.3 Trace window contents after running Demo4.c

ﬁE:"'.DEINPHDEHSAHPLESKDEHD{E Trace
Achion Function | File Marme Lire/Col
Execute DEMO4 . C

Execute foo DEMO4_C &0,z
Execute foo LEMO4_C &5l,2
Execute foo LEMO4_C 62,1
Exit foo DEMO4._C GZ,1
Execute main LEMO4_C 71,4
MACERO fool DEMO4._C 45,1
MACERO main DEMO4._C 7.1
Execute foo LEMO4_C LEg, 4
Execute foo DEMO4_C &0,z
Execute foo LEMO4_C &5l,2
Execute foo LEMO4_C 62,1
Exit foo DEMO4._C GZ,1
Execute main LEMO4_C 20,4
Execute main LEMO4_C 81,4
MACERO fool DEMO4._C 45,1
Execute main LEMO4_C gz .4
Execute main DEMO4_C 23,1
Exit main DEMO4._C 23,1

The TRACE macro does not affect the TRACEON and TRACEOFF macros, and likewise is not
affected by them. It will execute regardless of whether tracing is turned on or off. An interesting thing to
note about TRACE is that it generate a trace statement even when it appears in a nodebug function.

_TRACEON

The TRACEON macro turns on tracing. This does not cause any information to be recorded by itself like
the TRACE macro, but rather causes a change of state within the debug kernel so that program state infor-
mation is recorded for program and library statements executed thereafter, until the TRACEOFF macro is
executed or by menu command. Dynamic C captures the information you specified in the Project Options
dialog and displays it in the Trace window.

In Demo4.c, TRACEON is executed in the function foo () . Note that tracing is turned on in the second
call to fool () inmain (), but that except for the TRACE statement there are no trace statements for
fool (). This is because statements in nodebug functions are not traceable.

_TRACEOFF

The TRACEOFF macro turns off tracing, starting with the next statement after it executes. Instances of
the TRACE macro will still execute, but tracing remains off until it is turned on by the TRACEON macro
or by menu command.

Dynamic C User’s Manual digi.com 21

www.digi.com

3.5 Summary of Features

This chapter provided a quick look at the interface of Dynamic C and some of the powerful options avail-
able for embedded systems programming. The following several paragraphs are a summary of what we’ve
discussed.

Development Functions

When you load a program it appears in an editor window. You compile by clicking Compile on the task bar
or from the Compile menu. The program is compiled into machine language and downloaded to the target
over the serial port. The execution proceeds to the first statement of main, where it pauses, waiting to run.
Press <F9> or select “Run” on the Run menu. If want to compile and run the program with one keystroke,
use <F9>, the run command; if the program is not already compiled, the run command compiles it.

Single Stepping

This is done with the F8 key. The F7 key can also be used for single stepping. If the F7 key is used, then
descent into functions will take place. With F8 the function is executed at full speed when the statement
that calls it is stepped over.

Setting Breakpoints

The F2 key is used to toggle a breakpoint at the cursor position. Prior to Dynamic C 9, breakpoints could
only be toggled while in run mode, either while stopped at a breakpoint or when the program ran at full
speed. Starting with Dynamic C 9, breakpoints can be set in edit mode and retained when changing modes
or closing the file.

Watch Expressions

A watch expression is a C expression that is evaluated on command in the Watches window. An expression
is basically any type of C statement that can include operators, variables, structures and function calls, but
not statements that require multiple lines such as for or switch. You can have a list of watch expres-
sions in the Watches window. If you are single stepping, then they are all evaluated on each step. You can
also command the watch expressions to be evaluated by using the <Ctrl+U> command. When a watch
expression is evaluated at a breakpoint, it is evaluated as if the statement was at the beginning of the func-
tion where you are single stepping.

Costatements

A costatement is a Dynamic C extension that allows cooperative multitasking to be programmed by the
user. Keywords, like abort and waitfor, are available to control multitasking operation from within
costatements.

Execution Tracing

Execution tracing allows you to follow the flow of your program’s execution in real time instead of single
stepping through it. The Trace window can show which statement was executed, what type of action it
was, when it was executed, and the contents of the registers after executing it. You can also save the con-
tents of the Trace window to a file.

22 digi.com Quick Tutorial

www.digi.com

RABBIT = PRODUCT MANUAL

4. LANGUAGE

Dynamic C is based on the C language. The programmer is expected to know programming methodologies
and the basic principles of the C language. Dynamic C has its own set of libraries, which include user-call-
able functions. Please see the Dynamic C Function Reference Manual for detailed descriptions of these
API functions. Dynamic C libraries are in source code, allowing the creation of customized libraries.

Before starting on your application, read through the rest of this chapter to review C-language features and
understand the differences between standard C and Dynamic C.

4.1 C Language Elements

A Dynamic C program is a set of files consisting of one file with a main() function and the requested
library files. Each file is a stream of characters that compose statements in the C language. The language
has grammar and syntax, that is, rules for making statements. Syntactic elements, often called tokens, form
the basic elements of the C language. Some of these elements are listed in Table 4-1.

Table 4-1. Language Elements

Syntactic Element Description
punctuation Symbols used to mark beginnings and endings
names Words used to name data and functions
numbers Literal numeric values
strings Literal character values enclosed in quotes
directives Words that start with # and control compilation
keywords Words used as instructions to Dynamic C
operators Symbols used to perform arithmetic operations

Dynamic C User’s Manual digi.com 23

www.digi.com

4.2 Punctuation Tokens

Punctuation serves as boundaries in C programs. Table 4-2 lists the punctuation tokens.

Table 4-2. Punctuation Marks and Tokens

Token

Description

Terminates a statement label.

Terminates a simple statement or a do loop.

Separates items in a list, such as an argument list,
declaration list, initialization list, or expression list.

(

)

Encloses argument or parameter lists. Function calls
always require parentheses. Macros with parameters
also require parentheses. Also used for arithmetic and
logical sub expressions.

{

}

Begins and ends a compound statement, a function
body, a structure or union body, or encloses a function
chain segment.

//

Indicates that the rest of the line is a comment and is not
compiled.

/* ...

*/

Comments are nested between the /* and * / tokens.

24

digi.com

Language

www.digi.com

4.3 Data

Data (variables and constants) have type, size, structure, and storage class. Basic (a.k.a., primitive) data
types are shown below.

Table 4-3. Dynamic C Basic Data Types

Data Type Description
char 8-bit unsigned integer. Range: 0 to 255 (0xFF)
int 16-bit signed integer. Range: -32,768 to +32,767

unsigned int

16-bit unsigned integer. Range: 0 to +65,535

long

32-bit signed integer. Range: -2,147,483,648 to +2,147,483,647

unsigned long

32-bit unsigned integer. Range 0 to 2321

32-bit IEEE floating-point value. The sign bit is 1 for negative
values. The exponent has 8 bits, giving exponents from -127 to

float +128. The mantissa has 24 bits. Only the 23 least significant bits
are stored; the high bit is 1 implicitly. (Rabbit controllers do not
have floating-point hardware.) Range: 1.18 x 1038 t0 3.40 x 1038

enum Defines a list of named integer constants. The integer constants are

signed and in the range: -32,768 to +32,767.

4.3.1 Data Type Limits

The following symbolic names for the hardcoded limits of the data types are defined in 1imits.h.

#define
#define
#define
#define
#define

#define
#define
#define

#define
#define
#define
#define
#define
#define

CHAR BIT
UCHAR MAX
CHAR_MIN
CHAR_MAX

MB LEN MAX

SHRT MIN
SHRT MAX
USHRT MAX

INT MIN
INT MAX

UINT MAX
LONG_MIN
LONG_MAX
ULONG_MAX

-32768
32767
65535

-32767
32767

65535
-2147483647
2147483647
4294967295

Dynamic C User’s Manual

digi.com 25

www.digi.com

4.4 Names

Names identify variables, certain constants, arrays, structures, unions, functions, and abstract data types.
Names must begin with a letter or an underscore (_), and thereafter must be letters, digits, or an under-
score. Names may not contain any other symbols, especially operators. Names are distinct up to 32 charac-
ters, but may be longer. Names may not be the same as any keyword. Names are case-sensitive.

Examples
my function // ok
_block // ok
test32 // ok
jumper- // mnot ok, uses a minus sign
3270type // mnot ok, begins with digit
Cleanup the data now // These names are not distinct in Dynamic C 6.19

Cleanup the data later // butare distinct in all later versions.

References to structure and union elements require compound names. The simple names in a compound
name are joined with the dot operator (period).

cursor.loc.x = 10; // set structure element to 10

Use the #define directive to create names for constants. These can be viewed as symbolic constants.
See Section 4.5, “Macros.”

#define READ 10
#define WRITE 20
#define ABS 0
#define REL 1
#define READ ABS READ + ABS
#define READ REL READ + REL

The term READ ABS is the same as 10 + 0 or 10, and READ REL is the same as 10 + 1 or 11. Note that
Dynamic C does not allow anything to be assigned to a constant expression.

READ ABS = 27; // produces a compiler error

To accomplish the above statement, do the following:

#undef READ ABS
#define READ ABS 27

26 digi.com Language

www.digi.com

4.5 Macros

Macros may be defined in Dynamic C by using #define. A macro is a name replacement feature.
Dynamic C has a text preprocessor that expands macros before the program text is compiled. The pro-
grammer assigns a name, up to 31 characters, to a fragment of text. Dynamic C then replaces the macro
name with the text fragment wherever the name appears in the program. In this example,

#define OFFSET 12
#define SCALE 72

int i, x;

i = x * SCALE + OFFSET;

the variable i gets the value x * 72 + 12. Macros can have parameters such as in the following code.

#define word(a, b) (a<<8 | b)

char c;

int i, J;

i = word(j, c)i // sameasi=(j<<8|c)
The compiler removes the surrounding white space (comments, tabs and spaces) and collapses each
sequence of white space in the macro definition into one space. It places a \ before any " or \ to preserve
their original meaning within the definition.

4.5.1 Macro Operators # and ##

Dynamic C implements the # and ## macro operators.

The # operator forces the compiler to interpret the parameter immediately following it as a string literal.
For example, if a macro is defined

#define report (value, fmt)\
printf (#value "=" #fmt "\n", value)

then the macro in
report (string, %s);
will expand to
printf("string™ "=" "%$s" "\n", string);
and because C always concatenates adjacent strings, the final result of expansion will be

printf("string=%s\n", string);

The ## operator concatenates the preceding character sequence with the following character sequence,
deleting any white space in between. For example, given the macro

#define set(x,y,z) x ## z ## ## vy ()
the macro in

set (AASC, FN, 6);
will expand to

AASC6 _FN() ;

For parameters immediately adjacent to the ## operator, the corresponding argument is not expanded
before substitution, but appears as it does in the macro call.

Dynamic C User’s Manual digi.com 27

www.digi.com

4.5.2 Nested Macro Definitions

Generally speaking, Dynamic C expands macro calls recursively until they can expand no more. Another
way of stating this is that macro definitions can be nested.

The exceptions to this rule are

1. Arguments to the # and ## operators are not expanded.

2. To prevent infinite recursion, a macro does not expand within its own expansion.

The following complex example illustrates this.

#define A B

#define B C

#define uint unsigned int

#define M(x) M ## x

#define MM(x,vy,z) x = y ## z

#define string something

#define write(value, fmt)\

printf (#value "=" #fmt "\n", value)

The code
uint z;
M (M) (A,A,B);

write(string, %s);

will expand first to

unsigned int z; // simple expansion

MM (A,A,B); // M(M) doesn’t expand recursively

printf ("string" "=" "%s" "\n", string); // #value > "string" #mt — "%s"
then to

unsigned int z;
A = AB; // from A=A##B
printf("string" "=" "%s" "\n", something);

// string — something

then to

unsigned int z;

B = AB; // A—>B

printf("string=%s\n", something); // concatenation
and finally to

unsigned int z;

C = AB; //B—>C

printf ("string = %$s\n", something) ;

28 digi.com Language

www.digi.com

4.5.3 Macro Restrictions

The number of arguments in a macro call must match the number of parameters in the macro definition.
An empty parameter list is allowed, but the macro call must have an empty argument list. Macros are
restricted to 32 parameters and 126 nested calls. A macro or parameter name must conform to the same
requirements as any other C name. The C language does not perform macro replacement inside string liter-
als, character constants, comments, or within a #de fine directive.

A macro definition remains in effect unless removed by an #undef directive. If an attempt is made to
redefine a macro without using #unde £, a warning will appear and the original definition will remain in
effect.

4.6 Numbers

Numbers are constant values and are formed from digits, possibly a decimal point, and possibly the letters
U, L, X,orA-F,or their lower case equivalents. A decimal point or the presence of the letter E or F
indicates that a number is real (has a floating-point representation).

Integers have several forms of representation. The normal decimal form is the most common.

10 =327 1000 0

An integer is long (32-bit) if its magnitude exceeds the 16-bit range (-32768 to +32767) or if it has the let-
ter L appended.

OL -32L 45000 32767L

An integer is unsigned if it has the letter U appended. It is 1ong if it also has L appended or if its magni-
tude exceeds the 16-bit range.

0U 42949672940 327670 1700UL
An integer is hexadecimal if preceded by 0x.
0x7E 0xEQ00 OxXFFFFFFFA
It may contain digits and the letters a—f or A-F.
An integer is octal if begins with zero and contains only the digits 0—-7.

0177 020000 000000630

A real number can be expressed in a variety of ways.

4.5 means 4.5
4f means 4.0
0.3125 means 0.3125

456e-31 means 456 x 101
0.3141592el means 3.141592

Dynamic C User’s Manual digi.com 29

www.digi.com

4.7 Strings and Character Data
A string is a group of characters enclosed in double quotes ("").
"Press any key when ready..."

Strings in C have a terminating null byte appended by the compiler. Although C does not have a string data
type, it does have character arrays that serve the purpose. C does not have string operators, such as concat-
enate, but library functions strcat () and strncat () are available.

Strings are multibyte objects, and as such they are always referenced by their starting address, and usually
by a char* variable. More precisely, arrays are always passed by address. Passing a pointer to a string is
the same as passing the string. Refer to Section 4.15 for more information on pointers.

The following code illustrates a typical use of strings.

const char * const select = "Select option\n";
char start[32];

strcpy(start, "Press any key when ready...\n");
printf (select); // pass pointer to string

printf (start); // pass string

Note that both the pointer and the elements of the array are explicitly defined as const. Some versions of
Dynamic C allowed the second const to be omitted. Current versions of the compiler generate an error
unless the second const is included.

4.7.1 String Concatenation

Two or more string literals are concatenated when placed next to each other. For example:
"Rabbits" "like carrots."

becomes, during compilation:
"Rabbits like carrots."

If the strings are on multiple lines, the macro continuation character must be used. For example:

"Rabbits"\
"don’t like line dancing."

becomes, during compilation:

"Rabbits don’t like line dancing."

30 digi.com Language

www.digi.com

4.7.2 Character Constants

Character constants have a slightly different meaning. They are not strings. A character constant is
enclosed in single quotes (* ') and is a representation of an 8-bit integer value.

g v\nv '\XlB'

Any character can be represented by an alternate form, whether in a character constant or in a string. Thus,
nonprinting characters and characters that cannot be typed may be used.

A character can be written using its numeric value preceded by a backslash.

\x41 // the hex value 41
\101 // the octal value 101, a leading zero is optional
\B10000001 // the binary value 10000001

There are also several “special” forms preceded by a backslash.

\a bell \b backspace

\f formfeed \n newline

\r carriage return \t tab

\v vertical tab \O null character

\\ backslash \c the actual character c

\’ single quote \” double quote
Examples

"He said \"Hello.\"" // embedded double quotes

const char j = 'Z'; // character constant

const char* MSG = "Put your disk in the A drive.\n";

// embedded new line at end
printf (MSG); // print MSG
char* default = ""; // empty string: a single null byte

Dynamic C User’s Manual digi.com 31

www.digi.com

4.8 Statements

Except for comments, everything in a C program is a statement. Almost all statements end with a semico-
lon. A C program is treated as a stream of characters where line boundaries are (generally) not meaningful.
Any C statement may be written on as many lines as needed. Prior to Dynamic C 9.60, the compiler will
parse up to 250 bytes for any single C statement in a ““.c” or a “.lib” file. Starting with Dynamic C 9.60, the
compiler will parse up to 64K bytes for any single C statement in a “.c” file; the 250 byte limit still exists
for “.1ib” files.

A statement can be many things. A declaration of variables is a statement. An assignment is a statement. A
while or for loop is a statement. A compound statement is a group of statements enclosed in braces
{ and }. A group of statements may be single statements and/or compound statements.

Comments (the /* . . . */ kind) may occur almost anywhere, even in the middle of a statement, as long as
they begin with /* and end with * /.

4.9 Declarations

A variable must be declared before it can be used. That means the variable must have a name and a type,
and perhaps its storage class could be specified. If an array is declared, its size must be given. Root data
arrays are limited to a total of 32,767 elements.

static int thing, array[12]; / / static integer variable &

// static integer array
auto float matrix[3]1[3]; // auto float array with 2 dimensions
char *message="Press any key...” // initialized pointer to char array

If an aggregate type (st ruct or union) is being declared, its internal structure has to be described as
shown below.

struct { // description of structure
char flags;
struct { // anested structure here
int x;
int y;
} loc;
} cursor;
int a;
a = cursor.loc.x; // use of structure element here

32 digi.com Language

www.digi.com

4.10 Functions

The basic unit of a C application program is a function. Most functions accept parameters (a.k.a., argu-
ments) and return results, but there are exceptions. All C functions have a return type that specifies what
kind of result, if any, it returns. A function with a void return type returns no result. If a function is
declared without specifying a return type, the compiler assumes that it is to return an int (integer) value.

A function may call another function, including itself (a recursive call). The main function is called auto-
matically after the program compiles or when the controller powers up. The beginning of the main func-
tion is the entry point to the entire program.

4.11 Prototypes

A function may be declared with a profotype. This is so that:

¢ Functions that have not been compiled may be called.
¢ Recursive functions may be written.

¢ The compiler may perform type-checking on the parameters to make sure that calls to the function
receive arguments of the expected type.

A function prototype describes how to call the function and is nearly identical to the function’s initial code.
/* This is a function prototype.* /
long tick count (char clock id);

/* This is the function’s definition.* /
long tick count (char clock id) {

}

It is not necessary to provide parameter names in a prototype, but the parameter type is required, and all
parameters must be included. (If the function accepts a variable number of arguments, as printf does,
use an ellipsis.)

/* This prototype is as good as the one above. */
long tick count (char);

/* This is a prototype that uses ellipsis. */
int startup (device id, ...);

Dynamic C User’s Manual digi.com 33

www.digi.com

4.12 Type Definitions

Both types and variables may be defined. One virtue of high-level languages such as C and Pascal is that
abstract data types can be defined. Once defined, the data types can be used as easily as simple data types
like int, char, and float. Consider this example.

typedef int MILES;

typedef struct {
float re;
float im;

} COMPLEX;

MILES distance;
COMPLEX z, *zp;

// abasic type named MILES

// astructure type...
//

/] ...
// ..named COMPLEX

// declare variable of type MILES

// declare variable of & pointer to type COMPLEX .

Use typedef to create a meaningful name for a class of data. Consider this example.

typedef unsigned int node;

void NodeInit (node) ;

// type name is informative

void NodeInit (unsigned int); // not very informative

This example shows many of the basic C constructs.

/ *Put descriptive information in your program code using this form of comment,

which can be inserted anywhere
(shown below) may be placed at

#define SIZE 12

int g, h;

float sumSquare(int,
void init () ;

and can span lines. The double slash comment
the end of a line.* /

// A symbolic constant defined.
// Declare global integers.

int); // Prototypes for
// functions below.

main () { // Program starts here.
float x; // x1s local to main.
init (), // Call a void function.
x = sumSquare(g, h); // X gets sumSquare value.
printf (“'x = $f”,x); // printfis a standard function.

}

void init () {
g = 10;
h SIZE;

// Void functions do things but
// they return no value.

// Here, it uses the symbolic
// constant defined above.

float sumSquare(int a, int b){ // Integer arguments.

float temp;
temp = a*a + b*b;
return(temp);

}

// Local variables.
// Arithmetic statement.
// Return value.

/* and here is the end of the program */

34

digi.com

Language

www.digi.com

The program above calculates the sum of squares of two numbers, g and h, which are initialized to 10 and
12, respectively. The main function calls the init function to give values to the global variables g and h.
Then it uses the sumSquare function to perform the calculation and assign the result of the calculation to
the variable x. It prints the result using the library function print £, which includes a formatting string as
the first argument.

Notice that all functions have { and } enclosing their contents, and all variables are declared before use.
The functions init () and sumSquare () were defined before use, but there are alternatives to
this. This was explained in Section 4.11.

4.13 Aggregate Data Types

Simple data types can be grouped into more complex aggregate forms.

4.13.1 Array

A data type, whether it is simple or complex, can be replicated in an array. The declaration

int item[10]; // An array of 10 integers.

represents a contiguous group of 10 integers. Array elements are referenced by their subscript.
J = item[n]; // The nth element of the array.
Array subscripts count up from 0. Thus, 1tem[7] above is the eighth item in the array. Notice the [and

] enclosing both array dimensions and array subscripts. Arrays can be “nested.” The following doubly
dimensioned array, or “array of arrays.”

int matrix[7][3];

is referenced in a similar way.

scale = matrix[i][3j];

The first dimension of an array does not have to be specified as long as an initialization list is specified.

int x[][2] = { {1, 2}, {3, 4}, {5, 6} };
char string[] = "abcdefg";

Dynamic C User’s Manual digi.com 35

www.digi.com

4.13.2 Structure

Variables may be grouped together in structures (struct in C) or in arrays. Structures may be nested.

struct {
char flags;
struct {
int x;
int y;
} loc;
} cursor;

Structure members—the variables within a structure—are referenced using the dot operator.

Jj = cursor.loc.x

The size of a structure is the sum of the sizes of its components.

4.13.3 Union

A union overlays simple or complex data. That is, all the union members have the same address. The size
of the union is the size of the largest member.

union {
int ival;
long jval;
float xval;
}ous

Unions can be nested. Union members—the variables within a union—are referenced, like structure ele-
ments, using the dot operator.

J = u.ival

4.13.4 Composites

Composites of structures, arrays, unions, and primitive data may be formed. This example shows an array
of structures that have arrays as structure elements.

typedef struct {

dmit *sxg

int c[32]; // array in structure
} node;
node list[12]; // array of structures

Refer to an element of array c (above) as shown here.
z = list[n].c[m];

list[0].c[22] = OxFF37;

36 digi.com Language

www.digi.com

4.14 Storage Classes

Variable storage can be auto or static. The term “static” means the data occupies a permanent fixed
location for the life of the program. The term “auto” refers to variables that are placed on the system stack
for the life of a function call.The default storage class is aut o, but can be changed by using #class
static. The default storage class can be superseded by the use of the keyword auto or staticina
variable declaration.

These terms apply to local variables, that is, variables defined within a function. If a variable does not
belong to a function, it is called a global variable—available anywhere in the program—but there is no
keyword in C to represent this fact. Global variables always have static storage.

The register type is reserved, but is not currently implemented. Dynamic C will change a variable to
be of type auto if register is encountered. Even though the register keyword is not implemented,
it still can not be used as a variable name or other symbol name. Its use will cause unhelpful error mes-
sages from the compiler.

4.15 Pointers

A pointer is a variable that holds the 16-bit logical address of another variable, a structure, or a function.
The indirection operator (*) is used to declare a variable as a pointer. The address operator (&) is used to
set the pointer to the address of a variable.

int *ptr to 1i;

int i;

ptr to i = &i; // set pointer equal to the address of i
i = 10: // assign a value to i

j = *ptr to i; // this sets j equal to the value in i

In this example, the variable ptr to i is a pointer to an integer. The statement “j = *ptr_to_i;” refer-
ences the value of the integer by the use of the asterisk. Using correct pointer terminology, the statement
dereferences the pointer ptr to i.Then *ptr to i and i have identical values.

Note that ptr to 1 and i do not have the same values because ptr to i isa pointer and i is an
int. Note also that * has two meanings (not counting its use as a multiplier in others contexts) in a vari-
able declaration such as int *ptr to i; the * means that the variable will be a pointer type, and in
an executable statement j = *ptr to 1i; means “the value stored at the address contained in
ptr to i.”
Pointers may point to other pointers.

int *ptr to i;

int **ptr to ptr to i;

int 1,3

ptr to i = &i; // Set pointer equal to the address of i

ptr to ptr to i = &ptr to i; // Seta pointer to the pointer

// to the address of i

= 10; // Assign avalue to i
j = **ptr to ptr to i; // This sets j equal to the value in i.

Dynamic C User’s Manual digi.com 37

www.digi.com

It is possible to do pointer arithmetic, but this is slightly different from ordinary integer arithmetic. Here
are some examples.

float £[10], *p, *q; // an array and some ptrs

p = &f; // point p to array element 0
q = ptd; // point q to array element 5
gt+; // point q to array element 6
p=p fq; // illegal!

Because the f1oat is a 4-byte storage element, the statement g = p+5 sets the actual value of g to
p+20. The statement g++ adds 4 to the actual value of g. If £ were an array of 1-byte characters, the
statement g++ adds 1to g.

Beware of using uninitialized pointers. Uninitialized pointers can reference ANY location in memory.
Storing data using an uninitialized pointer can overwrite code or cause a crash.

A common mistake is to declare and use a pointer to char, thinking there is a string. But an uninitialized
pointer is all there is.

char* string;

strcpy(string, "hello"); // Invalid!
printf (string); // Invalid!

Pointer checking is a run-time option in Dynamic C. Use the Compiler tab on the Options | Project Options
menu. Pointer checking will catch attempts to dereference a pointer to unallocated memory. However, if an
uninitialized pointer happens to contain the address of a memory location that the compiler has already
allocated, pointer checking will not catch this logic error. Because pointer checking is a run-time option,
pointer checking adds instructions to code when pointer checking is used.

4.16 Pointers to Functions, Indirect Calls

Pointers to functions may be declared. When a function is called using a pointer to it, instead of directly,
we call this an indirect call.

The syntax for declaring a pointer to a function is different than for ordinary pointers, and Dynamic C syn-
tax for this is slightly different than the standard C syntax. Standard syntax for a pointer to a function is:

returntype (*name) ([argument list]);
for example:

int (*funcl) (int a, int b);
void (*func?2) (char*) ;

Dynamic C doesn’t recognize the argument list in function pointer declarations. The correct Dynamic C
syntax for the above examples would be:

int (*funcl) () ;
void (*func?2) () ;

38 digi.com Language

www.digi.com

You can pass arguments to functions that are called indirectly by pointers, but the compiler will not check
them for correctness. This means that the auto promotions provided by Dynamic C type checking will not
occur, so values must be cast to the type that is expected or the size may not be correct. For example, if a
function takes a long as a parameter, and you pass it a 16-bit integer value, it must be cast to type long in
order for 4 bytes to be put onto the stack.

The following program shows some examples of using function pointers.

typedef int (*fnptr) (); // create pointer to function that returns an integer

main () {
int x,y;
int (*fncl) () ; // declare var fncl as a pointer to an int function.
fnptr fp2; // declare var fp2 as pointer to an int function
fncl = intfunc; // initialize fncl to point to intfunc()
fp2 = intfunc; // initialize fp2 to point to the same function.
X = (*fncl) (1,2); // call intfunc() via fncl
y = (*fp2) (3,4); // call intfunc() via fp2

printf ("%d\n", x);
printf ("%d\n", vy);

}

int intfunc(int x, int y) {
return x+y;

}

4.17 Argument Passing

In C, function arguments are generally passed by value. That is, arguments passed to a C function are gen-
erally copies on the program stack of the variables or expressions specified by the caller. Changes made to
these copies do not affect the original values in the calling program.

In Dynamic C and most other C compilers, however, arrays are always passed by address. This policy
includes strings (which are character arrays).

Dynamic C passes st ructs by value on the stack. Passing a large st ruct takes a long time and can
easily cause a program to run out of memory. Pass pointers to large st ructs if such problems occur.

For a function to modify the original value of a parameter, pass the address of, or a pointer to, the parame-
ter and then design the function to accept the address of the item.

Dynamic C User’s Manual digi.com 39

www.digi.com

4.18 Program Flow

Three terms describe the flow of execution of a C program: sequencing, branching and looping. Sequenc-
ing is simply the execution of one statement after another. Looping is the repetition of a group of state-
ments. Branching is the choice of groups of statements. Program flow is altered by calling a function, that
is transferring control to the function. Control is passed back to the calling function when the called func-
tion returns.

4.18.1 Loops

A while loop tests a condition at the start of the loop. As long as expression is true (non-zero), the loop
body (some statement(s)) will execute. If expression is initially false (zero), the loop body will not execute.
The curly braces are necessary if there is more than one statement in the loop body.

while (expression) {
some statement (s)

}

A do loop tests a condition at the end of the loop. As long as expression is true (non-zero) the loop body
(some statement(s)) will execute. A do loop executes at least once before its test. Unlike other controls,
the do loop requires a semicolon at the end.

do{
some statements
}while (expression);

The for loop is more complex: it sets an initial condition (exp!), evaluates a terminating condition (exp2),
and provides a stepping expression (exp3) that is evaluated at the end of each iteration. Each of the three
expressions is optional.

for(expl ; exp2 ; exp3){
some statement (s)

}

If the end condition is initially false, a for loop body will not execute at all. A typical use of the for loop
is to count n times.

sum = 0;

for(i = 0; i < n; i++){
sum = sum + array[i];

}

This loop initially sets 1 to 0, continues as long as i is less than n (stops when i equals n), and increments
i at each pass.

Another use for the for loop is the infinite loop, which is useful in control systems.

for(;;){ some statement(s) }

40 digi.com Language

www.digi.com

Here, there is no initial condition, no end condition, and no stepping expression. The loop body (some
statement(s)) continues to execute endlessly. An endless loop can also be achieved with a while loop.
This method is slightly less efficient than the for loop.

while (1) { some statement (s) }

4.18.2 Continue and Break

Two keywords are available to help in the construction of loops: continue and break.

The continue statement causes the program control to skip unconditionally to the next pass of the loop.
In the example below, if bad is true, more statements will not execute; control will pass back to the top of
the while loop.

get char();

while(! EOF) {
some statements
if(bad) continue;
more statements

The break statement causes the program control to jump unconditionally out of a loop. In the example
below, if cond RED is true, more statements will not be executed and control will pass to the next state-
ment after the ending curly brace of the for loop

for(1=0;1i<n;i++) {
some statements
if(cond RED) break;
more statements

The break keyword also applies to the switch/case statement described in the next section. The
break statement jumps out of the innermost control structure (loop or switch statement) only.

There will be times when break is insufficient. The program will need to either jump out more than one
level of nesting or there will be a choice of destinations when jumping out. Use a goto statement in such
cases. For example,

while (some statements) {
for(1=0;i<n;i++) {
some statements
if(cond RED) goto yyy;
some statements
if(code BLUE) goto zzz;
more statements

}
YYY:

handle cond RED
T4 6 7 3 -
handle code BLUE

Dynamic C User’s Manual digi.com 41

www.digi.com

4.18.3 Branching

The goto statement is the simplest form of a branching statement. Coupled with a statement label, it sim-
ply transfers program control to the labeled statement.

some statements
abc:

other statements

goto abc;

more statements
goto def;

def:
more statements

The colon at the end of the labels is required. In general, the use of the goto statement is discouraged in
structured programming.

The next simplest form of branching is the i f statement. The simple form of the i f statement tests a con-
dition and executes a statement or compound statement if the condition expression is true (non-zero). The
program will ignore the 1 £ body when the condition is false (zero).

if(expression) {
some statement (s)

}

A more complex form of the 1 f statement tests the condition and executes certain statements if the expres-
sion is true, and executes another group of statements when the expression is false.

if(expression) {

some statement (s) // if true
lelse({
some statement (s) // if false

}

The fullest form of the i £ statements produces a succession of tests.

if(expr;){
some statements
}else if(expr,) {
some statements
}else 1f(exprs) {
some statements
lelse{
some statements

}

The program evaluates the first expression (expr). If that proves false, it tries the second expression
(expr), and continues testing until it finds a true expression, an e1se clause, or the end of the if state-

ment. An el se clause is optional. Without an else clause,an if/else if statement that finds no true
condition will execute none of the controlled statements.

42 digi.com Language

www.digi.com

The switch statement, the most complex branching statement, allows the programmer to phrase a “mul-

tiple choice” branch differently.

switch (expression) {

case consty
statements;
break;

case const,
statements,
break;

case consty
statementss
break;

default:
statementsprprayrr

First the switch expression is evaluated. It must have an integer value. If one of the consty values

matches the switch expression, the sequence of statements identified by the consty expression is exe-

cuted. If there is no match, the sequence of statements identified by the default label is executed. (The
default partis optional.) Unless the break keyword is included at the end of the case’s statements, the

program will “fall through” and execute the statements for any number of other cases. The break key-
word causes the program to exit the switch/case statement.

The colons (:) after case and default are required.

Dynamic C User’s Manual

digi.com

43

www.digi.com

4.19 Function Chaining

Function chaining allows special segments of code to be distributed in one or more functions. When a
named function chain executes, all the segments belonging to that chain execute. Function chains allow the
software to perform initialization, data recovery, and other kinds of tasks on request. There are two direc-

tives, #makechain and # funcchain, and one keyword, segchain that create and control function
chains:

#makechain chain_name

Creates a function chain. When a program executes the named function chain, all of the func-
tions or chain segments belonging to that chain execute. (No particular order of execution can
be guaranteed.)

#funcchain chain_name name

Adds a function, or another function chain, to a function chain.

segchain chain_name { statements }

Defines a program segment (enclosed in curly braces) and attaches it to the named function
chain.

Function chain segments defined with segchain must appear in a function directly after data declara-
tions and before executable statements, as shown below.

my function () {
/* data declarations */
segchain chain x{
/* some statements which execute under chain_x */

}

segchain chain y({

/* some statements which execute under chain y */

}

/* function body which executes when my_function is called */

A program will call a function chain as it would an ordinary void function that has no parameters. The fol-
lowing example shows how to call a function chain that is named recover.

#makechain recover

recover () ;

44 digi.com Language

www.digi.com

4.20 Global Initialization

Various hardware devices in a system need to be initialized, not only by setting variables and control regis-
ters, but often by complex initialization procedures. Dynamic C provides a specific function chain,
__GLOBAL_INIT, for this purpose. Your program can add segments to the GLOBAL INIT function
chain, as shown in the example below.

long my func(char j);

main () {
my func(100) ;

}

long my func(char j) {
static int i;
static long array[256];

// The GLOBAL INIT section is automatically run once when the program starts up

#GLOBAL_INIT{
for(1 = 0; 1 < 100; i++){
array([i] = i*1i;
}
}

return arrayl[j]; // only this code runs when the function is called

}

The special directive #GLOBAL INIT{ } tells the compiler to add the code in the block enclosed in
braces to the GLOBAL INIT function chain. Any number of #GLOBAL INIT sections may be used in
your code. The order in which they are called is indeterminate since it depends on the order in which they
were compiled. The storage class for variables used in a global initialization section must be static. Since
the default storage class is auto, you must define variables as static in your application.

The GLOBAL INIT function chain is always called when your program starts up, so there is nothing
special to do to invoke it. In addition, it may be called explicitly at any time in an application program with
the statement:

_GLOBAL_INIT();

Make this call this with caution. All costatements and cofunctions will be initialized. See Section 7.2 for
more information about calling GLOBAL INIT ().

Dynamic C User’s Manual digi.com 45

www.digi.com

4.21 Libraries

Dynamic C includes many libraries—files of useful functions in source code form. They are located in the
\LIB directory where Dynamic C was installed. The default library file extension is . LIB. Dynamic C
uses functions and data from library files and compiles them with an application program that is then
downloaded to a controller or saved to a . bin file.

An application program (the default file extension is . c) consists of a source code file that contains a main
function (called main) and usually other user-defined functions. Any additional source files are consid-
ered to be libraries (though they may have a . c extension) and are treated as such. The minimum applica-
tion program is one source file, containing only:

main () {}

Libraries (those defined by you and those defined by Rabbit) are “linked” with the application through the
#use directive. The #use directive identifies a file from which functions and data may be extracted.
Files identified by #use directives are nestable, as shown below. (The #use directive is a replacement
for the # include directive, which is not supported in Dynamic C.)

Figure 4.1 Nesting Files in Dynamic C

Application X.LIB Y.LIB
#use x.1ib4— | #use y.1ib4— 7 T
main () { function | |7
- function
#use z.1ib function ZLIB
#use z.lib T

m | -

Most libraries needed by Dynamic C programs have #use statements in 1ib\ . .\default.h.

Section 4.23 explains how Dynamic C knows which functions and global variables in a library are avail-
able for use.

46 digi.com Language

www.digi.com

4.21.1 LIB.DIR

Any library that is to be #use’d in a Dynamic C program must be listed in the file LIB.DIR, or another
* . DIR file specified by the user.

The lib.dir strategy starting with Dynamic C 9.30 allows naming a folder with optional mask(s). No mask
implies *.* and multiple masks are separated by ““;” so that “lib” and “lib*.*” both include all files and
“lib*.1lib; *.c; *.h*” includes all files with extensions of . 1ib, . c and .h. Dynamic C gener-
ated file (e.g., .md1, . hx1, etc.) are not parsed, which means they are excluded when using the wildcard
mask.

Dynamic C now enforces unique file extension names regardless of path, so that “#use myfile.lib” can not
use an unintended copy of myfile. 11ib as the list of pathnames included in 1ib.d1ir is searched for
the first occurrence of that file extension. An error message naming both full paths will come up when try-
ing to compile ANY program alerting the user of the infraction.

4.22 Headers

The following table describes two kinds of headers used in Dynamic C libraries.

Table 4-4. Dynamic C Library Headers

Header Name Description

Make functions and global variables in the library known to

Module headers Dynamic C.

Describe functions. Function headers form the basis for function

Function Description headers lookup help.

You may also notice some “Library Description” headers at the top of library files. These have no special
meaning to Dynamic C, they are simply comment blocks.

4.23 Modules

A Dynamic C library typically contains several modules. Modules must be understood to write efficient
custom libraries. Modules provide Dynamic C with the names of functions and variables within a library
that may be referenced by files that have a #use directive for the library somewhere in the code.

Modules organize the library contents in such a way as to allow for smaller code size in the compiled
application that uses the library. To create your own libraries, write modules following the guidelines in
this section.

The scope of modules is global, but indeterminate compilation order makes the situation less than straight-
forward. Read this entire section carefully to understand module scope.

Dynamic C User’s Manual digi.com 47

www.digi.com

4.23.1 The Parts of a Module
A module has three parts: the key, the header, and the body. The structure of a module is:

/*** BeginHeader funcl, var2, */
prototype for funcl
extern var2
/*** EndHeader */
definition of funcl
declaration for var?2
possibly other functions and data

A module begins with its BeginHeader comment and continues until either the next BeginHeader
comment or the end of the file is encountered.

4.23.1.1 Module Key

The module key is usually contained within the first line of the module header. It is a list of function and
data names separated by commas. The list of names may continue on subsequent lines.

/*** BeginHeader [name;, name,,] */

It is important to format the BeginHeader comment correctly, otherwise Dynamic C cannot find the
contents of the module. The case of the word “beginheader” is unimportant, but it must be preceded by a
forward slash, 3 asterisks and one space (/***). The forward slash must be the first character on the
line. The BeginHeader comment must end with an asterisk and a forward slash (* /).

The key tells the compiler which functions exist in the module so the compiler can exclude the module if
names in the key are not referenced. Data declarations (constants, structures, unions and variables) as well
as macros and function chains (both #makechain and # funchain statements) do not need to be
named in the key if they are completely defined in the header, i.e, no extexrn declaration. They are fully
known to the compiler by being completely defined in the module header. An important thing to remember
is that variables declared in a header section will be allocated memory space unless the declaration is pre-
ceded with extern.

4.23.1.2 Module Header

Every line between the BeginHeader and EndHeader comments belongs to the header of the module.
When a library is linked to an application (i.e., the application has the statement: #use “library_name”),
Dynamic C precompiles every header in the library, and only the headers.

With proper function prototypes and variable declarations, a module header ensures proper type checking
throughout the application program. Prototypes, variables, structures, typedefs and macros declared in a
header section will always be parsed by the compiler if the library is #used, and everything will have
global scope. It is even permissible to put function bodies in header sections, but it’s not recommended
because the function will be compiled with any application that #uses the library. Since variables declared
in a header section will be allocated memory space unless the declaration is preceded with extern, the
variable declaration should be in the module body instead of the header to save data space.

The scope of anything inside the module header is global; this includes compiler directives. Since the
headers are compiled before the module bodies, the last one of a given type of directive encountered will
be in effect and any previous ones will be forgotten.

48 digi.com Language

www.digi.com

Using compiler directives like #class or #memmap inside module headers is inadvisable. If it is impor-
tant to set, for example, “#class auto” for some library modules and “#class static” for others, the appropri
ate directives should be placed inside the module body, not in the module header. Furthermore, since there
is no guaranteed compilation order and compiler directives have global scope, when you issue a compiler
directive to change default behavior for a particular module, at the end of the module you should issue
another compiler directive to change back to the default behavior. For example, if a module body needs to
have its storage class as static, have a “#class static” directive at the beginning of the module body and
“#class auto” at the end.

4.23.1.3 Module Body

Every line of code after the EndHeader comment belongs to the body of the module until (1) end-of-file
or (2) the BeginHeader comment of another module. Dynamic C compiles the entire body of a module
if any of the names in the key or header are referenced anywhere in the application. So keep modules
small, don’t put all the functions in a library into one module. If you look at the Dynamic C libraries you’ll
notice that many modules consist of one function. This saves on code size, because only the functions that
are called are actually compiled into the application.

To further minimize waste, define code and data only in the body of a module. It is recommended that a
module header contain only prototypes and extern declarations because they do not generate any code
by themselves. That way, the compiler will generate code or allocate data only if the module is used by the
application program.

Dynamic C User’s Manual digi.com 49

www.digi.com

4.23.2 Module Sample Code

There are many examples of modules in the Lib directory of Dynamic C. The following code will illus-
trate proper module syntax and show the scope of directives, functions and variables.

/*** BeginHeader ticks*/
extern unsigned long ticks;
/*** EndHeader */

unsigned long ticks;

/*** BeginHeader Get Ticks */
unsigned long Get Ticks();
/*** EndHeader */

unsigned long Get Ticks () {

}

/*** BeginHeader Inc Ticks */
void Inc Ticks(int i);
/*** EndHeader */

#asm

Inc Ticks::
or a
ipset 1

ipres
ret
#endasm

There are three modules defined in this code. The first one is responsible for the variable t icks, the sec-
ond and third modules define functions Get Ticks () and Inc_Ticks that access the variable.
Although Inc_ Ticks is an assembly language routine, it has a function prototype in the module header,
allowing the compiler to check calls to it.

If the application program calls Inc_Ticks or Get Ticks () (or both), the module bodies corre-
sponding to the called routines will be compiled. The compilation of these routines triggers compilation of
the module body corresponding to t i cks because the functions use the variable ticks.

50 digi.com Language

www.digi.com

/*** BeginHeader func a */
int func a();

#1fdef SECONDHEADER
#define XYZ
#endif

/*** EndHeader */

int func a() {
#ifdef SECONDHEADER
printf ("I am function A.\n");
#endif
}

/*** BeginHeader func b */

int func b();
#define SECONDHEADER

/*** EndHeader */

#ifdef XYZ
#define FUNCTION B
#endif

int func b () {
#ifdef FUNCTION B
printf ("I am function B.\n");
#endif

Let’s say the above file is named mylibrary.lib. If an application has the statement

#use “mylibrary.lib” and then calls func b (), will the printf statement be reached? The
answer is no. The order of compilation for module headers is sequential from the beginning of the file,
therefore, the macro SECONDHEADER is undefined when the first module header is parsed.

If an application #uses this library and then makes a call to func_a (), will that function’s print state-
ment be reached? The answer is yes. Since all the headers were compiled first, the macro
SECONDHEADER is defined when the first module body is compiled.

4.23.3 Important Notes

Remember that in a Dynamic C application there is only one file that contains main () . All other source
files used by the file that contains main () are regarded as library files. Each library must be included in a
LIB.DIR (or auser defined replacement for it). Although Dynamic C uses . LIB as the library extension,
you may use anything you like as long as the complete path is entered in your LIB.DIR file.

There is no way to define file scope variables in Dynamic C libraries.

Dynamic C User’s Manual digi.com 51

www.digi.com

4.24 Function Description Headers

Each user-callable function in a Dynamic C library has a descriptive header preceding the function to
describe the function. Function headers are extracted by Dynamic C to provide on-line help messages.

The header is a specially formatted comment, such as the following example.

/% START FUNCTION DIESCRIPIIQIN oo b s us o8 i fe s o 5 5 85 8 v v o

WrIOport

<IO.LIB>

SYNTAX: void WrIOport (int portaddr, int wvalue);
DESCRIPTION:
Writes data to the specified I/O port.

PARAMETERI :
PARAMETER2 :

portaddr - register address of the port.
value - data to be written to the port.

RETURN VALUE: None

KEY WORDS:
SEE ALSO:

parallel port
RdIOport

END DESCRIPTION ***********************************/

If this format is followed, user-created library functions will show up in the Function Lookup <Ctrl+H>
feature if the library is listed in 1ib.dir or its replacement. Note that these sections are scanned in only
when Dynamic C starts.

4.25 Support Files

Dynamic C has several support files that are necessary in building an application. These files are listed

below.
Table 4-5. Dynamic C Support Files
File Name Purpose of File
DCW.CFG Contains configuration data for the target controller.
bC . HH Contains prototypes, basic type definitions, #de fine, and default modes for
’ Dynamic C. This file can be modified by the programmer.
DEFAULT . H Contains a set of #use directives for each control product that Rabbit ships. This
file can be modified.
Contains pathnames for all libraries that will be known to Dynamic C. The
programmer can add or remove libraries from this list. The factory default is for this
LIB.DIR file to contain all the libraries on the Dynamic C distribution disk. Any library that is
to be used in a Dynamic C program must be listed in the file L.IB.DIR, or another
* . DIR file specified by the user.
These files hold the default compilation environment that is shipped from the factory.
PROJECT.DCP .
DEFAULT . DCP may be modified, but not PROJECT . DCP. See Chapter 16 for
DEFAULT.DCP . .
details on project files.

52

digi.com Language

www.digi.com

RABBIT o= PRODUCT MANUAL

Semiconductor

5. MULTITASKING WITH DYNAMIC C

In a multitasking environment, more than one task (each representing a sequence of operations) can
appear to execute in parallel. In reality, a single processor can only execute one instruction at a time. If an
application has multiple tasks to perform, multitasking software can usually take advantage of natural
delays in each task to increase the overall performance of the system. Each task can do some of its work
while the other tasks are waiting for an event, or for something to do. In this way, the tasks execute almost
in parallel.

There are two types of multitasking available for developing applications in Dynamic C: preemptive and
cooperative. In a cooperative multitasking environment, each well-behaved task voluntarily gives up con-
trol when it is waiting, allowing other tasks to execute. Dynamic C has language extensions, costatements
and cofunctions, to support cooperative multitasking.

Preemptive multitasking is supported by the sl/ice statement, which allows a computation to be divided into
small slices of a few milliseconds each, and by the pC/OS-II real-time kernel.

5.1 Cooperative Multitasking

In the absence of a preemptive multitasking kernel or operating system, a programmer given a real-time
programming problem that involves running separate tasks on different time scales will often come up
with a solution that can be described as a big loop driving state machines.

Figure 5-1 Big Loop

Y

Top of loop

Y

State machine

¢

State machine

¢

State machine
I

Within this endless loop, tasks are accomplished by small fragments of a program that cycle through a
series of states. The state is typically encoded as numerical values in C variables.

Dynamic C User’s Manual digi.com 53

www.digi.com

State machines can become quite complicated, involving a large number of state variables and a large
number of states. The advantage of the state machine is that it avoids busy waiting, which is waiting in a
loop until a condition is satisfied. In this way, one big loop can service a large number of state machines,
each performing its own task, and no one is busy waiting.

The cooperative multitasking language extensions added to Dynamic C use the big loop and state machine
concept, but C code is used to implement the state machine rather than C variables. The state of a task is
remembered by a statement pointer that records the place where execution of the block of statements has
been paused to wait for an event.

To multitask using Dynamic C language extensions, most application programs will have some flavor of
this simple structure:

main () {

int 1i;
while (1) { // endless loop for multitasking framework
costate { // task 1
// body of costatement
}
costate { // task 2
// body of costatement
}
}

5.2 A Real-Time Problem

The following sequence of events is common in real-time programming.
Start:

Wait for a pushbutton to be pressed.
Turn on the first device.

Wait 60 seconds.

Turn on the second device.

Wait 60 seconds.

Turn off both devices.

Go back to the start.

A A

The most rudimentary way to perform this function is to idle (“busy wait”) in a tight loop at each of the
steps where waiting is specified. But most of the computer time will used waiting for the task, leaving no
execution time for other tasks.

54 digi.com Multitasking with Dynamic C

www.digi.com

5.2.1 Solving the Real-Time Problem with a State Machine

Here is what a state machine solution might look like.

tasklstate = 1; // I1nitialization:
while (1) {
switch (tasklstate) {

case 1:
if (buttonpushed ()) {
tasklstate=2; turnondevicel () ;
timerl = time; // time incremented every second
}
break;
case 2:
if((time-timerl) >= 60L) {
tasklstate=3; turnondevice?2 () ;

timer2=time;
}

break;

case 3:
if((time-timer2) >= 60L) {
tasklstate=1; turnoffdevicel () ;
turnoffdevice?2 () ;
}
break;

}

/* other tasks or state machines */

If there are other tasks to be run, this control problem can be solved better by creating a loop that processes
a number of tasks. Now each task can relinquish control when it is waiting, thereby allowing other tasks to
proceed. Each task then does its work in the idle time of the other tasks.

Dynamic C User’s Manual digi.com 55

www.digi.com

5.3 Costatements

Costatements are Dynamic C extensions to the C language which simplify implementation of state
machines. Costatements are cooperative because their execution can be voluntarily suspended and later
resumed. The body of a costatement is an ordered list of operations to perform -- a task. Each costatement
has its own statement pointer to keep track of which item on the list will be performed when the costate-
ment is given a chance to run. As part of the startup initialization, the pointer is set to point to the first
statement of the costatement.

The statement pointer is effectively a state variable for the costatement or cofunction. It specifies the state-
ment where execution is to begin when the program execution thread hits the start of the costatement.

All costatements in the program, except those that use pointers as their names, are initialized when the
function chain GLOBAL INIT iscalled. GLOBAL INIT is called automatically by premain before
main is called. Calling GLOBAL_ INIT from an application program will cause reinitialization of any-
thing that was initialized in the call made by premain.

5.3.1 Solving the Real-Time Problem with Costatements
The Dynamic C costatement provides an easier way to control the tasks. It is relatively easy to add a task
that checks for the use of an emergency stop button and then behaves accordingly.

while (1) {
costate{ ... } // task 1
costate/{ // task 2

waitfor (buttonpushed())
turnondevicel () ;
waitfor (DelaySec (60L));
turnondevice?2 () ;
waitfor (DelaySec (60L));
turnoffdevicel () ;
turnoffdevice2 () ;

}

costate{ ... } // task n

The solution is elegant and simple. Note that the second costatement looks much like the original descrip-
tion of the problem. All the branching, nesting and variables within the task are hidden in the implementa-
tion of the costatement and its wait for statements.

56 digi.com Multitasking with Dynamic C

www.digi.com

5.3.2 Costatement Syntax

The keyword costate identifies the statements enclosed in the curly braces that follow as a costatement.

costate [name [state]] { [statement | yield; | abort; |
waitfor(expression);] . . .}

name can be one of the following:

¢ A valid C name not previously used. This results in the creation of a structure of type CoData of the
same name.

® The name of a local or global CoData structure that has already been defined

* A pointer to an existing structure of type CoData

Costatements can be named or unnamed. If name is absent the compiler creates an unnamed structure of
type CoData for the costatement.

state can be one of the following:
* always on

The costatement is always active. This means the costatement will execute every time it is encoun-
tered in the execution thread, unless it is made inactive by CoPause () . It may be made active
again by CoResume ().

® init on
The costatement is initially active and will automatically execute the first time it is encountered in

the execution thread. The costatement becomes inactive after it completes (or aborts). The costate-
ment can be made inactive by CoPause ().

If state is absent, a named costatement is initialized in a paused init on condition. This means that
the costatement will not execute until CoBegin () or CoResume () is executed. It will then execute
once and become inactive again.

Unnamed costatements are always_on. You cannot specify init on without specifying a costatement
name.

5.3.3 Control Statements

This section describes the control statements identified by the keywords: waitfor, yield and abort.

waitfor (expression);

The keyword wait for indicates a special waitfor statement and not a function call. Each time
waitfor is executed, expression is evaluated. If true (non-zero), execution proceeds to the next state-
ment; otherwise a jump is made to the closing brace of the costatement or cofunction, with the statement
pointer continuing to point to the wait for statement. Any valid C function that returns a value can be
used in a waitfor statement.

Figure 5-2 shows the execution thread through a costatement when a wait for evaluates to false. The
diagram on the left side shows which statements are executed the first time through the costatement. The
diagram on the right shows that when the execution thread again reaches the costatement the only state-
ment executed is the wait for. As long as the wait for continues to evaluate to false, it will be the only
statement executed within the costatement.

Dynamic C User’s Manual digi.com 57

www.digi.com

Figure 5-2 Execution thread when waitfor evaluates to false

7

costate
Statement
Statement
waitfor (

Statement
Statement

{

) 5%

v -

(a) First Time

costate
Statement
Statement

=~ > waitfor (

Statement
Statement

{

) 574

—|

v g

(b) Subsequent Times

Figure 5-3 shows the execution thread through a costatement when a wait for evaluates to true.

Figure 5-3 Execution thread when waitfor evaluates to true

yield

7

Statement
Statement

S~ > waitfor(
Statement
Statement

: |

costate ...

{

v

The yield statement makes an unconditional exit from a costatement or a cofunction. Execution contin-
ues at the statement following yield the next time the costatement or cofunction is encountered by the

execution thread.

Figure 5-4 Execution thread with yield statement

v

costate ...

Statement
statement

yield; -~
statement
Statement

{

—

iw_ P

(a) Execution of yield

’/—_—\\l
e

costate
Statement
statement

yield;
[~ — > statement
Statement

}
|

{

l

(b) Execution thread the
next time the costate
is encountered

58

digi.com

Multitasking with Dynamic C

www.digi.com

abort

The abort statement causes the costatement or cofunction to terminate execution. If a costatement is
always_on, the next time the program reaches it, it will restart from the top. If the costatement is not
always_on, it becomes inactive and will not execute again until turned on by some other software

Figure 5-5 Execution thread with abort statement

v

v

costate ... {
statement
Statement

— -
— -

abort; -~ ~
Statement \
statement |

costate ...

Statement
Statement

abort;
Statement
Statement

(a) At time of abort

A costatement can have as many C statements, including abort, yield, and wait for statements, as

needed. Costatements can be nested.

5.4 Advanced Costatement Topics

v

(b) Next time

Each costatement has a structure of type CoData. This structure contains state and timing information. It
also contains the address inside the costatement that will execute the next time the program thread reaches

the costatement. A value of zero in the address location indicates the beginning of the costatement.

5.4.1 The CoData Structure
typedef struct {
char CSState;
unsigned int lastlocADDR;
char lastlocCBR;
char ChkSum;
char firsttime;
union{
unsigned long ul;
struct {
unsigned int ul;
unsigned int u2;
} us;
} content;
char ChkSum2;
} CoData;

Dynamic C User’s Manual digi.com

59

www.digi.com

5.4.2 CoData Fields

This section describes the fields of the CoData structure.

CSState
The CSState field contains two flags, STOPPED and INIT. The possible flag values and their meaning
are in the table below.

Table 5-1. Flags that Specify the Run Status of a Costatement

STOPPED INIT State of Costatement
e e Done, or has been initialized to run, but set to

Yy Yy inactive. Set by CoReset ().

yes no Paused, waiting to resume. Set by CoPause ().

no yes Initialized to run. Set by CoBegin ().
Running. CoResume () will return the flags to

no no .
this state.

The function isCoDone () returns true (1) if both the STOPPED and INIT flags are set. The function
isCoRunning () returns true (1) if the STOPPED flag is not set.

The CSState field applies only if the costatement has a name. The CSState flag has no meaning for
unnamed costatements or cofunctions.

Last Location

The two fields 1ast1ocADDR and 1ast1locCRBR represent the 24-bit address of the location at which to
resume execution of the costatement. If 1ast1ocADDR is zero (as it is when initialized), the costatement
executes from the beginning, subject to the CSState flag. I[f last1ocADDR is nonzero, the costatement
resumes at the 24-bit address represented by 1ast 1ocADDR and 1ast1ocCBR.

These fields are zeroed whenever one of the following is true:

* the CoData structure is initialized by a call to GLOBAL INIT, CoBegin or CoReset
¢ the costatement is executed to completion

¢ the costatement is aborted.

Check Sum

The ChkSum field is a one-byte check sum of the address. (It is the exclusive-or result of the bytes in
lastlocADDR and lastlocCBR.) If ChkSum is not consistent with the address, the program will
generate a run-time error and reset. The check sum is maintained automatically. It is initialized by
_GLOBAL INIT, CoBegin and CoReset.

First Time

The firsttime field is a flag that is used by a wait for, or waitfordone statement. It is set to 1
before the statement is evaluated the first time. This aids in calculating elapsed time for the functions
DelayMs, DelaySec, DelayTicks, IntervalTick, IntervalMs, and IntervalSec.

60 digi.com Multitasking with Dynamic C

www.digi.com

Content
The content field (a union) is used by the costatement or cofunction delay routines to store a delay
count.

Check Sum 2
The ChkSum?2 field is currently unused.

5.4.3 Pointer to CoData Structure

To obtain a pointer to a named costatement’s CoData structure, do the following:

static CoData costl; // allocate memory for a CoData struct
static CoData *pcostl;

pcostl = &costl; // get pointer to the CoData struct
CoBegin (pcostl); // initialize CoData struct

costate pcostl { // pcostl is the costatement name and also a

// pointer to its CoData structure.

The storage class of a named CoData structure must be static.

5.4.4 Functions for Use With Named Costatements

For detailed function descriptions, please see the Dynamic C Function Reference Manual or select Func-
tion Lookup/Insert from Dynamic C’s Help menu (keyboard shortcut is <Ctrl-H>).

All of these functions are in COSTATE . LIB. Each one takes a pointer to a CoData struct as its only
parameter.

int isCoDone (CoData* p);
This function returns true if the costatement point to by p is initialized and not running.

int isCoRunning (CoData* p) ;
This function returns true if the costatement pointed to by p will run if given a continuation call.

void CoBegin (CoData* p) ;
This function initializes a costatement’s CoDat a structure so that the costatement will be execut-
ed next time it is encountered.

void CoPause (CoData* p);
This function will change CoData so that the associated costatement is paused. When a cos-
tatement is called in this state it does an implicit yield until it is released by a call from
CoResume or CoBegin.

void CoReset (CoData* p);
This function initializes a costatement’s CoData structure so that the costatement will not be ex-
ecuted the next time it is encountered unless the costatement is declared always_on.

void CoResume (CoData* p) ;
This function unpauses a paused costatement. The costatement resumes the next time it is called.

Dynamic C User’s Manual digi.com

61

www.digi.com

5.4.5 Firsttime Functions

In a function definition, the keyword £irsttime causes the function to have an implicit first parameter:
a pointer to the CoData structure of the costatement that calls it. User-defined firsttime functions are
allowed.

The following firsttime functions are defined in COSTATE . LIB.

DelayMs (), DelaySec (), DelayTicks ()
IntervalMs (), IntervalSec (), IntervalTick{()

For more information see the Dynamic C Function Reference Manual. These functions should be called
inside a wait for statement because they do not yield while waiting for the desired time to elapse, but
instead return O to indicate that the desired time has not yet elapsed.

5.4.6 Shared Global Variables

The variables SEC_TIMER,MS TIMER and TICK TIMER are shared, making them atomic when being
updated. They are defined and initialized in VDRIVER . LIB. They are updated by the periodic interrupt
and are used by £irsttime functions. They should not be modified by an application program. Costate-
ments and cofunctions depend on these timer variables being valid for use in wait for statements that
call functions that read them. For example, the following statement will access SEC_TIMER.

waitfor (DelaySec(3));

5.5 Cofunctions

Cofunctions, like costatements, are used to implement cooperative multitasking. But, unlike costatements,
they have a form similar to functions in that arguments can be passed to them and a value can be returned
(but not a structure).

The default storage class for a cofunction’s variables is Instance. An instance variable behaves like
a static variable, i.e., its value persists between function calls. Each instance of an Indexed Cofunction
has its own set of instance variables. The compiler directive #class does not change the default storage
class for a cofunction’s variables.

All cofunctions in the program are initialized when the function chain GLOBAL INIT is called. This
call is made by premain.

5.5.1 Cofunction Syntax

A cofunction definition is similar to the definition of a C function.

cofunc|scofunc type [name] [[dim]] ([type argl, ..., type argN])
{ [statement | yield; | abort; | waitfor(expression);]... }

cofunc, scofunc

The keywords cofunc or scofunc (a single-user cofunction) identify the statements enclosed in curly
braces that follow as a cofunction.

62 digi.com Multitasking with Dynamic C

www.digi.com

type
Whichever keyword (cofunc or scofunc) is used is followed by the data type returned (void, int,
etc.).

name

A name can be any valid C name not previously used. This results in the creation of a structure of type
CoData of the same name.

dim

The cofunction name may be followed by a dimension if an indexed cofunction is being defined.

cofunction arguments (argl, . . ., argN)
As with other Dynamic C functions, cofunction arguments are passed by value.

cofunction body

A cofunction can have as many C statements, including abort, yield, waitfor,and waitfordone
statements, as needed. Cofunctions can contain calls to other cofunctions.

5.5.2 Calling Restrictions

You cannot assign a cofunction to a function pointer then call it via the pointer.

Cofunctions are called using a wait fordone statement. Cofunctions and the wait fordone statement
may return an argument value as in the following example.

int j,k,x,v,2z;
jJ = waitfordone x = Cofuncl;
k = waitfordone{ y=Cofunc2(...); z=Cofunc3(...); }

The keyword waitfordone (can be abbreviated to the keyword wfd) must be inside a costatement or
cofunction. Since a cofunction must be called from inside a wfd statement, ultimately a wfd statement
must be inside a costatement. If only one cofunction is being called by wfd the curly braces are not
needed.

The wfd statement executes cofunctions and firsttime functions. When all the cofunctions and
firsttime functions listed in the wfd statement are complete (or one of them aborts), execution pro-
ceeds to the statement following wfd. Otherwise a jump is made to the ending brace of the costatement or
cofunction where the wfd statement appears and when the execution thread comes around again control is
given back to wfd.

In the example above, x, y and z must be set by return statements inside the called cofunctions. Exe-
cuting a return statement in a cofunction has the same effect as executing the end brace. In the example
above, the variable k is a status variable that is set according to the following scheme. If no abort has taken
place in any cofunction, k is set to 1, 2, ..., n to indicate which cofunction inside the braces finished exe-
cuting last. If an abort takes place, k is set to -1, -2, ..., -n to indicate which cofunction caused the abort.

Dynamic C User’s Manual digi.com 63

www.digi.com

5.5.2.1 Costate Within a Cofunc
In all but trivial cases (where the costate is really not necessary), a costate within a cofunc causes execu-
tion problems ranging from never completing the cofunc to unexpected interrupts or target lockups. To
avoid these problems, do not introduce costates with nested wfd cofuncs into a cofunc. If you find yourself
coding such a thing, consider these alternatives:

1. Intermediate regular functions can be used between the cofuncs to isolate them.
2. Aregularwaitfor (function) can be substituted for the top level costate's wfd cofunction.

3. The nested costates with wfd cofuncs can be moved up into the body of the calling function, replacing
the top-level costate with the wfd cofunc.

A compiler error will be generated if a costate is found within a cofunction.

5.5.2.2 Using the IX Register

Functions called from within a cofunction may use the IX register if they restore it before the cofunction is
exited, which includes an exit via an incomplete wait fordone statement.

In the case of an application that uses the #useix directive, the IX register will be corrupted when any
stack-variable using function is called from within a cofunction, or if a stack-variable using function con-
tains a call to a cofunction.

5.5.3 CoData Structure

The CoData structure discussed in Section 5.4.1 applies to cofunctions; each cofunction has an associated
CoData structure.

5.5.4 Firsttime Functions

The firsttime functions discussed in “Firsttime Functions” on page 62 can also be used inside cofunc-
tions. They should be called inside a wait for statement. If you call these functions from inside a wfd
statement, no compiler error is generated, but, since these delay functions do not yield while waiting for
the desired time to elapse, but instead return O to indicate that the desired time has not yet elapsed, the wfd
statement will consider a return value to be completion of the firsttime function and control will pass
to the statement following the wfd.

5.5.5 Types of Cofunctions
There are three types of cofunctions: simple, indexed and single-user. Which one to use depends on the
problem that is being solved. A single-user, indexed cofunction is not valid.

5.5.5.1 Simple Cofunction
A simple cofunction has only one instance and is similar to a regular function with a costate taking up
most of the function’s body.

5.5.5.2 Indexed Cofunction
An indexed cofunction allows the body of a cofunction to be called more than once with different parame-
ters and local variables. The parameters and the local variable that are not declared static have a special
lifetime that begins at a first time call of a cofunction instance and ends when the last curly brace of the
cofunction is reached or when an abort or return is encountered.

64 digi.com Multitasking with Dynamic C

www.digi.com

The indexed cofunction call is a cross between an array access and a normal function call, where the array
access selects the specific instance to be run.

Typically this type of cofunction is used in a situation where N identical units need to be controlled by the
same algorithm. For example, a program to control the door latches in a building could use indexed
cofunctions. The same cofunction code would read the key pad at each door, compare the passcode to the
approved list, and operate the door latch. If there are 25 doors in the building, then the indexed cofunction
would use an index ranging from 0 to 24 to keep track of which door is currently being tested. An indexed
cofunction has an index similar to an array index.

waltfordone{ ICofunc[n] (...); ICofunc2[m] (...); }

The value between the square brackets must be positive and less than the maximum number of instances
for that cofunction. There is no runtime checking on the instance selected, so, like arrays, the programmer
is responsible for keeping this value in the proper range.

5.5.5.2.1 Indexed Cofunction Restrictions
Costatements are not supported inside indexed cofunctions. Single user cofunctions can not be indexed.

5.5.5.3 Single User Cofunction

Since cofunctions are executing in parallel, the same cofunction normally cannot be called at the same
time from two places in the same big loop. For example, the following statement containing two simple
cofunctions will generally cause a fatal error.

waitfordone{ cofunc nameA(); cofunc nameA();}

This is because the same cofunction is being called from the second location after it has already started,
but not completed, execution for the call from the first location. The cofunction is a state machine and it
has an internal statement pointer that cannot point to two statements at the same time.

Single-user cofunctions can be used instead. They can be called simultaneously because the second and
additional callers are made to wait until the first call completes. The following statement, which contains
two calls to single-user cofunction, is okay.

waitfordone (scofunc nameA(); scofunc nameA();}

loopinit()
This function should be called in the beginning of a program that uses single-user cofunctions. It initializes
internal data structures that are used by 1oophead () .

loophead()
This function should be called within the “big loop” in your program. It is necessary for proper single-user
cofunction abandonment handling.

Dynamic C User’s Manual digi.com 65

www.digi.com

Example

// echoes characters
main () {
int c;
serAopen (19200) ;
loopinit () ;
while (1) {
loophead () ;
costate {
wfd ¢ = cof serAgetc();
wfd cof serAputc(c);

}

serAclose () ;

5.5.6 Types of Cofunction Calls

A wfd statement makes one of three types of calls to a cofunction.

5.5.6.1 First Time Call

A first time call happens when a wfd statement calls a cofunction for the first time in that statement. After
the first time, only the original wfd statement can give this cofunction instance continuation calls until
either the instance is complete or until the instance is given another first time call from a different state-
ment. The lifetime of a cofunction instance stretches from a first time call until its terminal call or until its
next first time call.

5.5.6.2 Continuation Call

A continuation call is when a cofunction that has previously yielded is given another chance to run by the
enclosing wfd statement. These statements can only call the cofunction if it was the last statement to give
the cofunction a first time call or a continuation call.

5.5.6.3 Terminal Call
A terminal call ends with a cofunction returning to its wfd statement without yielding to another cofunc-
tion. This can happen when it reaches the end of the cofunction and does an implicit return, when the
cofunction does an explicit return, or when the cofunction aborts.

66 digi.com Multitasking with Dynamic C

www.digi.com

5.5.7 Special Code Blocks

The following special code blocks can appear inside a cofunction.

everytime { statements}

This must be the first statement in the cofunction. The everytime statement block will be executed on
every cofunc continuation call no matter where the statement pointer is pointing. After the every-
time statement block is executed, control will pass to the statement pointed to by the cofunction’s
statement pointer.

The everytime statement block will not be executed during the initial cofunc entry call.

abandon { statements }

This keyword applies to single-user cofunctions only and must be the first statement in the body of the
cofunction. The statements inside the curly braces will be executed if the single-user cofunction is forc-
ibly abandoned. A call to 1oophead () (defined in COFUNC . LIB) is necessary for abandon state-
ments to execute.

Example
Samples/COFUNC/ COFABAND.C illustrates the use of abandon.

scofunc SCofTest (int 1) {
abandon {
printf ("CofTest was abandoned\n") ;
}
while (i>0) {
printf ("CofTest (%d)\n",1) ;
yield;

}

main () {
int x;
for (x=0;x<=10; x++) {
loophead () ;
1f (x<5) {
costate {
wfd SCofTest (1) ; // first caller

}

costate {
wfd SCofTest (2); // second caller

In this example two tasks in main () are requesting access to SCofTest. The first request is honored
and the second request is held. When 1oophead () notices that the first caller is not being called each
time around the loop, it cancels the request, calls the abandonment code and allows the second caller in.

Dynamic C User’s Manual digi.com 67

www.digi.com

5.5.8 Solving the Real-Time Problem with Cofunctions
Cofunctions, with their ability to receive arguments and return values, provide more flexibility and speci-
ficity than our previous solutions.

for (;;) {
costate({ // task 1
wfd emergencystop () ;
for (1i=0; i<MAX_DEVICES; 1++)
wfd turnoffdevice (i) ;

}

costate({ // task 2
wfd x = buttonpushed() ;
wfd turnondevice (x);
waitfor (DelaySec (60L));
wfd turnoffdevice (x);

}

costate{ ... } // taskn

Using cofunctions, new machines can be added with only trivial code changes. Making

buttonpushed () acofunction allows more specificity because the value returned can indicate a partic-
ular button in an array of buttons. Then that value can be passed as an argument to the cofunctions
turnondevice and turnoffdevice.

5.6 Patterns of Cooperative Multitasking

Sometimes a task may be something that has a beginning and an end. For example, a cofunction to trans-
mit a string of characters via the serial port begins when the cofunction is first called, and continues during
successive calls as control cycles around the big loop. The end occurs after the last character has been sent
and the waitfordone condition is satisified. This type of a call to a cofunction might look like this:

waitfordone{ SendSerial ("string of characters"); }
[next statement]

The next statement will execute after the last character is sent.

Some tasks may not have an end. They are endless loops. For example, a task to control a servo loop may
run continuously to regulate the temperature in an oven. If there are a a number of tasks that need to run
continuously, then they can be called using a single waitfordone statement as shown below.

costate {
waltfordone { Taskl(); Task2(); Task3(); Task4d (); }
[to come here is an error |

}

Each task will receive some execution time and, assuming none of the tasks is completed, they will con-
tinue to be called. If one of the cofunctions should abort, then the waitfordone statement will abort,
and corrective action can be taken.

68 digi.com Multitasking with Dynamic C

www.digi.com

5.7 Timing Considerations

In most instances, costatements and cofunctions are grouped as periodically executed tasks. They can be
part of a real-time task, which executes every n milliseconds as shown below using costatements.

Figure 5-6 Costatement as Part of Real-Time Task

lentel' every n milliseconds

costate{ ... }
costate{ ... }
costate{ ... }
costate{ ... }

I exit

If all goes well, the first costatement will be executed at the periodic rate. The second costatement will,
however, be delayed by the first costatement. The third will be delayed by the second, and so on. The fre-
quency of the routine and the time it takes to execute comprise the granularity of the routine.

If the routine executes every 25 milliseconds and the entire group of costatements executes in 5 to 10 mil-
liseconds, then the granularity is 30 to 35 milliseconds. Therefore, the delay between the occurrence of a
waitfor event and the statement following the wait for can be as much as the granularity, 30 to 35
ms. The routine may also be interrupted by higher priority tasks or interrupt routines, increasing the varia-
tion in delay.

The consequences of such variations in the time between steps depends on the program’s objective. Sup-
pose that the typical delay between an event and the controller’s response to the event is 25 ms, but under
unusual circumstances the delay may reach 50 ms. An occasional slow response may have no conse-
quences whatsoever. If a delay is added between the steps of a process where the time scale is measured in
seconds, then the result may be a very slight reduction in throughput.

If there is a delay between sensing a defective product on a moving belt and activating the reject solenoid
that pushes the object into the reject bin, the delay could be serious. If a critical delay cannot exceed 40
ms, then a system will sometimes fail if its worst-case delay is 50 ms.

5.7.1 waitfor Accuracy Limits

If an idle loop is used to implement a delay, the processor continues to execute statements almost immedi-
ately (within nanoseconds) after the delay has expired. In other words, idle loops give precise delays. Such
precision cannot be achieved with wait for delays.

A particular application may not need very precise delay timing. Suppose the application requires a 60-
second delay with only 100 ms of delay accuracy; that is, an actual delay of 60.1 seconds is considered
acceptable. Then, if the processor guarantees to check the delay every 50 ms, the delay would be at most
60.05 seconds, and the accuracy requirement is satisfied.

Dynamic C User’s Manual digi.com 69

www.digi.com

5.8 Overview of Preemptive Multitasking

In a preemptive multitasking environment, tasks do not voluntarily relinquish control. Tasks are scheduled
to run by priority level and/or by being given a certain amount of time.

There are two ways to accomplish preemptive multitasking using Dynamic C. The first way is via a
Dynamic C construct called the “slice” statement (described in Section 5.9). The second way is pC/OS-II,
a real-time, preemptive kernel that runs on the Rabbit microprocessor and is fully supported by Dynamic C
(described in Section 5.10).

5.9 Slice Statements

The s1ice statement, based on the costatement language construct, allows the programmer to run a block
of code for a specific amount of time.

5.9.1 Slice Syntax

slice ([context buffer,] context buffer size, time_ slice)
[name] { [statement|yield; |abort; |waitfor (expression) ;]}

context buffer size

This value must evaluate to a constant integer. The value specifies the number of bytes for the buffer
context buffer. Itneeds to be large enough for worst-case stack usage by the user program and
interrupt routines.

time_slice

The amount of time in ticks for the slice to run. One tick = 1/1024 second.

name

When defining a named s11ice statement, you supply a context buffer as the first argument. When you
define an unnamed s 11 ce statement, this structure is allocated by the compiler.

[statement | yield; | abort; | waitfor (expression) ;]
The body of a s1ice statement may contain:

e Regular C statements
e yield statements to make an unconditional exit.
e abort statements to make an execution jump to the very end of the statement.

e waitfor statements to suspend progress of the slice statement pending some condition indicated by
the expression.

5.9.2 Usage

The s11ice statement can run both cooperatively and preemptively all in the same framework. A slice
statement, like costatements and cofunctions, can suspend its execution with an abort, yield, or
waitfor. It can also suspend execution with an implicit yield determined by the time slice
parameter that was passed to it. A routine called from the periodic interrupt forms the basis for scheduling
slice statements. It counts down the ticks and changes the s1ice statement’s context.

70 digi.com Multitasking with Dynamic C

www.digi.com

5.9.3 Restrictions
Since a s11ce statement has its own stack, local auto variables and parameters cannot be accessed while
in the context of a s11ice statement. Any function called from the slice statement performs normally.

Only one s1ice statement can be active at any time, which eliminates the possibility of nesting s1ice
statements or using a s1ice statement inside a function that is either directly or indirectly called from a
s1ice statement. The only methods supported for leaving a s1ice statement are completely executing
the last statement in the s1ice, or executing an abort, yield or waitfor statement.

The return, continue, break, and goto statements are not supported.

Slice statements cannot be used with uC/OS-II or TCP/IP.

5.9.4 Slice Data Structure

Internally, the s1ice statement uses two structures to operate. When defining a named s1ice statement,
you supply a context buffer as the first argument. When you define an unnamed s11ce statement, this
structure is allocated by the compiler. Internally, the context buffer is represented by the S1iceBuffer
structure below.

struct SliceData {
int time out;
void* my sp;
void* caller sp;
CoData codata;

}

struct SliceBuffer {

SliceData slice data;

char stack[]; // fills rest of the slice buffer
) g

5.9.5 Slice Internals

When a s11ce statement is given control, it saves the current context and switches to a context associated
with the s11ice statement. After that, the driving force behind the s1ice statement is the timer interrupt.
Each time the timer interrupt is called, it checks to see if a s11ce statement is active. If a s11ice state-
ment is active, the timer interrupt decrements the time out field inthe slice’s S1iceData. When
the field is decremented to zero, the timer interrupt saves the s11ice statement’s context into the
SliceBuffer and restores the previous context. Once the timer interrupt completes, the flow of control
is passed to the statement directly following the s11ice statement. A similar set of events takes place
when the s1ice statement does an explicit yield/abort/waitfor.

Dynamic C User’s Manual digi.com 71

www.digi.com

5.9.5.1 Example 1

Two s1ice statements and a costatement will appear to run in parallel. Each block will run indepen-
dently, but the s11ice statement blocks will suspend their operation after 20 ticks for slice a and 40
ticks for slice b. Costate a will not release control until it either explicitly yields, aborts, or completes.
In contrast, slice a will run for at most 20 ticks, then s1ice b will begin running. Costate a will get
its next opportunity to run about 60 ticks after it relinquishes control.

main () {
int x, vy, z;

for (;;) |
costate a {

}

slice (500, 20) { // slice a
}
slice (500, 40) { // slice b

5.9.5.2 Example 2
This code guarantees that the first slice starts on TICK_TIMER evenly divisible by 80 and the second
starts on TICK_TIMER evenly divisible by 105.

main () {
for(;;) |
costate {
slice (500,20) { // slice a
waitfor (IntervalTick (80)) ;

}

slice (500,50) { // slice b
waitfor (IntervalTick (105) ;

}

72 digi.com Multitasking with Dynamic C

www.digi.com

5.9.5.3 Example 3
This approach is more complicated, but will allow you to spend the idle time doing a low-priority back-
ground task.

Dynamic C User’s Manual digi.com 73

www.digi.com

5.10 uC/0S-Il

puC/OS-11 is a simple, clean, efficient, easy-to-use real-time operating system that runs on the Rabbit
microprocessor and is fully supported by the Dynamic C development environment. With Dynamic C,
there is no fee to pay for the “Object Code Distribution License” that is usually required for embedding
pC/OS-II in a product.

uC/OS-II is capable of intertask communication and synchronization via the use of semaphores, mail-
boxes, and queues. User-definable system hooks are supplied for added system and configuration control
during task creation, task deletion, context switches, and time ticks.

For more information on pC/OS-II, please refer to Jean J. Labrosse’s book, MicroC/OS-1I, The Real-Time
Kernel (ISBN: 0-87930-543-6). The data structures (e.g., Event Control Block) referenced in the Dynamic
C pC/OS-II function descriptions are fully explained in Labrosse’s book. It can be purchased at
http://www.ucos-ii.com/.

The Dynamic C version of pC/OS-II has the new features and API changes available in version 2.51 of
uC/OS-II. The documentation for these changes will be in the /Samples/UCos-1IT directory. The file
Newv251.pdf contains all of the features added since version 2.00 and Re1v251 . pdf contains release
notes for version 2.51.

The remainder of this section discusses the following:

* Dynamic C enhancements to pC/OS-11

e Tasking aware ISRs

* Dynamic C library reentrancy

e How to get a pC/OS-II application running
e TCP/IP compatibility

¢ API function descriptions

* Debugging tips

5.10.1 Changes to uC/OS-lI
Minor changes have been made to pC/OS-II to take full advantage of services provided by Dynamic C.

5.10.1.1 Ticks per Second

In most implementations of nC/OS-II, 0S_TICKS PER_SEC informs the operating system of the rate at
which OSTimeT1ck is called; this macro is used as a constant to match the rate of the periodic interrupt.
In pC/OS-II for the Rabbit, however, changing this macro will change the tick rate of the operating system
set up during OSInit. Usually, a real-time operating system has a tick rate of 10 Hz to 100 Hz, or 10-100
ticks per second. Since the periodic interrupt on the Rabbit occurs at a rate of 2 kHz, it is recommended
that the tick rate be a power of 2 (e.g., 16, 32, or 64). Keep in mind that the higher the tick rate, the more
overhead the system will incur.

In the Rabbit version of pC/OS-II, the number of ticks per second defaults to 64. The actual number of
ticks per second may be slightly different than the desired ticks per second if TicksPerSec does not
evenly divide 2048.

Changing the default tick rate is done by simply defining OS TICKS PER SEC to the desired tick rate
before calling OSInit (). For example, to change the tick rate to 32 ticks per second:

74 digi.com Multitasking with Dynamic C

http://www.ucos-ii.com/
www.digi.com

#define OS TICKS PER SEC 32
O0SInit () ;
OSStart () ;

5.10.1.2 Task Creation

In a pC/OS-II application, stacks are declared as static arrays, and the address of either the top or bottom
(depending on the CPU) of the stack is passed to OSTaskCreate. In a Rabbit-based system, the
Dynamic C development environment provides a superior stack allocation mechanism that pC/OS-I1
incorporates. Rather than declaring stacks as static arrays, the number of stacks of particular sizes are
declared, and when a task is created using either 0STaskCreate or OSTaskCreateExt, only the
size of the stack is passed, not the memory address. This mechanism allows a large number of stacks to be
defined without using up root RAM.

There are five macros located in ucos2 . 1ib that define the number of stacks needed of five different
sizes. To have three 256-byte stacks, one 512-byte stack, two 1024-byte stacks, one 2048-byte stack, and
no 4096-byte stacks, the following macro definitions would be used:

#define STACK CNT 256 3 // number of 256 byte stacks
#define STACK CNT 512 1 // number of 512 byte stacks
#define STACK CNT 1K 2 // number of 1K stacks
#define STACK CNT 2K 1 // number of 2K stacks
#define STACK CNT 4K 0 // number of 4K stacks

These macros can be placed into each wC/OS-I1I application so that the number of each size stack can be
customized based on the needs of the application. Suppose that an application needs 5 tasks, and each task
has a consecutively larger stack. The macros and calls to OSTaskCreate would look as follows

#define STACK CNT 256
#define STACK CNT 512
#define STACK CNT 1K
#define STACK CNT 2K
#define STACK CNT 4K

// number of 256 byte stacks
// mnumber of 512 byte stacks
// mnumber of 1K stacks
// number of 2K stacks
// number of 4K stacks

= N SN

OSTaskCreate (taskl, NULL, 256, 0);
OSTaskCreate (task2, NULL, 512, 1)
OSTaskCreate (task3, NULL, 1024, 2
OSTaskCreate (task4, NULL, 2048, 3
OSTaskCreate (task5, NULL, 4096, 4

Note that STACK CNT 256 is set to 2 instead of 1. pC/OS-II always creates an idle task which runs
when no other tasks are in the ready state. Note also that there are two 512 byte stacks instead of one. This
is because the program is given a 512 byte stack. If the application utilizes the pC/OS-II statistics task,
then the number of 512 byte stacks would have to be set to 3. (Statistic task creation can be enabled and
disabled via the macro OS TASK STAT EN which is located in ucos2.1ib). If only 6 stacks were
declared, one of the calls to OSTaskCreate would fail.

Dynamic C User’s Manual digi.com 75

www.digi.com

If an application uses OSTaskCreateExt, which enables stack checking and allows an extension of the
Task Control Block, fewer parameters are needed in the Rabbit version of pC/OS-II. Using the macros in
the example above, the tasks would be created as follows:

OSTaskCreateExt (taskl, NULL, O, 0O, 256, NULL, OS TASK OPT STK CHK |
0S_TASK OPT STK CLR);

OSTaskCreateExt (task2, NULL, 1, 1, 512, NULL, OS TASK OPT STK CHK |
0S_TASK_OPT STK CLR);

OSTaskCreateExt (task3, NULL, 2, 2, 1024, NULL, OS TASK OPT STK CHK |
0S_TASK OPT STK CLR);

OSTaskCreateExt (task4, NULL, 3, 3, 2048, NULL, OS TASK OPT STK CHK |
0OS_TASK_OPT STK CLR);

OSTaskCreateExt (task5, NULL, 4, 4, 4096, NULL, OS TASK OPT STK CHK |
OS_TASK_OPT STK CLR) ;

5.10.1.3 Restrictions

At the time of this writing, pC/OS-II for Dynamic C is not compatible with the use of slice statements.
Also, see the function description for OSTimeTickHook () for important information about preserving
registers if that stub function is replaced by a user-defined function.

Due to Dynamic C's stack allocation scheme, special care should be used when posting messages to either
a mailbox or a queue. A message is simply a void pointer, allowing the application to determine its mean-
ing. Since tasks can have their stacks in different segments, auto pointers declared on the stack of the task
posting the message should not be used since the pointer may be invalid in another task with a different
stack segment.

5.10.2 Tasking Aware Interrupt Service Routines (TA-ISR)

Special care must be taken when writing an interrupt service routine (ISR) that will be used in conjunction
with pC/OS-II so that pC/OS-II scheduling will be performed at the proper time.

5.10.2.1 Interrupt Priority Levels

puC/OS-II for the Rabbit reserves interrupt priority levels 2 and 3 for interrupts outside of the kernel. Since
the kernel is unaware of interrupts above priority level 1, interrupt service routines for interrupts that occur
at interrupt priority levels 2 and 3 should not be written to be tasking aware. Also, a wC/OS-II application
should only disable interrupts by setting the interrupt priority level to 1, and should never raise the inter-
rupt priority level above 1.

5.10.2.2 Possible ISR Scenarios

There are several different scenarios that must be considered when writing an ISR for use with uC/OS-I1.
Depending on the use of the ISR, it may or may not have to be written so that it is tasking aware. Consider
the scenario in Figure 5-7. In this situation, the ISR for Interrupt X does not have to be tasking aware since
it does not re-enable interrupts before completion and it does not post to a semaphore, mailbox, or queue.

76 digi.com Multitasking with Dynamic C

www.digi.com

Figure 5-7 Type 1ISR
Task 1

Interrupt X

Interrupt X ISR

ipres

Task 1

If, however, an ISR needs to signal a task to the ready state, then the ISR must be tasking aware. In the
example in Figure 5-8, the TA-ISR increments the interrupt nesting counter, does the work necessary for
the ISR, readies a higher priority task, decrements the nesting count, and returns to the higher priority task.

Figure 5-8 Type 2 ISR

Task 2
Interrupt X
Nesting =1
Interrupt X TA-ISR Task 1 is readied
Nesting =0
ipres

Task 1

It may seem as though the ISR in Figure 5-8 does not have to increment and decrement the nesting count.
However, this is very important. If the ISR for Interrupt X is called during an ISR that re-enables interrupts
before completion, scheduling should not be performed when Interrupt X completes; scheduling should
instead be deferred until the least nested ISR completes. Figure 5-9 shows an example of this situation.

Dynamic C User’s Manual digi.com 77

www.digi.com

Figure 5-9 Type 2 ISR Nested Inside Type 3 ISR

Task 2

Interrupt Z

Nesting = 1
Do critical code
Interrupt Z TA-ISR ipres

Interrupt X

Nesting = 2
Interrupt X TA-ISR Task 1 is readied

Nesting =1
ipres

Finish ISR

Nesting =0

Task 1

As can be seen here, although the ISR for interrupt Z does not signal any tasks by posting to a semaphore,
mailbox, or queue, it must increment and decrement the interrupt nesting count since it re-enables inter-
rupts (ipres) prior to finishing all of its work.

5.10.2.3 General Layout of a TA-ISR

A TA-ISR is just like a standard ISR except that it does some extra checking and house-keeping. The fol-
lowing table summarizes when to use a TA-ISR.

Table 5-2. Use of TA-ISR

MC/OS-Il Application

Type 12 Type 2° Type 3¢

TA-ISR Required? No Yes Yes

a. Type 1—Leaves interrupts disabled and does not signal task to ready state
b. Type 2—Leaves interrupts disabled and signals task to ready state
c. Type 3—Reenables interrupts before completion

Figure 5-10 shows the logical flow of a TA-ISR.

78 digi.com Multitasking with Dynamic C

www.digi.com

Figure 5-10 Logical Flow of a TA-ISR

Save registers used by TA-ISR

¢

Clear interrupt source

¢

Increment nesting count

¢

Do work necessary for interrupt

¢

Reenable interrupts (optional)

¢

Call OSIntExit

¢

Decrement Nesting Count

¢

Is Nesting ==0 ?

Yes

Is switch pending ?

No

.

Restore Registers used by TA-ISR

Yes

¢

Switch to new task

Return from interrupt

Dynamic C User’s Manual

digi.com

79

www.digi.com

5.10.2.3.1 Sample Code for a TA-ISR

Fortunately, the Rabbit BIOS and libraries provide all of the necessary flags to make TA-ISRs work. With
the code found in Listing 1, minimal work is needed to make a TA-ISR function correctly with uC/OS-II.

TA-ISRs allow pC/OS-II the ability to have ISRs that communicate with tasks as well as the ability to let

ISRs nest, thereby reducing interrupt latency.

Just like a standard ISR, the first thing a TA-ISR does is to save the registers that it is going to use (1).
Once the registers are saved, the interrupt source is cleared (2) and the nesting counter is incremented (3).
Note thatbios intnesting is a global interrupt nesting counter provided in the Dynamic C libraries
specifically for tracking the interrupt nesting level. If an ipres instruction is executed (4) other interrupts
can occur before this ISR is completed, making it necessary for this ISR to be a TA-ISR.

If it is possible for the ISR to execute before pC/OS-II has been fully initialized and started multi-tasking,
a check should be made (5) to insure that pC/OS-II is in a known state, especially if the TA-ISR signals a
task to the ready state (6).

After the TA-ISR has done its necessary work (which may include making a higher priority task than is
currently running ready to run), OSIntExit must be called (7). This nC/OS-II function determines the
highest priority task ready to run, sets it as the currently running task, and sets the global flag

bios swpend if a context switch needs to take place. Interrupts are disabled since a context switch is
treated as a critical section (8).

If the TA-ISR decrements the nesting counter and the count does not go to zero, then the nesting level is
savedinbios intnesting (9), the registers used by the TA-ISR are restored, interrupts are re-enabled
(if not already done in (4)), and the TA-ISR returns (12). However, if decrementing the nesting counter in
(9) causes the counter to become zero, then bios swpend must be checked to see if a context switch
needs to occur (10).

If a context switch is not pending, then the nesting level is set (9) and the TA-ISR exits (12). If a context
switch is pending, then the remaining context of the previous task is saved and a long call, which insures
that the xpc is saved and restored properly, is made to bios intexit (11). bios intexitis
responsible for switching to the stack of the task that is now ready to run and executing a long call to
switch to the new task. The remainder of (11) is executed when a previously preempted task is allowed to
run again.

Listing 1

#asm

taskaware isr::
push af ; push regs needed by isr (1)
push hl ; clear interrupt source (2)
1d hl,bios intnesting ; increase the nesting count (3)
inc (hl)
; ipres (optional) (4)
; do processing necessary for interrupt
1d a, (OSRunning) ; MCOS multitasking yet? (5)
or a
jr z,taisr decnesting
; possibly signal task to become ready (6)
call OSIntExit ; sets bios_swpend if higher

; prio ready (7)

80 digi.com Multitasking with Dynamic C

www.digi.com

taisr decnesting:

push ip
ipset 1
1d hl,bios intnesting
dec (hl)
jr nz,taisr noswitch
1d a, (bios swpend)
or a
jr z,taisr noswitch
push de
push bc
ex af,af’
push af
exx
push hl
push de
push bc
push iy
lcall bios intexit
pop iy
pop bc
pop de
pop hl
exx
pop af
ex af,af’
pop bc
pop de
taisr noswitch:
pop ip
taisr done:
pop hl
pop af
ipres
ret
#endasm

; nesting counter == 1?

; switch pending?

Dynamic C User’s Manual

digi.com

81

www.digi.com

5.10.3 Library Reentrancy

When writing a pC/OS-II application, it is important to know which Dynamic C library functions are non-
reentrant. If a function is non-reentrant, then only one task may access the function at a time, and access to
the function should be controlled with a pC/OS-II semaphore. The following is a list of Dynamic C func-
tions that are non-reentrant.

Table 5-3. Dynamic C Non-Reentrant Functions

Library Non-Reentrant Functions
MATH.LIB randg, randb, rand
RS232.LIB All

RTCLOCK.LIB write rtc, tm wr

STDIO.LIB kbhit, getchar, gets, getswf, selectkey

STRING.LIB atof?, atoil, strtok

clockDoublerOn, clockDoublerOff,

SYS.LIB] .
useMainOsc, useClockDivider, use32kHzOsc

VDRIVER.LIB VdGetFreeWd, VdReleaseWd

XMEM.LIB WriteFlash

JRIO.LIB digOut, digOn, digOff, jrioInit, analn,
anaOut, cof analn

JR485.LIB All

a. reentrant but sets the global xtoxErr flag

The Dynamic C serial port functions (RS232.LIB functions) should be used in a restricted manner with
uC/OS-I1. Two tasks can use the same port as long as both are not reading, or both are not writing; i.e., one
task can read from serial port X and another task can write to serial port X at the same time without con-
flict.

82 digi.com Multitasking with Dynamic C

www.digi.com

5.10.4 How to Get a uC/OS-Ill Application Running

uC/OS-I1 is a highly configureable, real-time operating system. It can be customized using as many or as
few of the operating system’s features as needed. This section outlines:

e The configuration constants used in uC/OS-II
¢ How to override the default configuration supplied in UCOS2 .LIB

* The necessary steps to get an application running

It is assumed that the reader has a familiarity with pC/OS-II or has a pC/OS-II reference (MicroC/OS-11,
The Real-Time Kernel by Jean J. Labrosse is highly recommended).

5.10.4.1 Default Configuration

pC/OS-1I usually relies on the include file os_cfg.h to get values for the configuration constants. In the
Dynamic C implementation of pC/OS-I1, these constants, along with their default values, are in
os_cfg.1lib. A default stack configuration is also supplied in os _cfg.lib. pC/OS-II for the Rabbit
uses a more intelligent stack allocation scheme than other pC/OS-II implementations to take better advan-
tage of unused memory.

The default configuration allows up to 10 normally created application tasks running at 64 ticks per sec-
ond. Each task has a 512-byte stack. There are 2 queues specified, and 10 events. An event is a queue,
mailbox or semaphore. You can define any combination of these three for a total of 10. If you want more
than 2 queues, however, you must change the default value of 0OS_MAX QS.

Some of the default configuration constants are:

OS_MAX EVENTS Max number of events (semaphores, queues, mailboxes)
Defaultis 10

OS_MAX TASKS Maximum number of tasks (less stat and idle tasks)
Default is 10

OS_MAX QS Max number of queues in system
Default is 2

OS_MAX MEM PART Max number of memory partitions

Default is 1

OS_TASK CREATE_EN Enable normal task creation
Default is 1

OS_TASK CREATE EXT EN Disable extended task creation

Default is 0
OS_TASK DEL_EN Disable task deletion

Default is 0
OS_TASK_STAT EN Disable statistics task creation

Default is 0

0S_Q EN Enable queue usage
Default is 1

Dynamic C User’s Manual digi.com 83

www.digi.com

OS_MEM EN

0S_MBOX_EN

OS_SEM_EN

OS_TICKS_PER_SEC

STACK_CNT_256

STACK_CNT_512

Disable memory manager
Default is 0

Enable mailboxes
Default is 1

Enable semaphores
Default is 1

Number of ticks in one second
Default is 64

Number of 256 byte stacks (idle task stack)
Defaultis 1

Number of 512-byte stacks
(task stacks + initial program stack)
Defaultis 0S_ MAX TASKS+1 (11)

If a particular portion of nC/OS-II is disabled, the code for that portion will not be compiled, making the
overall size of the operating system smaller. Take advantage of this feature by customizing uC/OS-II based
on the needs of each application.

5.10.4.2 Custom Configuration

In order to customize pC/OS-II by enabling and disabling components of the operating system, simply
redefine the configuration constants as necessary for the application.

#define
#define
#define
#define
#define
#define
#define
#define
#define

0S_MAX EVENTS
0S_MAX TASKS
0S_MAX OS
0S_MAX MEM PART
0S_TASK_STAT EN
0S_Q EN
0S_MEM_EN
0S_MBOX_EN
0S_TICKS PER_SEC

2
20
1
15
1
0
1
0
64

If a custom stack configuration is needed also, define the necessary macros for the counts of the different
stack sizes needed by the application.

#define
#define
#define
#define

STACK CNT 256 1
STACK CNT 512 2
STACK CNT_ 1K 10
STACK CNT 2K 10

idle task stack

initial program + stat task stack
task stacks

number of 2K stacks

//
//
//
//

In the application code, follow the pC/OS-II and stack configuration constants with a #use
“ucos2.1ib” statement. This ensures that the definitions supplied outside of the library are used, rather
than the defaults in the library.

This configuration uses 20 tasks, two semaphores, up to 15 memory partitions that the memory manager
will control, and makes use of the statistics task. Note that the configuration constants for task creation,
task deletion, and semaphores are not defined, as the library defaults will suffice. Also note that ten of the

84

digi.com Multitasking with Dynamic C

www.digi.com

application tasks will each have a 1024 byte stack, ten will each have a 2048 byte stack, and an extra stack
is declared for the statistics task.

5.10.4.3 Examples

The following sample programs demonstrate the use of the default configuration supplied in UCOS2 .LIB
and a custom configuration which overrides the defaults.

Example 1

In this application, ten tasks are created and one semaphore is created. Each task pends on the semaphore,
gets a random number, posts to the semaphore, displays its random number, and finally delays itself for
three seconds.

Looking at the code for this short application, there are several things to note. First, since pC/OS-II and
slice statements are mutually exclusive (both rely on the periodic interrupt for a “heartbeat”), #fuse
“ucos?2.1lib” must be included in every pC/OS-II application (1). In order for each of the tasks to have
access to the random number generator semaphore, it is declared as a global variable (2). In most cases, all
mailboxes, queues, and semaphores will be declared with global scope. Next, 0STnit () must be called
before any other nC/OS-II function to ensure that the operating system is properly initialized (3). Before
puC/OS-II can begin running, at least one application task must be created. In this application, all tasks are
created before the operating system begins running (4). It is perfectly acceptable for tasks to create other
tasks. Next, the semaphore each task uses is created (5). Once all of the initialization is done,

OSStart () is called to start uC/OS-II running (6). In the code that each of the tasks run, it is important
to note the variable declarations. Each task runs as an infinite loop and once this application is started,
pC/OS-II will run indefinitely.

Dynamic C User’s Manual digi.com 85

www.digi.com

// 1. Explicitly use pC/OS-II library
#use "ucos2.lib"

void RandomNumberTask (void *pdata);

// 2. Declare semaphore global so all tasks have access
OS EVENT* RandomSem;

void main () {

}

int 1i;

// 3.Initialize OS internals

OSInit () :;

for(i = 0; 1 < OS MAX TASKS; i++)

// 4. Create each of the system tasks
OSTaskCreate (RandomNumberTask, NULL, 512,

// 5. semaphore to control access to random number generator
RandomSem = OSSemCreate(1l);

// 6. Begin multitasking
OSStart () ;

void RandomNumberTask (void *pdata)

{

OS TCB data;
INT8U err;
INT16U RNum;

OSTaskQuery (OS PRIO SELF, &data);
while (1)
{

i)

// Rand is not reentrant, so access must be controlled via a semaphore.

0SSemPend (RandomSem, 0, &err);
RNum = (int) (rand() * 100);
0SSemPost (RandomSem) ;

printf ("Task%d's random #: %d\n",data.OSTCBPrio, RNum) ;

// Wait 3 seconds in order to view output from each task.
OSTimeDlySec (3);

86

digi.com

Multitasking with Dynamic C

www.digi.com

Example 2
This application runs exactly the same code as Example 1, except that each of the tasks are created with
1024-byte stacks. The main difference between the two is the configuration of pC/OS-II.

First, each configuration constant that differs from the library default is defined. The configuration in this
example differs from the default in that it allows only two events (the minimum needed when using only
one semaphore), 20 tasks, no queues, no mailboxes, and the system tick rate is set to 32 ticks per second
(1). Next, since this application uses tasks with 1024 byte stacks, it is necessary to define the configuration
constants differently than the library default (2). Notice that one 512 byte stack is declared. Every
Dynamic C program starts with an initial stack, and defining STACK CNT 512 is crucial to ensure that
the application has a stack to use during initialization and before multi-tasking begins. Finally
ucos2.1lib is explicitly used (3). This ensures that the definitions in (1 and 2) are used rather than the
library defaults. The last step in initialization is to set the number of ticks per second via
0SSetTicksPerSec (4). The rest is identical to example 1 and is explained in the previous section.

// 1. Define necessary configuration constants for uC/OS-I1

#define 0S_MAX_ EVENTS 2
#define 0S MAX TASKS 20
#define 0S MAX QS 0
#define O0S Q EN 0
#define OS MBOX EN 0
#define 0S_TICKS PER SEC 32

// 2. Define necessary stack configuration constants
#define STACK CNT 512 1 // initial program stack
#define STACK CNT 1K OS MAX TASKS // task stacks

// 3. This ensures that the above definitions are used
#use "ucos2.lib"

void RandomNumberTask (void *pdata);

// Declare semaphore global so all tasks have access
OS EVENT* RandomSem;

void main () {
int 1i;
// Initialize OS internals
OSInit () :;
for(i = 0; i < OS_MAX TASKS; i++) {

// Create each of the system tasks
OSTaskCreate (RandomNumberTask, NULL, 1024, 1);

}
// semaphore to control access to random number generator
RandomSem = OSSemCreate(1l);

// 4. Set number of system ticks per second
0SSetTicksPerSec (0S TICKS PER SEC) ;

// Begin multi-tasking
OSstart ()

Dynamic C User’s Manual digi.com 87

www.digi.com

void RandomNumberTask (void *pdata)

{

// Declare as auto to ensure reentrancy.
auto OS_TCB data;
auto INT8U err;
auto INT16U RNum;

OSTaskQuery (OS PRIO SELF, &data);
while (1)
{

// Rand is not reentrant, so access must be controlled via a semaphore.
O0SSemPend (RandomSem, 0, &err);

RNum = (int) (rand() * 100);

O0SSemPost (RandomSem) ;

printf ("Task%02d's random #: %d\n",data.OSTCBPrio, RNum) ;

// Wait 3 seconds in order to view output from each task.
OSTimeDlySec (3);

5.10.5 Compatibility with TCP/IP
The TCP/IP stack is reentrant and may be used with the pC/OS real-time kernel. The line

#use ucos2.lib

must appear before the line

fuse dcrtcp.lib
A call to OSInit () must be made before calling sock init ().

5.10.5.1 Socket Locks

Each socket used in a pC/OS-II application program has an associated socket lock. Each socket lock uses
one semaphore of type OS_EVENT. Therefore, the macro MAX OS EVENTS must take into account each
of the socket locks, plus any events that the application program may be using (semaphores, queues, mail-
boxes, event flags, or mutexes).

Determining OS_MAX EVENTS may get a little tricky, but it isn't too bad if you know what your program
is doing. Since MAX SOCKET LOCKS is defined as:

#define MAX SOCKET LOCKS (MAX TCP SOCKET BUFFERS +
MAX UDP_SOCKET BUFFERS)
OS MAX EVENTS may be defined as:
#define OS MAX EVENTS MAX TCP SOCKET BUFFERS +
MAX UDP_SOCKET BUFFERS + 2 + z
The constant “2” is included for the two global locks used by TCP/IP, and “z” is the number of

OS_EVENTS (semaphores, queues, mailboxes, event flags, or mutexes) required by the program.

If either MAX TCP SOCKET BUFFERS or MAX UDP_SOCKET BUFFERS is not defined by the appli-
cation program prior to the #use statements for ucos.lib and dcrtcp. 1ib, default values will be
assigned.

88 digi.com Multitasking with Dynamic C

www.digi.com

If MAX TCP_ SOCKET BUFFERS is not defined in the application program, it will be defined as
MAX SOCKETS. If, however, MAX SOCKETS is not defined in the application program,
MAX_TCP_SOCKET BUFFERS will be 4.

If MAX UDP_SOCKET BUFFERS is not defined in the application program, it will be defined as 1 if
USE_DHCP is defined, or 0 otherwise.

For more information about TCP/IP, please see the Dynamic C TCP/IP User s Manual, Volumes 1 and 2,
available online at www.digi.com/support.

5.10.6 Debugging Tips

Single stepping may be limited to the currently running task by using the F8 key (Step over). If the task is
suspended, single stepping will also be suspended. When the task is put back in a running state, single
stepping will continue at the statement following the statement that suspended execution of the task.

Pressing the F7 key (Trace into) at a statement that suspends execution of the current task will cause the
program to step into the next active task that has debug information. It may be useful to put a watch on the
global variable OSPrioCur to see which task is currently running.

For example, if the current task is going to call 0SSemPend () on a semaphore that is not in the signaled
state, the task will be suspended and other tasks will run. If F8 is pressed at the statement that calls
0SSemPend (), the debugger will not single step in the other running tasks that have debug information;
single stepping will continue at the statement following the call to 0SSemPend () . If F7 is pressed at the
statement that calls 0SSemPend () instead of F8, the debugger will single step in the next task with
debug information that is put into the running state.

5.11 Summary

Although multitasking may actually decrease processor throughput slightly, it is an important concept. A
controller is often connected to more than one external device. A multitasking approach makes it possible
to write a program controlling multiple devices without having to think about all the devices at the same
time. In other words, multitasking is an easier way to think about the system.

Dynamic C User’s Manual digi.com 89

www.digi.com
www.digi.com/support

90

digi.com

Multitasking with Dynamic C

www.digi.com

RABBIT = PRODUCT MANUAL

6. DEBUGGING WITH DYNAMIC C

This chapter is intended for anyone debugging Dynamic C programs. For the person with little to no expe-
rience, we offer general debugging strategies in Section 6.5. Both experienced and inexperienced Dynamic
C users can refer to Section 6.3 to see the full set of tools, programs and functions available for debugging
Dynamic C programs. Section 6.4 consolidates the information found in the GUI chapter regarding debug-
ging features into an quicker-to-read table of GUI options. And lastly, Section 6.6 gives some good refer-
ences for further study:.

Dynamic C comes with robust capabilities to make debugging faster and easier. The debugger is highly
configurable; it is easy to enable or disable the debugger features using the Project Options dialog.

6.1 Debugging Features Prior to Dynamic C 9

The following features are available prior to Dynamic C 9. They are summarized here, with links to more
detailed descriptions.

printf() - Display messages to the Stdio window (default) or redirect to a serial port. May also write to a
file.

e Software Breakpoints - Stop execution, allow the available debug windows to be examined: Stack,
Assembly, Dump and Register windows are always available.

¢ Single Stepping - Execute one C statement or one assembly statement. This is an extension of break-
points, so again, the Stack, Assembly, Dump and Register windows are always available.

e Watch Expressions - Keep running track of any valid C expression in the application. Fly-over hints
evaluate any watchable statement.

e Memory Dump - Displays blocks of raw values and their ASCII representation at any memory location
(can also be sent to a file).

e MAP File - Shows a global view of the program: memory usage, mapping of functions, global/static
data, parameters and local auto variables, macro listing and a function call graph.

e Assert Macro - This is a preventative measure, a kind of defensive programming that can be used to
check assumptions before they are used in the code. This was introduced in Dynamic C 8.51.

¢ Blinking Lights - LEDs can be toggled to indicate a variety of conditions. This requires a signal line
connected to an LED on the board.

Dynamic C User’s Manual digi.com 91

www.digi.com

6.2 Debugging Features Introduced in Dynamic C 9

Dynamic C 9 contains all the previous debugging tools and the additional ones listed here.

Execution Trace - Traces at each statement, each function, or customer inserted points. Displays results
in the Trace window. The options for execution tracing are configurable. This feature is disabled by
default.

Symbolic Stack Trace - Helps customers find out the path of the program at each single step or break
point. By looking through the stack, it is possible to reconstruct the path and allow the customer to eas-
ily move backwards in the current call tree to get a better feeling for the current debugging context.

Persistent Breakpoints - Persistent breakpoints mean the information is retained when transitioning
back and forth from edit mode to debug mode and when a file is closed and re-opened.

Enhanced Watch Expressions - The Watches window is now a tree structure capable of showing struct
members. That is, all members of a structure become viewable as watch expressions when a structure is

added, without having to add them each separately.

Enhanced Memory Dumps - Changed data in the Memory Dump window is highlighted in reverse
video or in customizable colors every time you single step in either C or assembly.

Enhanced Mode Switching - Debug mode can be entered without a recompile and download. If the
contents of the debugged program are edited, Dynamic C prompts for a recompile.

Enhanced Stdio Window - The Stdio window is directly searchable.

Execution tracing is available with Dynamic C version 9. For more information on this debugging feature
please see technical note TN253 “Execution Tracing.” All technical notes are available at
www.digi.com/support.

92

digi.com Debugging with Dynamic C

www.digi.com/support
www.digi.com

6.3 Debugging Tools

This section describes the different tools available for debugging, including their pros and cons, as well as
when you might want to use them, how to use them and an example of using them. The examples are sug-
gestions and are not meant to be restrictive. While there may be some collaboration, bug hunting is largely
a solitary sport, with different people using different tools and methods to solve the same problem.

6.3.1 printf()

The printf () function has always been available in Dynamic C, with output going to the Stdio window
by default, and optionally to a file (by configuring the Stdio window contents to log to a file). The ability
to redirect output to any one of the serial ports A, B, C or D was introduced in Dynamic C 7.25. In DC
8.51, serial ports E and F were added for the Rabbit 3000. See Samples\stdio serial.c for
instructions on how to use the serial port redirect. This feature is intended for debug purposes only.

The syntax for printf () is explained in detail in the Dynamic C Function Reference Manual, including
a listing of allowable conversion characters.

Pros Aprintf () statement is quick, easy and sometimes all that is needed to nail
down a problem.

You can use #1ifdef directives to create levels of debugging information that
can be conditionally compiled using macro definitions. This is a technique used
by Rabbit engineers when developing Dynamic C libraries. In the library code
you will see statements such as:

#ifdef LIBNAME DEBUG
printf (“Insert information here.\n”);

#endif
#ifdef LIBNAME VERBOSE
printf (“Insert more information.\n”);

#endif
By defining the above mentioned macro(s) you include the corresponding printf
statements.

Cons The printf () function is so easy to use, it is easy to overuse. This can lead to
a shortage of root memory. A solution to this that allows you to still have lots of
printf strings is to place the strings in extended memory (xmem) using the key-
word xdata and then call print £ () with the conversion character “%ls.” An
overuse of printf statements can also affect execution time.

Uses Use to check a program’s flow without stopping its execution.

Dynamic C User’s Manual digi.com 93

www.digi.com

Example There are numerous examples of using printf () inthe programs provided in
the Samples folder where you installed Dynamic C.

To display a string to the Stdio window place the following line of code in your
application:

printf ("Entering my function(). \n") ;

To do the same thing, but without using root memory:

xdata entering {“Entering my function().”};
printf ("$1s\n", entering);

6.3.2 Software Breakpoints

Software breakpoints have always been available in Dynamic C. They have been improved over several
versions: the “Clear All Breakpoints” command was introduced in DC 7.10; the ability to set breakpoints
in ISRs was introduced in DC 7.30; DC 9 introduces persistent breakpoints and the ability to set break-
points in edit mode.

Pros Software breakpoints can be set on any C statement unless it is marked “node-
bug” and in any “#asm debug” assembly block. Breakpoints let you run a pro-
gram at full speed until the specified stopping point is reached. You can set
multiple breakpoints in a program or even on the same line. They are easy to tog-
gle on and off individually and can all be cleared with one command. You can
choose whether to leave interrupts turned on (soft breakpoint) or not (hard
breakpoint).

When stopped at a breakpoint, you can examine up-to-date contents in debug
windows and choose other debugging features to employ, such as single step-
ping, dumping memory, fly-over watch expressions.

Cons To support large sector flash, breakpoint internals require that breakpoint over-
head remain, even when the breakpoint has been toggled off. Recompile the pro-
gram to remove this overhead.

When the debug keyword is added to an assembly block, relative jumps (which
are limited to 128 bytes) may go out of range. If this happens, change the JR in-
struction to a JP instruction. Another solution is to embed a null C statement in
the assembly code like so:

#asm
¢ // Set a breakpoint on the semicolon
#éﬁdasm
Uses Use software breakpoints when you need to stop at a specified location to begin
single stepping or to examine variables, memory locations or register values.

94 digi.com Debugging with Dynamic C

www.digi.com

Example

Open Samples\Demol. c. If you are using DC 9, place the cursor on the

word “for,” then press F2 to insert a breakpoint. Otherwise, press F5 to compile
the program before setting the breakpoint. Now press F9. Every time you press
F9 program execution will stop when it hits the start of the for loop. From here
you can single step or look at a variety of information through debug windows.

For example, let us say there is a problem when you get to the limit of a for
loop. You can use the Evaluate Expressions dialog to set the looping variable to
a value that brings program execution to the exact spot that you want, as shown
in this screenshot:

Figure 6.1 Altering the looping variable when stopped at a breakpoint

“¥%C:\DYNAMIC C 9.5AMPLES'\DEMOL.C _|_|_- o .’il
9 main() § 2l
10
11 int i, i Expression |EEEE
1 '
13 i=0; Besut 19333 it 19939 [0=4E1F)
14
15 while (1) { Evaluate I Close | Help |
16 it+;
17
18 for (i=0: 3<20000: j++):
19
z0 printf("i = &£din"™, i):
71 3 e
4| | a7

Dynamic C User’s Manual

digi.com 95

www.digi.com

6.3.3 Single Stepping
Single stepping has always been available in Dynamic C. In version 7.10, the ability to single step on C
statements with the Assembly window open was added.

Pros Single stepping allows you to closely supervise program execution at the source
code level, either by C statement or assembly statement. This helps in tracing the
logic of the program. You can single step any debuggable statement. Even Dy-
namic C library functions can be stepped into as long as they are not flagged as
not available with the keyword nodebug.

Cons Single stepping is of limited use if interaction with an external device is being
examined; an external device does not stop whatever it is doing just because the
execution of the application has been restrained.

Also, single stepping can be very tedious if stepping through many instructions.
Well-placed breakpoints might serve you better.

Uses Single stepping is typically used when you have isolated the problem and have
stopped at the area of interest using a breakpoint.

Example To single step through a program instead of running at full execution speed, you
must either set a breakpoint while in edit mode (if you have DC 9) or compile
the program without running it.

To compile the program with-
out running it, use the Com-
pile menu option, the

% Dynamic C Dist. 9,00
File Edit | Compile Run Inspect Options Window

keyboard shortcut F5 or the “ N = T Compile F&

toolbar menu button (pictured
to the left of the Compile
menu option).

& Compile ko Target b
4 Compile to . bin File *

F7.F8. Al+F7 and Alt-+F8 are ,Es Reset Target [Compile BIOS CheldY

the keyboard shortcuts for

stepping through code. Use F7 if you want to step at the C statement level, but
want to step into calls to debuggable functions. Use F8 instead if you want to
step over function calls.

If the Assembly window is open, the stepping will be done by assembly instruc-
tion instead of by C statement if the feature “Enable instruction level single step-
ping” is checked on the Debugger tab of the Project Options dialog; otherwise,
stepping is done by C statement regardless of the status of the Assembly win-
dow. If you have checked “Enable instruction level single stepping” but wish to
continue to step by C statement when the Assembly window is open, use Alt+F7
or Alt+F8 instead of F7 or F8.

96 digi.com Debugging with Dynamic C

www.digi.com

6.3.4 Watch Expressions

Like many other debugging features, watch expressions have been around since the beginning and have
improved over time. Dynamic C 8.01 introduced the ability to evaluate watchable expressions using fly-
over hints. (The highlighted expression does not need to be set as a watch expression for evaluation in a

flyover hint.) Dynamic C 9 introduced a new way of handling structures as watch expressions. Previously

when you set a watch on a struct, its members had to be added separately and deliberately. Now they are

set as watch expressions automatically with the addition of the struct.

Pros

Cons

Uses

Example

Any valid C expression can be watched. Multiple expressions can be watched
simultaneously. Once a watch is set on an expression, its value is updated in the
Watches window whenever program execution is stopped.

The Watches window may be updated while the program is running
Q¥ (which will affect timing) by issuing the “Update Watch Window” com-
mand: use the Inspect menu, Ctrl+U or the toolbar menu button shown
hereto update the Watches window.

You can use flyover hints to find out the value of any highlighted C expression
when the program is stopped.

The scope of variables in watch expressions affects the value that is displayed in
the Watches window. If the variable goes out of scope, its true value will not be
displayed until it comes back into scope.

Keep in mind two additional things, which are not bad per se, but could be if they
are used carelessly: Assignment statements in a watch expression will change
the value of a variable every time watches are evaluated. Similarly, when a func-
tion call is in a watch expression, the function will run every time watches are
evaluated.

Use a watch expression when the value of the expression is important to the be-
havior of the part of the program you are analyzing.

Watch expressions can be used to evaluate complicated conditionals. A quick
way to see this is to run the program Samples\pong. c. Set a breakpoint at
this line

if (nx <= x1 || nx >= xh)

within the function pong () . While the program is stopped, highlight the sec-
tion of the expression you want evaluated. Use the watches flyover hint by hov-
ering the cursor over the highlighted expression. It will be evaluated and the
result displayed. You can see the values of, e.g., nx or x1 or the result of the
conditional expression nx <= x1, depending on what you highlight.

Keep in mind that when single stepping in assembly, the value of the watch ex-
pression may not be valid for variables located on the stack (all auto variables).
This is because the debug kernel does not keep track of the pushes and pops that
occur on the stack, and since watches of stack variables only make sense in the
context of the pushes and pops that have happened, they will not always be ac-
curate when assembly code is being single stepped.

Dynamic C User’s Manual digi.com

97

www.digi.com

6.3.5 Evaluate Expressions

The evaluate expression functionality was separated out from watch expressions in Dynamic C 8.01. Itis a
special case of a watch expression evaluation in that the evaluation takes place once, when the Evaluate but-
ton is clicked, not every time the Watches window is updated.

Pros Like watches, you can use the Evaluate Expression feature on any valid C ex-
pression. Multiple Evaluate Expression dialogs can be opened simultaneously.

Cons Can alter program data adversely if the change being made is not thought out
properly
Uses This feature can be used to quickly and easily explore a variant of program flow.

Example Sayyouhave an application that is supposed to treat the 100th iteration of a loop
as a special case, but it does not. You do not want to set a breakpoint on the loop-
ing statement and hit F9 that many times, so instead you force the loop variable
to equal 99 using the evaluate expression dialog. To do this compile the program
without running it. Set a breakpoint at the start of the loop and then single step
to get past the loop variable initialization. Open the Inspect menu and choose
Evaluate Expression. Type in “j=99” and click on the Evaluate button. Now you
are ready to start examining the program’s behavior.

98 digi.com Debugging with Dynamic C

www.digi.com

6.3.6 Memory Dump

The Dump window was improved in Dynamic C 8.01 in several ways. For example, multiple dump win-
dows can be active simultaneously, flyover hints make it easier to see the correct address, and three differ-
ent types of dumps are allowed. Read the section titled, “Dump at Address,” for more information on these
and the other improvements made in version 8.01. In Dynamic C 9, dump windows were improved again.
One improvement is that values that have changed are shown highlighted in reverse video or in customiz-
able colors. Another improvement is that the value entered in the Memory Dump Setup dialog is the first
address shown in the dump window. E.g., if you type in a logical address such as 74ec (all addresses are in
hexadecimal), that will be the first address shown. Earlier versions of Dynamic C took a zero-based
approach, meaning that the first address would be 74¢0.

Pros

Cons

Uses

Example

Dump windows allow access to any memory location, beginning at any address.
There are alignment options; the data can be viewed as bytes, words or double-
words using a right-click menu.

The Dump window does not contain symbolic information, which makes some
information harder to decipher. There is the potential for increased debugging
overhead if you open multiple dump windows and make them large.

Use a dump window when you suspect memory is being corrupted. Or to watch
string or numerical data manipulation proceed. String manipulation can easily
cause memory corruption if you are not careful.

Consider the following code:

char my array[10];
for (i=0; i<=10; i++) {
my arrayl[i] = Oxff;
}
If you do not have run-time checking of array indices enabled, this code will cor-
rupt whatever is immediately following my array in memory.

There is no run-time checking for string manipulation, so if you wrote something
like the following in your application, memory would be corrupted when the null
terminator for the string “1234” was written.

void foo () {
int x;
char str[4];
x = Oxffff;
strcpy (str,”1234");
}
Watching changes in a dump window will make the mistake more obvious in
both of these situations, though in the former, turning on run-time checking for
array indices in the Compiler tab of the Project Options dialog is easier.

Dynamic C User’s Manual digi.com 99

www.digi.com

6.3.7 MAP File

Map files have been generated for compiled programs since Dynamic C 7.02.

Pros

Cons

Uses

Example

The map file is full of useful information. It contains,

* location and size of code and data segments

* a list of all symbols used, their location, size and their file of origin

« a list of all macros used, their file of origin and the line number within that file

where the macro is defined
* function call graph

A valid map file is produced after a successful compile, so it is available when
a program crashes.

If the compile was not successful, for example you get a message that says you
ran out of root code space, the map file will still be created, but will contain in-
complete and possibly incorrect information.

Map files are useful when you want to gather more data or are trying to get a
comprehensive overview of the program. A map file can help you make better
use of memory in cases where you are running short or are experiencing stack
overflow problems.

Say you are pushing the limits of memory in your application and want to see
where you can shave bytes. The map file contains sizes for all the data used in
your program.The screen shot below shows some code and part of its map file.
Maybe you meant to type “200” as the size formy array and added a zero on
the end by mistake. (This is a good place to mention that using hard-coded val-
ues is more prone to error than defining and using constants.)

¥ C:\DYNAMIC C 9\SAMPLES\DEMO1.C =10] x|
maini) { ;l

int i, 3:
int my_array[2000];
i-v
f
% C:\ DYNAMIC C 9%, 5AMPLES',DEMO1.MAP i 1ol xi
// Parameter and local auto symbol mapping and source reference.;l
fi0ff=zert Rel. to Size Symbol File
4002 3P 2 main: i Y DEM
4000 3P Z main:j WDEM 4
u} 3P 4000 waRinimy array Y DEM
2 SP 2 printf: fut Y STD
z 3P z _gead:c Y STD
4 sp 2 qe2: printfhuf \S'flll
ol | v s

Scanning the size column, the mistake jumps out at you more readily than look-
ing at the code, maybe because you expect to see “200” and so your brain filters
out the extra zero. For whatever reason, looking at the same information in a dif-
ferent format allows you to see more.

The size value for functions might not be accurate because it measures code dis-
tance. In other words, if a function spans a gap created with a fol/lows action, the
size reported for the function will be much greater than the actual number of

100

digi.com Debugging with Dynamic C

www.digi.com

bytes added to the program. The follows action is an advanced topic related to
the subject of origin directives. See the Rabbit 3000 Designer s Handbook for a
discussion of origin directives and action qualifiers.

The map file provides the logical and physical addresses of the program and its
data. The screen shot below shows a small section of demo1 .map. The left-
most column shows line numbers, with addresses to their immediate right. Using
the addresses we can reproduce the actions taken by the Memory Management
Unit (MMU) of the Rabbit. Addresses with four-digits are both the logical and
the physical address. That is because in the logical address space they are in the
base segment, which always starts at zero in the physical address space. You can
see this for yourself by opening two dump windows: one with a four-digit logical
address and the second with that same four-digit number but with a leading zero,
making it a physical address. The contents of the dump windows will be the

same.

% C:\DYNAMIC C 9'5AMPLESY DEMO1.MAP =] 5
179 Zfa:eicco * dkCheckEntry ‘-.DKCORE;!
150 farezd? % dkZetSingle3tepHook % DEENTER
151 fa:rez2df & dkZetEpilogHook % DEENTER
182
183
184 // Global/static data sywbol mapping and source reference.
185 // Addr Gize Sywbol File
156 Z2oho 129 _ctype table W STRING
1587 zf0ad 10 _tens WETDIO.!
1588 3308 44 _ ltens WISTDIC.:
159 3523 32 pflec:round YSTDIO.:
150 3eB3 4 _ froa:lg 2 10 Y STDIO.!
191 462k 3z _ T divxmemwrapper:_ divtable " MUTILF:
192 b1l:c387 4 __initial stack W PROGRA
193 bl:c383 4 freedtacks WETACK.!
194 40el 10 stackiizes WETACKE. |

« | ﬁ

The addresses in the format xx:yyyy are physical addresses. For code xx is the
XPC value, for data it is the value of DATASEG:; yyyy is the PC value for both
code and data. In the above map file you can see examples of both code and data
addresses. Addresses in the format xx:yyyy are transformed by the MMU into a
5-digit physical address.

We will use the address fa:e64c to explain the actions of the MMU. It is really
very simple if you can do hex arithmetic in your head or have a decent calculator.

The MMU takes the XPC or DATASEG value, appends three zeros to it, then
adds it to the PC value, like so:

fa000 + e6d4c = 10864c

A sixth digit in the result is ignored, leaving us with the value 0x0864c. This is
the physical address. Again, you can check this in a couple of dump windows by
typing in the 5-digit physical address for one window and the XPC:offset into
another and seeing that the contents are the same.

Dynamic C User’s Manual digi.com 101

www.digi.com

6.3.8 Execution Trace

Execution tracing was introduced in Dynamic C 9. The program Samples\demo4 . c demonstrates its
use. Go to Section 3.4 for a full description of demo4 . c.

There are basically three ways to toggle tracing during program execution. Two of them are similar: they
require that tracing be enabled in the Debugger tab of the Project Options dialog and they do not trace in
nodebug functions.

¢ GUI options: Opening the Inspect menu, you will see the “Stop Execution Tracing” and the “Start Exe-
cution Tracing” commands, along with their keyboard shortcuts and toolbar buttons. Use any of these
methods to start and stop execution tracing while the program is running or while stopped at a break-
point.

e TRACEONand TRACEOFF: Macros that are the equal to the GUI options

The third way does not require tracing to be enabled and it can be done in nodebug functions.

* TRACE: A macro that causes itself, and only itself, to be traced.

Note that execution tracing is intrusive, slightly more so when the Trace window is open.

Pros The large amount of tracing information that may be saved on the host PC is
available even if the program crashes. Tracing information fields can be turned
on and off by the user on the Debugger tab of the Project Options dialog. The
size of the trace buffer, which determines the number of trace entries, and wheth-
er to save the buffer to a file on program termination are also decided on the De-
bugger tab.

Cons Execution tracing alters the timing of a program because tracing information is
inserted between every source statement that is executed. Therefore, execution
tracing may not be useful in tracking down a timing related problem... it might
even cause one.

Uses A good data gathering tool to use when you are not sure what is happening.

Example Say you have an application in which program flow deviates at some unknown
point that is too tedious to detect by stepping. With execution tracing enabled,
compile the program and click “Trace On” in the Inspect menu. Run the program
and stop when the deviation is known or suspected to have occurred. Open the
Trace window. You can now follow the execution at any point in the trace by
double-clicking to source, or save to a file and grep for pertinent function calls
or lines executed.

102 digi.com Debugging with Dynamic C

www.digi.com

6.3.9 Symbolic Stack Trace

Dynamic C has always had the Stack window, but the Stack Trace window is new in Dynamic C 9. The old
Stack window is still available to any compiled program, and being able to view the top 32 bytes of the
stack could still be useful.

The Stack Trace window lets you see where you are and how you got there. It keeps a running depth value,
telling you how many bytes have been pushed on the stack in the current program instance, or since the
depth value reset button was clicked. The Stack Trace window only tracks stack-based variables, i.e., auto
variables. The storage class for local variables can be either auto or static, specified through a modifier
when the variable is declared or globally via the #class directive. Whatever the means, if a local variable is
marked static it will not appear in the Stack Trace window.

Pros Provides a concise history of the call sequence and values of local variables and
function arguments that led to the current breakpoint, all for a very small cost in
execution time and BIOS memory.

Cons Currently, the Stack Trace window can not trace the parameters and local vari-
ables in cofunctions. Also the contents of the window can not be saved after a
program crash.

Uses Use stack tracing to capture the call sequence leading to a breakpoint and to see
the values of functions arguments and local variables.

Example Say you have a function that is behaving badly. You can set a breakpoint in the
function and use the Stack Trace window to examine the function call sequence.
Examining the call sequence and the parameters being passed might give enough
information to solve the problem.

The following screenshot shows an instance of gsortdemo . ¢ and the Stack
Trace window. Note that the call to memcpy () is not represented on the stack.
The reason? Its stack activity had completed and program execution had re-
turned to main () when the stack was traced at the breakpoint in the function
mycmp ().

Figure 6.2 Using Stack Trace

% C:\DYNAMIC C 9,5AMPLES,QSORTDEMO.C

S user defined compare must be supplied for gsort
int mwyowp (int *p,int o)

!eturn R TH T e
i

woid maing)
{
int i;

A4 copy initialized data to RAM
wemchy (p, 2, sizeof (Q))

A4 sort it
gsort (p, ARRAY ELEMENT COUNT, Z,myewmp) ;

4 |
,’-:T'E?-,-Stack Trace i] 4|

wycup (p=0xC377, g=0xC37F)
gsort (base=, n=0xk, s=0x&, cmp=0x1D34) i=0x0, j=0x9, piv=0x4, lo=0x0, hi=0x3,6 pivot=(0xC37F; "O"
wmaini) i=0x1DEE

| | i
4

[pepth: 35 Max Depth: 35

Dynamic C User’s Manual digi.com 103

www.digi.com

6.3.10 Assert Macro

The assert macro was introduced in Dynamic C 8.51. The Dynamic C implementation of assert follows the
ANSI standard for the NDEBUG macro, but differs in what the macro is defined to be so as to save code
space (ANSI specifies that assert is defined as ((void)0) when NDEBUG is defined, but this generates a
NOP in Dynamic C, so it is defined to be nothing).

Pros The assert macro is self-checking software. It lets you explicitly state something
is true, and if it turns out to be false, the program terminates with an error mes-
sage. At the time of this writing, this link contained an excellent write-up on the
assert macro:

http://www.embedded.com/story/OEG20010311S0021

Cons Side effects can occur if the assert macro is not coded properly, e.g.,
assert (i=1)

will never trigger the assert and will change the value of the variable i; it should
be coded as:

assert (1==1)
Uses Use the assert macro when you must make sure your assumption is accurate.

Example Check for a NULL pointer before using it.

void my function (int * ptr) {
assert (ptr);

}

6.3.11 Miscellaneous Debugging Tools

Noted here are a number of other debugging tools to consider.

General Debug Windows

In addition to the debug windows we have discussed already, there are three other windows that are avail-
able when a program is compiled: the Assembly, Register and Stack windows. They are described in detail
in Chapter 14, in the sections titled, Assembly (F10), Register Window and Stack (F12), respectively.

104 digi.com Debugging with Dynamic C

www.digi.com

xalloc_stats()

Prints a table of physical addresses that are available for allocation in xmem via xalloc () calls. To dis-
play this information in the Stdio window, execute the statement:

xalloc_stats(0);

in your application or use Inspect | Evaluate Expression. The Stdio window will display something similar
to the following:

i =10 %]
Auailable #allocl) regions: 2
Fegiont Low addre High adde Size Auvail Tupe j
2 = durmy
2 = durry

1 Eodz88 43055 Z22dvas 2176288 normal

OrEEEENEEE OxBEEbedf f DxBEEEIGeEE OuAEHISEER

a rasd3z 1843575 2oz2144 262144 normal
BrBRRCAREN D:OE0FFFFF 200040088 B:a8648888

-

Al AW

A region is a contiguous piece of memory. Theoretically, up to four regions can exist; a region that is
marked “dummy” is a region that does not exist. Each region is identified as “normal” or “BB RAM,”
which refers to memory that is battery-backed.

Seriall O.exe

The utility serialIO.exe islocated in \Diagnostics\Serial IO.Itisalso in the file
SerialIO 1.zip, available for download at the Digi website. This utility is a specialized terminal
emulator program and comes with several diagnostic programs. The diagnostic programs test a variety of
functionality, and allow the user to simulate some of the behavior of the Dynamic C download process.

The utility has a Help button that gives complete instructions for its use. The Rabbit 3000 Designer s
Handbook in the chapter titled “Troubleshooting Tips for New Rabbit-Based Systems” explains some of
the diagnostic programs that come with the seriallO utility. Understanding the information in this chapter
will allow you to write your own diagnostic programs for the seriallO utility.

reset_demo.c

The sample program Samples\reset demo.c demonstrates using the functions that check the reason
for a reset: hard reset (power failure or pressing the reset button), soft reset (initiated by software), or a
watchdog timeout.

Error Logging

Chapter 8, “Run-Time Errors,” describes the exception handling routine for run-time errors that is supplied
with Dynamic C. The default handler may be replaced with a user-defined handler. Also error logging can
be enabled by setting ENABLE ERROR LOGGING to 1 in the BIOS (prior to Dynamic C version 9.30) or
in ERRLOGCONFIG.LIB (starting with DC 9.30). See Chapter 8 for more information.

Dynamic C User’s Manual digi.com 105

http://www.digi.com/support/
www.digi.com

Watchdogs

Ten virtual watchdogs are provided, in addition to the hardware watchdog(s) of the processor. Watchdogs,
whether hardware or software, limit the amount of time a system is in an unknown state.

Virtual watchdogs are maintained by the Virtual Driver and described in Section 7.4.2. The sample pro-
gram Samples\VDRIVER\VIRT WD.C demonstrates the use of a virtual watchdog.

Compiler Options
The Compiler tab of the Project Options dialog contains several options that assist debugging. They are
summarized here and fully documented starting on “Compiler Tab”.

¢ List Files - When enabled, this option generates an assembly list file for each compile. The list file con-
tains the same information and is in the same format as the contents of the Assembly window. List files
can be very large.

¢ Run-Time Checking - Run-time checking of array indices and pointers are enabled by default.

¢ Type Checking - Compile-time checking of type options are enabled by default. There are three type
checking options, labeled as: Prototype, Demotion and Pointer. Checking prototypes means that argu-
ments passed in function calls are checked against the function prototype. Demotion checking means
that the automatic conversion of a type to a smaller or less complex type is noted. Pointer checking
refers to making sure pointers of different types being intermixed are cast properly.

See the section titled, “Type Checking” on page 280 for more information.

Blinking Lights

Debugging software by toggling LEDs on and off might seem like a strange way to approach the problem,
but there are a number of situations that might call for it. Maybe you just want to exercise the board hard-
ware. Or, let us say you need to see if a certain piece of code was executed, but the board is disconnected
from your computer and so you have no way of viewing printf output or using the other debugging tools.
Or, maybe timing is an issue and directly toggling an LED with a call to WrPortE () or

BitWrPortE () gives you the information you need without as much affect on timing.

The sample program \Samples\LP3500\power.c demonstrates how to use LEDs to communicate
information.

106 digi.com Debugging with Dynamic C

www.digi.com

6.4 Where to Look for Debugger Features

Debugger features are accessed from several different Dynamic C menus. The menu to look in depends on
whether you want to enable, configure, view or use the debugger feature. This section identifies the vari-
ous menus that deal with debugging. Table 6-1 summarizes the menus and debugging tools.

Table 6-1. Summary of Debug Tools and Menus

Name of Feature

Where Feature is
Configured

Where Feature is Enabled

Where Feature is
Toggled®

Environment Options,

Debug Windows tab I
. . . . nspect Menu
Execution Trace Project Options, Project Options, P tically with
Debugger tab Debugger tab rogramaticatly wi
Right-click menu in the macros
Trace window
Symbolic Stack Environment Options, Project Options, .
Trace Debug Windows tab Debugger tab Windows Menu
Software Project Options, Project Options,
Breakpoints Debugger tab Debugger tab Run Menu
« . Run menu’s “Add/Edit In Add.' E,,dlt. Hardware
Hardware Add | Edit Hardware . breakpoint” dialog,
. ey 1 Hardware Breakpoints
Breakpoints breakpoint” dialog option change check box, then
p click “Update” button
Single Stepping No configuration options | Always enabled Run Menu
Instruction Level . . Project Options,
Single Stepping No configuration options Debugger tab Run Menu
Environment Options,
. Debug Windows tab Project Options,
Watch Expressions Project Options, Debugger tab Inspect Menu
Debugger tab
Evaluate No confieuration options This feature is enabled when Inspect Menu
Expression & P Watch Expressions is enabled. p
Map File No configuration options | Always enabled Automatl.cally generated
for compiled programs
Memory Dum Environment Options, Always enabled Inspect Menu
y p Debug Windows tab Y P
Disassemble Code Environm_ent Options, Always enabled Inspect Menu
Debug Windows tab
Assert Macro Programatically Programatically Programatically
printf() Programatically Programatically Programatically

Dynamic C User’s Manual

digi.com

107

www.digi.com

Table 6-1. Summary of Debug Tools and Menus

Wh F i Where Feature is
Name of Feature er? eature is Where Feature is Enabled
Configured Toggled®
Stdio, Stack and Environment Options -
. . . p ’ Always enabled Windows Menu
Register windows | Debug Windows tab

a. Keyboard shortcuts and toolbar menu buttons are shown in the dropdown menus, along with their corre-
sponding menu commands.

6.4.1 Run and Inspect Menus

The Run and Inspect menus are covered in detail in Section 14.2.5 and Section 14.2.6, respectively. These
menus are where you can enable the use of several debugger features. The Run menu has options for tog-
gling breakpoints and for single stepping. The Inspect menu has options for manipulating watch expres-
sions, disassembling code and for dumping memory. For the most part, a debugger feature must be enabled
before it can be selected in the Run or Inspect menus (or by its keyboard shortcut or toolbar menu button).
Most debugger features are enabled by default in the Project Options dialog. The disassembled code and
memory dump options are the exception, as they are always available to a compiled program.

6.4.2 Options Menu

From the Options menu in Dynamic C you can select Environment Options, Project Options or Toolbars,
where you configure debug windows, enable debug tools or customize your toolbar buttons, respectively.

The Environment Options dialog has a tab labeled “Debug Windows.” There are a number of configura-
tion options available there. You can choose to have all or certain debug windows open automatically
when a program compiles. You can choose font and color schemes for any debug window. More important
than fonts and colors, you can configure most of the debug windows in ways specific to that window. For
example, for the Assembly window you can alter which information fields are visible. See the section
titled, “Debug Windows Tab” on page 269 for complete information on the specific options available for
each window.

The Project Options dialog has a tab labeled “Debugger.” This is where symbolic stack tracing, break-
points, watch expressions and instruction level single stepping are enabled. These debugging tools must be
enabled before they can be used. Some configuration options are also set on the Debugger tab. See the sec-
tion titled, “Debugger Tab” on page 285, for complete information on the configuration options available
on the Debugger tab.

The final menu selection on the Options menu is labeled, “Toolbars.” This is where you choose the tool-
bars and the menu buttons that appear on the control bar. See the section titled, “Toolbars” on page 292, for
instructions on customizing this area. Placing the menu buttons you use the most on the control bar is not
really a debugging tool, but may make the task easier by offering some convenience.

6.4.3 Window Menu

The Window menu is where you can toggle display of debug windows. See Section 14.2.8 for more infor-
mation. Another selection available from the Window menu is the Information window, which contains
memory information and the status of the last compile. See “Information” on page 297 for full details.

108 digi.com Debugging with Dynamic C

www.digi.com

6.5 Debug Strategies

Since bug-free code is a trade-off with time and money, we know that software has bugsi. This section dis-
cusses ways to minimize the occurrence of bugs and gives you some strategies for finding and eliminating
them when they do occur.

6.5.1 Good Programming Practices

There is a big difference between “buggy code” and code that runs with near flawless precision. The latter
program may have a bug, but it may be a relatively minor problem that only appears under abnormal cir-
cumstances. (This touches on the subject of testing, which are the actions taken specifically to find bugs, a
larger discussion that is beyond the scope of this chapter.) This section discusses some time-tested methods
that may improve your ability to write software with fewer bugs.

* The Design: The design is the solution to the problem that a program or function is supposed to solve.
At a high level, the design is independent of the language that will be used in the implementation. Many
questions must be asked and answered. What are the requirements, the boundaries, the special cases?
These things are all captured in a well thought out design document. The design, written down, not just
an idea floating in your head, should be rigorous, complete and detailed. There should be agreement and
sign-off on the design before any coding takes place. The design underlies the code—it must come first.
This is also the first part of creating full documentation.

¢ Documentation: Other documentation includes code comments and function description headers,
which are specially formatted comments. Function description headers allow functions from libraries
listed in 1ib.dir to be displayed in the Function Lookup option in Dynamic C’s Help menu (or by
using the keyboard shortcut Ctrl+H). See Section 4.24 for details on creating function description head-
ers for user-defined library functions.

Another way to comment code is by making the code self-documenting: Always choose
descriptive names for functions, variables and macros. The brain only has so much memory
capacity, why waste it up by requiring yourself to remember that cwl() is the function to call
when you want to check the water level in your fish tank; chk h20 level(), for example, makes
it easier to remember the function’s purpose. Of course, you get very familiar with code while
it is in development and so your brain transforms the letters “cwl” quite easily to the words
“check water level.” But years later when some esoteric bug appears and you have to dig into
old code, you might be glad you took the time to type out some longer function names.

e Modular Code: If you have a function that checks the water level in the fish tank, don’t have the same
function check the temperature. Keep functions focused and as simple as possible.

i. For an account of what can happen when time and money constraints all but disappear, read
“They Write the Right Stuff” by Charles Fishman.

Dynamic C User’s Manual digi.com 109

http://www.fastcompany.com/magazine/06/writestuff.html
www.digi.com

e Coding Standards: The use of coding standards increases maintainability, portability and re-use of

code. In Dynamic C libraries and sample programsi some of the standards are as follows:

- Macros names are capitalized with an underscore separating words, e.g., MY MACRO.

- Function names start with a lowercase letter with an underscore or a capital letter separating
words, e.g.,my function () ormyFunction ().

- Use parenthesis. Do not assume everyone has memorized the rules of precedence. E.g.,

y =a*b<<c; // this is legal
y (a * b) << ¢; // butthisis more clear

- Use consistent indenting. This increases readability of the code. Look in the Editor tab in the
Environment Options dialog to turn on a feature that makes this automatic.

- Use block comments (/*...*/) only for multiple line comments on the global level and line
comments (/) inside functions, unless you really need to insert a long, multiple line comment.
The reason for this is it is difficult to temporarily comment out sections of code using /*...*/
when debugging if the section being commented out has block comments, since block com-
ments are not nestable.

- Use Dynamic C code templates to minimize syntax errors and some typos. Look in the Code
Templates tab in the Environment Options dialog to modify existing templates or create you
own. Right click in an editor window and select Insert Code Template from the popup menu.
This will bring up a scroll box containing all the available templates from which to choose.

e Syntax Highlighting: Many syntactic elements are visually enhanced with color or other text attributes
by default. These elements are user-configurable from the Syntax Colors tab of the Environment
Options dialog. This is more than mere lipstick. The visual representation of material can aid in or
detract from understanding it, especially when the material is complex.

e Revision Control System: If your company has a code revision control systems in place, use it. In addi-
tion, when in development or testing stages, keep a known good copy of your program close at hand.
That is, a compiles-and-runs-without-crashing copy of your program. Then if you make changes,
improvements or whatever and then can’t compile, you can go back to the known good copy.

6.5.2 Finding the Bug

When a program does not compile, or compiles, but when running behaves in unexpected ways, or perhaps
worse, runs and then crashes, what do you do?

Compilation failures are caused by syntax errors. The compiler will generate messages to help you fix the
problem. There may be a list of compiler error messages in the window that pops up. Fix the first one, then
recompile. The other compile errors may disappear if they were not true syntax errors, but just the com-
piler being confused from the first syntax error.

During development, verify code as you progress. Develop code one function at a time. Do not wait until
you are finished with your implementation before you attempt to compile and run it, unless it is a very
short application. After a program is compiled, other types of bugs have a chance to reveal themselves.
The rest of this section concentrates on how to find a bug.

i. Older libraries may not adhere strictly to these standards.

110 digi.com Debugging with Dynamic C

www.digi.com

6.5.2.1 Reproduce the Problem

Keep an open mind. It might not be a bug in the software: you might have a bad cable connection, or
something along those lines. Check and eliminate the easy things first. If you are reasonably sure that your
hardware is in good working order, then it is time to debug the software.

Some bugs are consistent and are easy to reproduce, which means it will be easier to gather the informa-
tion needed to solve the problem. Other bugs are more elusive. They might seem random, happening only
on Wednesdays, or some other seemingly bizarre behavior. There are a number of reasons why a bug may
be intermittent. Here are some common one:
e Memory corruption

- uninitialized or incorrectly initialized pointers

- buffer overflow

- Stack overflow/underflow

ISR modifying but not saving infrequently used register

Interrupt latency

Other borderline timing issues

e EMI

One of the difficulties of debugging is that the source of a bug and its effect may not appear closely related
in the code. For example, if an array goes out of bounds and corrupts memory, it may not be a problem
until much later when the corrupted memory is accessed.

6.5.2.2 Minimize the Failure Scenario

After you can reproduce the bug, create the shortest program possible that demonstrates the problem.
Whatever the size of the code you are debugging, one way to minimize the failure scenario is a method
called “binary search.” Basically, comment out half the code (more or less) and see which half of the pro-
gram the bug is in. Repeat until the problem is isolated.

Dynamic C User’s Manual digi.com 111

www.digi.com

6.5.2.3 Other Things to Try

Get out of your cubicle. It is a well-known fact that there are times when simply walking over to a co-
worker and explaining your problem can result in a solution. Probably because it is a form of data gather-
ing. The more data you gather (up to a point), the more you know, and the more you know, the more your
chances of figuring out the problem increase.

Stay in your cubicle. Log on and get involved in one of the online communities. There is a great Yahoo E-
group dedicated to Rabbit and Dynamic C. Although Rabbit engineers will answer questions there, it is
mostly the members of this group that solve problems for each other. To join this group go to:

http://tech.groups.yahoo.com/group/rabbit-semi/
Another good online source of information and help is the Rabbit bulletin board. Go to:

http://forums.digi.com/support/forum/index

If you are having trouble figuring out what is happening, remember to analyze the bug under various con-
ditions. For example, run the program without the programming cable attached. Change the baud rate.
Change the processor speed. Do bug symptoms change? If they do, you have more clues.

6.6 Reference to Other Debugging Information

There are many good references available. Here are a few of them:
* Debugging Embedded Microprocessor Systems, Stuart Ball
o Writing Solid Code, by Steve Macquire

e Websites: google, search on debugging software

At the time of this writing the following links provided some good information:
e http://www.embeddedstar.com/technicalpapers/content/d/embedded1494.html

* “They Write the Right Stuff” by Charles Fishman
http://www.fastcompany.com/magazine/06/writestuff.html

112 digi.com Debugging with Dynamic C

http://forums.digi.com/support/forum/index
http://www.embeddedstar.com/technicalpapers/content/d/embedded1494.html
http://www.fastcompany.com/magazine/06/writestuff.html
http://tech.groups.yahoo.com/group/rabbit-semi/
www.digi.com

RABEIT s PRODUCT MANUAL

7. THE VIRTUAL DRIVER

Virtual Driver is the name given to some initialization services and a group of services performed by a
periodic interrupt. These services are:

Initialization Services
e Call _GLOBAL INIT()
¢ [Initialize the global timer variables

e Start the Virtual Driver periodic interrupt

Periodic Interrupt Services

e Decrement software (virtual) watchdog timers
¢ Hitting the hardware watchdog timer

¢ Increment the global timer variables

¢ Drive uC/OS-II preemptive multitasking

¢ Drive slice statement preemptive multitasking

7.1 Default Operation

The user should be aware that by default the Virtual Driver starts and runs in a Dynamic C program with-
out the user doing anything. This happens because before main () is called, a function called

premain () is called by the Rabbit kernel (BIOS) that actually calls main (). Before premain () calls
main (), it calls a function named VdInit () that performs the initialization services, including start-
ing the periodic interrupt. If the user were to disable the Virtual Driver by commenting out the call to
VdInit () inpremain (), then none of the services performed by the periodic interrupt would be
available. Unless the Virtual Driver is incompatible with some very tight timing requirements of a program
and none of the services performed by the Virtual Driver are needed, it is recommended that the user not
disable it.

7.2 Calling _GLOBAL_INIT()

VdInit () calls the function chain GLOBAL INIT () which runs all #GLOBAL INIT sections in a
program. GLOBAL INIT () also initializes all of the CoData structures needed by costatements and
cofunctions. If VdInit () is not called, users could still use costatements and cofunctions if the call to
VdInit () wasreplaced by acall to GLOBAL INIT (), butthe DelaySec () and DelayMs ()
functions often used with costatements and cofunctions in wa it for statements would not work because
those functions depend on timer variables which are maintained by the periodic interrupt.

Dynamic C User’s Manual digi.com 113

www.digi.com

7.3 Global Timer Variables

SEC_TIMER, MS TIMERand TICK TIMER are global variables defined as shared unsigned
long. These variables should never be changed by an application program. Among other things, the
TCP/IP stack depends on the validity of the timer variables.

On initialization, SEC_ TIMER is synchronized with the real-time clock. The date and time can be
accessed more quickly by reading SEC_TIMER than by reading the real-time clock.

The periodic interrupt updates SEC_ TIMER every second, MS TIMER every millisecond, and

TICK TIMER 1024 times per second (the frequency of the periodic interrupt). These variables are used
by the DelaySec, DelayMS and DelayTicks functions, but are also convenient for application pro-
grams to use for timing purposes.

7.3.1 Example: Timing Loop

The following sample shows the use of MS TIMER to measure the execution time in microseconds of a
Dynamic C integer add. The work is done in a nodebug function so that debugging does not affect tim-
ing.

#define N 10000
main () { timeit (); }

nodebug timeit () {
unsigned long int TO;
float T2,T1;
int x,y;
int 1i;
TO = MS_TIMER;
for (1=0; i<N;i++) { }

// TI gives empty loop time
Tl=(MS TIMER-TO) ;

TO = MS_TIMER;
for (i=0;i<N;i++) { x+y;}

// T2 gives test code execution time
T2=(MS TIMER-TO) ;

// subtract empty loop time and convert to time for single pass
T2=(T2-T1)/ (float)N;

// multiply by 1000 to convert milliseconds to microseconds.
printf ("time to execute test code = $f us\n",T2*1000.0) ;

114 digi.com The Virtual Driver

www.digi.com

7.3.2 Example: Delay Loop
An important detail about MS T IMER is that it overflows (“rolls over”) approximately every 49 days, 17
hours. This behavior causes the following delay loop code to fail:

/* THIS CODE WILL FAIL!! */

endtime = MS TIMER + delay;

while (MS TIMER < endtime) {
//do something

}

If “MS_TIMER + delay” overflows, this returns immediately. The correct way to code the delay loop so
that an overflow of MS TIMER does not break it, is this:

endtime = MS TIMER + delay;

while ((long)MS TIMER - endtime < 0) {
//do something

}

The interval defined by the subtraction is always correct. This is true because the value of the interval is
based on the values of MS TIMER and “endtime” relative to one another, so the actual value of these vari-
able does not matter.

One way to conceptualize why the second code snippet is always correct is to consider a number circle like
the one in Figure 7.1. In this example, delay=5. Notice that the value chosen for MS TIMER will “roll
over” but that it is only when MS_TIMER equals or is greater than “endtime” that the while loop will eval-
uate to false.

Figure 7.1 “delay=5”

MS_TIMER
14 2 endtime
13 3/
12 4
11
10 6
9
3 7

Another important point to consider is that the interval is cast to a signed number, which means that any
number with the high bit set is negative. This is necessary in order for the interval to be less than zero
when MS TIMER is a large number.

Dynamic C User’s Manual digi.com 115

www.digi.com

7.4 Watchdog Timers

Watchdog timers limit the amount of time your system will be in an unknown state.

7.4.1 Hardware Watchdog

The Rabbit CPU has one built-in hardware watchdog timer'. The Virtual Driver hits the watchdog timer
(WDT) periodically. The following code fragment could be used to disable this WDT:

#asm
1d a,0x51
ioi 1d (WDTTR), a
1d a, 0x54
ioi 1d (WDTTR), a
fendasm

However, it is recommended that the watchdog not be disabled. The watchdog prevents the target from
entering an endless loop in software due to coding errors or hardware problems. If the Virtual Driver is not
used, the user code should periodically call hitwd ().

When debugging a program, if the program is stopped at a breakpoint because the breakpoint was explic-
itly set, or because the user is single stepping, then the debug kernel hits the hardware watchdog periodi-
cally.

7.4.2 Virtual Watchdogs

There are 10 virtual WDTs available; they are maintained by the Virtual Driver. Virtual watchdogs, like the
hardware watchdog, limit the amount of time a system is in an unknown state. They also narrow down the
problem area to assist in debugging.

The function VdGetFreeWd (count) allocates and initializes a virtual watchdog. The return value of
this function is the ID of the virtual watchdog. If an attempt is made to allocate more than 10 virtual
WDTs, a fatal error occurs. In debug mode, this fatal error will cause the program to return with error code
250. The default run-time error behavior is to reset the board.

The ID returned by VdGetFreeWd () is used as the argument when calling VdHitWd (ID) to hit a vir-
tual watchdog or VdReleaseWd (ID) to deallocate it.

The Virtual Driver counts down watchdogs every 62.5 ms. If a virtual watchdog reaches 0, this is fatal
error code 247. Once a virtual watchdog is active, it should be reset periodically with a call to
VdHitWd (ID) to prevent this. If count = 2 for a particular WDT, then VdHitWd (ID) will need to be
called within 62.5 ms for that WDT. If count = 255, VAHitWd (ID) will need to be called within 15.94
seconds.

The Virtual Driver does not count down any virtual WDTs if the user is debugging with Dynamic C and
stopped at a breakpoint.

i. Starting with the Rabbit 3000A, Rabbit microprocessors have secondary hardware watchdog timers. See
the user’s manual for your Rabbit processor for details, e.g., the Rabbit 3000 Microprocessor User's
Manual.

116 digi.com The Virtual Driver

www.digi.com

7.5 Preemptive Multitasking Drivers

A simple scheduler for Dynamic C’s preemptive slice statement is serviced by the Virtual Driver. The
scheduling for nC/OS-II, a more traditional full-featured real-time kernel, is also done by the Virtual
Driver.

These two scheduling methods are mutually exclusive—slicing and uC/OS-1I must not be used in
the same program.

Dynamic C User’s Manual digi.com 117

www.digi.com

118 digi.com The Virtual Driver

www.digi.com

RABBIT = PRODUCT MANUAL

8. RUN-TIME ERRORS

Compiled code generated by Dynamic C calls an exception handling routine for run-time errors. The
exception handler supplied with Dynamic C prints internally defined error messages to a Windows mes-
sage box when run-time errors are detected during a debugging session. When software runs stand-alone
(disconnected from Dynamic C), such a run-time error will cause a watchdog timeout and reset. Run-time
error logging is available for Rabbit-based target systems with battery-backed RAM.

8.1 Run-Time Error Handling

When a run-time error occurs, a call is made to exception (). The run-time error type is passed to
exception (), which then pushes various parameters on the stack, and calls the installed error handler.
The default error handler places information on the stack, disables interrupts, and enters an endless loop by
calling the xexit function in the BIOS. Dynamic C notices this and halts execution, reporting a run-
time error to the user.

8.1.1 Error Code Ranges

The table below shows the range of error codes used by Dynamic C and the range available for a custom
error handler to use. Table 8-1 is valid prior to Dynamic C version 9.30. Starting with DC 9.30, the file
errmsg.ini located in the root directory of Dynamic C can be edited to add descriptions for user-
defined run-time errors that will be displayed by Dynamic C should the error occur.

For example, if the following entry is made in errmsg. ini:
// My custom errors

800=My own run-time error message

Calling “exit(-800)” in an application or library will cause Dynamic C to report “My own run-time error
message” in a message box.

Table 8-1. Dynamic C Error Types Ranges (prior to DC 9.30)

Error Type Meaning
0-127 Reserved for user-defined error codes.
128-255 Reserved for use by Dynamic C.

Please see Section 8.2 for information on replacing the default error handler with a custom one.

Dynamic C User’s Manual digi.com 119

www.digi.com

8.1.2 Fatal Error Codes

This table lists the fatal errors generated by Dynamic C.

Table 8-2. Dynamic C Fatal Errors

Error Type Meaning
127 - 227 not used
228 Pointer store out of bounds
229 Array index out of bounds
230 - 233 not used
234 Domain error (for example, acos (2))
235 Range error (for example, tan (pi/2))
236 Floating point overflow
237 Long divide by zero
238 Long modulus, modulus zero
239 not used
240 Integer divide by zero
241 Unexpected interrupt
242 not used
243 Codata structure corrupted
244 Virtual watchdog timeout
245 XMEM allocation failed (xalloc call)
246 Stack allocation failed
247 Stack deallocation failed
248 not used
249 Xmem allocation initialization failed
250 No virtual watchdog timers available
251 No valid MAC address for board
252 Invalid cofunction instance
253 Socket passed as auto variable while running pC/OS-II
254
not used
255

120

digi.com

Run-Time Errors

www.digi.com

8.2 User-Defined Error Handler

Dynamic C allows replacement of the default error handler with a custom error handler. This is needed to
add run-time error handling that would require treatment not supported by the default handler.

A custom error handler can also be used to change how existing run-time errors are handled. For example,
the floating-point math libraries included with Dynamic C are written to allow for execution to continue
after a domain or range error, but the default error handler halts with a run-time error if that state occurs. If
continued execution is desired (the function in question would return a value of INF or whatever value is
appropriate), then a simple error handler could be written to pass execution back to the program when a
domain or range error occurs, and pass any other run-time errors to Dynamic C.

8.2.1 Replacing the Default Handler

To tell the BIOS to use a custom error handler, call this function:
void defineErrorHandler (void *errfcn)
This function sets the BIOS function pointer for run-time errors to the one passed to it.

When a run-time error occurs, exception () pushes onto the stack the information detailed in the table
below.

Table 8-3. Stack setLip for run-time errors

Address Data at address
SP+0 Return address for error handler
SP+2 Error code
SP+4 Additional data (user-defined)
XPC when exception () was called (upper
SP+6
byte)
SP+8 Address where exception () was called from

Then exception () calls the installed error handler. If the error handler passes the run-time error to
Dynamic C (i.e. it is a fatal error and the system needs to be halted or reset), then registers must be loaded
appropriately before calling the xexit function.

Dynamic C expects the following values to be loaded:

Table 8-4. Register contents loaded by error handler before passing
the error to Dynamic C

Register Expected Value
H XPC when exception () was called
L Run-time error code
HL' Address where exception () was called from

Dynamic C User’s Manual digi.com 121

www.digi.com

8.3 Run-Time Error Logging

Error logging is available as a BIOS enhancement for storing run-time exception history. It can be useful
diagnosing problems in deployed Rabbit targets. To support error logging, the target must have battery-
backed RAM. The wide range of error logs available with RabbitSys obviates the need for the default error
logging described here.

8.3.1 Error Log Buffer

A circular buffer in extended RAM will be filled with the following information for each run-time error
that occurs:

* The value of SEC_TIMER at the time of the error. This variable contains the number of seconds since
00:00:00 on January 1st 1980 if the real-time clock has been set correctly. This variable is updated by
the periodic timer which is enabled by default. Rabbit sets the real-time clock in the factory. When the
BIOS starts on boards with batteries, it initializes SEC_TIMER to the value in the real-time clock.

e The address where the exception was called from. This can be traced to a particular function using the
MAP file generated when a Dynamic C program is compiled.

¢ The exception type. Please see Table 8-2 on page 120 for a list of exception types.

e The value of all registers. This includes alternate registers, SP and XPC. This is a global option that is
enabled by default.

* An 8-byte message. This is a global option that is disabled by default. The default error handler does
nothing with this.

e A user-definable length of stack dump. This is a global option that is enabled by default.

e A one byte checksum of the entry.

The size of the error log buffer is determined by the number of entries, the size of an entry, and the header
information at the beginning of the buffer. The number of entries is determined by the macro
ERRLOG _NUM ENTRIES (default is 78). The size of each entry is dependent on the settings of the global
options for stack dump, register dump and error message. The default size of the buffer is about 4K in
extended RAM.

122 digi.com Run-Time Errors

www.digi.com

8.3.2 Initialization and Defaults

An initialization of the error log occurs when the BIOS is compiled, when cloning takes place or when the
BIOS is loaded via the Rabbit Field Utility (RFU). By default, error logging is disabled.

The error log buffer contains header information as well as an entry for each run-time error. A debug start-
up will zero out this header structure, but the run-time error entries can still be examined from Dynamic C
using the static information in flash. The header is at the start of the error log buffer and contains:

e A status byte

e The number of errors since deployment

* The index of the last error

® The number of hardware resets since deployment

e The number of watchdog time-outs since deployment

¢ The number of software resets since deployment

¢ A checksum byte.

“Deployment” is defined as the first power up without the programming cable attached. Reprogramming
the board using the programming cable, the RFU, or a RabbitLink board and starting the program again
without the programming cable attached is a new deployment.

8.3.3 Configuration Macros

The macros listed below are defined at the top of Bios/RabbitBios. c prior to Dynamic C version
930andin Lib\..\BIOSLIB\errlogconfig. lib thereafter. To change from the defaults you
must edit the #define statement either in the BIOS or the configuration library, depending on your version
of Dynamic C.

ENABLE_ERROR_LOGGING
Default: 0. Disables error logging. Changing this to “1” enables error logging.

ERRLOG_USE_REG_DUMP
Default: 1. Include a register dump in log entries. Changing this to zero excludes the register
dump in log entries.

ERRLOG_STACKDUMP_SIZE
Default: 16. Include a stack dump of size ERRLOG STACKDUMP SIZE in log entries. Chang-
ing this to zero excludes the stack dump in log entries.

ERRLOG_NUM_ENTRIES
Default: 78. This is the number of entries allowed in the log buffer.

ERRLOG_USE_MESSAGE
Default: 0. Exclude error messages from log entries. Changing this to “1”” includes 8 byte
error messages in log entries The default error handler makes no use of this feature.

Dynamic C User’s Manual digi.com 123

www.digi.com

8.3.4 Error Logging Functions

The run-time error logging API consists of the following functions:

errlogGetHeaderInfo Reads error log header and formats output.

errlogGetNthEntry Loads errLogEntry structure with the Nth entry
from the error log buffer. errLogEntry is a pre-allo-
cated global structure.

errlogGetMessage Returns a NULL-terminated string containing the 8 byte
error message in errLogEntry.

errlogFormatEntry Returns a NULL-terminated string containing basic
information in errLogEntry.

errlogFormatRegDump Returns a NULL-terminated string containing the regis-
ter dump in errLogEntry.

errlogFormatStackDump Returns a NULL-terminated string containing the stack
dump in errLogEntry.

errlogReadHeader Reads error log header into the structure
errlogInfo.

ResetErrorLog Resets the exception and restart type counts in the error
log buffer header.

8.3.5 Examples of Error Log Use

To try error logging, follow the instructions at the top of the sample programs:
samples\ErrorHandling\Generate runtime errors.c
and

samples\ErrorHandling\Display errorlog.c

124 digi.com Run-Time Errors

www.digi.com

RABBIT = PRODUCT MANUAL

9. MEMORY MANAGEMENT

Processor instructions can specify 16-bit addresses, giving a logical address space of 64K (65,536 bytes).
Dynamic C supports a physical address space of 1 MB on all Rabbit-based boards. Dynamic C has been
verified to work with Rabbit-based boards with 4.5 MB of memory.

An on-chip memory management unit (MMU) translates 16-bit addresses to 20-bit memory addresses for
Rabbit 2000- and 3000-based boards. Four MMU registers (SEGSIZE, STACKSEG, DATASEG and XPC)
divide and maintain the logical sections and map each section onto physical memory.

Any memory beyond the 16-bit address capability of the processor, whether flash or RAM, is called xmem
and requires memory management techniques for access.

9.1 Memory Map

A typical Dynamic C memory mapping of logical and physical address space is shown in the figure below.
The actual layout may be different depending on the Rabbit processor used, the board type and which
compilation options are selected. For example, enabling separate I&D space will affect the memory map.

Figure 9.1 Dynamic C Memory Mapping with a Rabbit 2000- or 3000-Based Board

OXFFFFF

R

Xmem Segment

0xBEOO
0xE000
Root Data
Interrupt Vectors,
OXD000 [+ « oupgoo| StACk Segment Watch Codo RAM
External'Interrupt*.*.| 0xB1000
Veotors - -l e 0xA9000
OXCFOO| ", * =t o
............ Stack

''''''''''''''''''''''' Data Segment 0xA8000

il it (Root D) RRRA
nternatinterrupt, -, -,
‘Vectars®.:.t.t.t e 0x80000

OXCEQO | « = « + = « + « + * *
RRIIRPRIIE Xmem Code
OO (from Xmem Segment) Flash
-Watch Gode .-+
''''''''''''''''''''''' Base Segment Memory
RITIER IO (Root Code)
e Root Code
OxCCOO L™ttt 0x0000 0x00009
Logical Address Space Physical Address Space

Figure 9.1 illustrates how the logical address space is divided and where code resides in physical memory.
Both the static RAM and the flash memory are 128K in the diagram. Physical memory starts at address

0x00000 and flash memory is usually mapped to the same address. SRAM typically begins at address
0x80000.

Dynamic C User’s Manual digi.com 125

www.digi.com

If BIOS code runs from flash memory, the BIOS code starts in the root code section at address 0x00000
and fills upward. The rest of the root code will continue to fill upward immediately following the BIOS
code. If the BIOS code runs from SRAM, the root code section, along with root data and stack sections,
will start at address 0x80000.

9.1.1 Memory Mapping Control

The advanced user of Dynamic C can control how Dynamic C allocates and maps memory. For details on
memory mapping, refer to any of the Rabbit microprocessor user’s manuals or designer’s handbooks. You
can also refer to one of our technical notes: TN202, “Rabbit Memory Management in a Nutshell.” All of
these documents are available at:

www.digi.com/support

9.1.2 Macro to Use Second Flash for Code

The macro USE_2NDFLASH CODE can be uncommented in the file sysconfig.1ib to cause the
compiler to use a second available flash for xmem code.

9.2 Extended Memory Functions

A program can use many pages of extended memory (xmem). Under normal execution, code in xmem
maps to the logical address region 0XxE000 to OxFFFF. Use the Dynamic C functions root2xmem (),
xmem2root () and xmem2xmemn () to move blocks of data between logical memory and physical mem-

ory.

9.3 Code Placement in Memory

Code runs just as quickly in extended memory as it does in root memory, but calls to and returns from the
functions in extended memory take a few extra machine cycles. Code placement in memory can be
changed by the keywords xmem and root, depending on the type of code:

Pure Assembly Routines
Pure assembly functions may be placed in root memory or extended memory. Prior to Dynamic C version
7.10, pure assembly routines had to be in root memory.

C Functions

C functions may be placed in root memory or extended memory. Access to variables in C statements is not
affected by the placement of the function. Dynamic C will automatically place C functions in extended
memory as root memory fills. Short, frequently used functions may be declared with the root keyword to
force Dynamic C to load them in root memory.

126 digi.com Memory Management

www.digi.com
www.digi.com/support

Inline Assembly in C Functions
Inline assembly code may be written in any C function, regardless of whether it is compiled to extended
memory or root memory.

All static variables, even those local to extended memory functions, are placed in root memory. Keep this
in mind if the functions have many variables or large arrays. Root memory can fill up quickly.

9.4 Dynamic Memory Allocation

Dynamic C 9 introduces the ability for an application to allocate a pool of memory at compile time for
dynamic allocation and deallocation of fixed-size blocks at run time. A pool can be located in root or
extended memory. Descriptions for all API functions for dynamic memory allocation are in the Dynamic C
Function Reference Manual. Or use Function Lookup from the Help menu (or Ctrl+H) to gain quick
access to the function descriptions from within Dynamic C.

Read the comments at the top of \LIB\ . . \POOL . LIB for a description of how to use dynamic memory
allocation in Dynamic C.

Dynamic C User’s Manual digi.com 127

www.digi.com

128 digi.com Memory Management

www.digi.com

RABBIT = PRODUCT MANUAL

10. FILE SYSTEMS

This chapter describes two separate file systems that can be used on Rabbit-based systems. The file system
described in Section 10.1 works with all versions of Dynamic C for the Rabbit 2000 and 3000 micropro-
cessors. The FAT file system described in Section 10.2 requires Dynamic C 8.51 or later. There have been
several updates to the FAT file system to include additional flash devices.

FAT version 1.02 supports SPI-based serial flash devices. FAT versions 2.01 and 2.05 also support SPI-
based serial flash devices and require Dynamic C 9.01 or later. FAT version 2.05 introduces support for
NAND flash devices. FAT version 2.10 extends pC/OS-II compatibility to make the FAT API reentrant
from multiple tasks. FAT version 2.13 adds support for SD cards and requires Dynamic C 9.60 or later. In
all versions of the FAT, a battery-backed write-back cache reduces wear on the flash device and a round-
robin cluster assignment helps spread the wear over its surface.

10.1 FS2

The Dynamic C file system, known as the filesystem mk II or simply as FS2, was designed to be used with
a second flash memory or in SRAM on Rabbit 2000- or 3000-based boards.

FS2 allows:

¢ the ability to overwrite parts of a file

¢ the simultaneous use of multiple device types

¢ the ability to partition devices

e cfficient support for byte-writable devices

e better performance tuning

¢ ahigh degree of backwards compatibility with its predecessor

¢ all necessary run-time data to be reconstructed on power up

NOTE: Dynamic C’s low-level flash memory access functions should not be used in the
same area of the flash where the flash file system exists.

10.1.1 General Usage
The recommended use of a flash file system is for infrequently changing data or data rates that have writes

on the order of tens of minutes instead of seconds. Rapidly writing data to the flash! could result in using
up its write cycles too quickly. For example, consider a 256K flash with 64 blocks of 4K each. Using a
flash with a maximum recommendation of 10,000 write cycles means a limit of 640,000 writes to the file
system. If you are performing one write to the flash per second, in a little over a week you will use up its
recommended lifetime.

i. All other code, including ISRs, is suspended while writing to flash.

Dynamic C User’s Manual digi.com 129

www.digi.com

Increase the useful lifetime and performance of the flash by buffering data before writing it to the flash.
Accumulating 1000 single byte writes into one multi-byte write can extend the life of the flash by an aver-
age of 750 times. FS2 does not currently perform any in-memory buffering. If you write a single byte to a
file, that byte will cause write activity on the device. This ensures that data is written to non-volatile stor-
age as soon as possible. Buffering may be implemented within the application if possible loss of data is
tolerable.

10.1.1.1 Maximum File Size

The maximum file size for an individual file depends on the total file system size and the number of files
present. Each file requires at least two sectors: at least one for data and always one for metadata (for infor-
mation used internally). There also needs to be two free sectors per file to allow for moving data around.

Here is a formula you can use to determine how many bytes to allocate for the total file system (assuming
all files are the same size):

Bytes = (Nbr of files * file size * 1.14) + (Nbr of files * 128) +
(2 * 128)

FS2 supports a total of 255 files, but storing a large number of small files is not recommended. It is much
more efficient to have a few large ones.

10.1.1.2 Two Flash Boards

By default, when a board has two flash devices, Dynamic C will use only the first flash for code. The sec-
ond flash is available for the file system unless the macro USE_2NDFLASH CODE is defined in the appli-
cation by adding it to the Defines tab of the Project Options dialog box (for instructions see “Defines Tab”
on page 288). This macro allocates the second flash to hold program code. The use of
USE_2NDFLASH CODE is not compatible with FS2.

10.1.1.3 Using SRAM

The flash file system can be used with battery-backed SRAM. Internally, RAM is treated like a flash
device, except that there is no write-cycle limitation, and access is much faster. The file system will work
without the battery backup, but would, of course, lose all data when the power went off.

Currently, the maximum size file system supported in RAM is about 200k. This limitation holds true even
on boards with a 512k RAM chip. The limitation involves the placement of BIOS control blocks in the
upper part of the lower 256k portion of RAM.

To obtain more RAM memory, xalloc () may be used. If xalloc () is called first thing in the pro-
gram, the same memory addresses will always be returned. This can be used to store non-volatile data is so
desired (if the RAM is battery-backed), however, it is not possible to manage this area using the file sys-
tem.

Using FS2 increases flexibility, with its capacity to use multiple device types simultaneously. Since RAM
is usually a scarce resource, it can be used together with flash memory devices to obtain the best balance of
speed, performance and capacity.

130 digi.com File Systems

www.digi.com

10.1.1.4 Wear Leveling

The current code has a rudimentary form of wear leveling. When you write into an existing block it selects
a free block with the least number of writes. The file system routines copy the old block into the new block
adding in the user’s new data. This has the effect of evening the wear if there is a reasonable turnover in
the flash files. This goes for the data as well as the metadata.

10.1.1.5 Low-Level Implementation

For information on the low-level implementation of the flash file system, refer to the beginning of the
library file FS2 . LIB.

10.1.1.6 Multitasking and FS2
The file system is not re-entrant. If using preemptive multitasking, ensure that only one thread performs
calls to the file system, or implement locking around each call.

When using pC/OS-II, FS2 must be initialized first; thatis, £s_init () must be called before
0SInit () in the application code.

10.1.2 Application Requirements

Application requirements for using FS2 are covered in this section, including:

e which library to use
¢ which drivers to use
¢ defaults and descriptions for configuration macros

e (detailed instructions for using the first flash

10.1.2.1 Library Requirements
The file system library must be compiled with the application:

#use “FS2.LIB”

For the simplest applications, this is all that is necessary for configuration. For more complex applications,
there are several other macro definitions that may be used before the inclusion of FS2 . LIB. These are:

#define FS MAX DEVICES 3
#define FS_MAX LX 4
#define FS_MAX FILES 10

These specify certain static array sizes that allow control over the amount of root data space taken by FS2.
If you are using only one flash device (and possibly battery-backed RAM), and are not using partitions,
then there is no need to set F'S_MAX DEVICES or FS MAX LX.

For more information on partitioning, please see Section 10.1.4 “Setting up and Partitioning the File Sys-

E3]

tem™.

Dynamic C User’s Manual digi.com 131

www.digi.com

10.1.2.2 FS2 Configuration Macros

FS_MAX DEVICES

This macro defines the maximum physical media. If it is not defined in the program code,
FS MAX DEVICES will default to 1, 2, or 3, depending on the values of
FS2 USE_PROGRAM FLASH, XMEM RESERVE SIZE and FS2 RAM RESERVE.

FS_MAX LX
This macro defines the maximum logical extents. You must increase this value by 1 for each new partition

your application creates. It this is not defined in the program code it will default to FS MAX DEVICES.

For a description of logical extents please see Section 10.1.4.2.

FS_MAX FILES

This macro is used to specify the maximum number of files allowed to coexist in the entire file system.
Most applications will have a fixed number of files defined, so this parameter can be set to that number to
avoid wasting root data memory. The default is 6 files. The maximum value for this parameter is 255.

FS2 DISALLOW_GENERIC_ FLASH

This macro is used to prevent FS2 from mistakenly attempting to recover a nonexistent file system on the
“generic” (second) flash, or to prevent RAM corruption caused by GetFlashID () when flash is not
mapped into memory at all.

FS2 DISALLOW_ PROGRAM FLASH

This macro is used to prevent FS2 from mistakenly attempting to recover a nonexistent file system on the
“program” (first) flash, or to prevent RAM corruption caused by GetFlashID () when flash is not
mapped into memory at all.

FS2_RAM RESERVE

This macro determines the amount of space used for FS2 in RAM. If some battery-backed RAM is to be
used by FS2, then this macro must be modified to specify the amount of RAM to reserve. The memory is
reserved near the top of RAM. Note that this RAM will be reserved whether or not the application actually
uses FS2.

Prior to Dynamic C 7.06 this macro was defined as the number of bytes to reserve and had to be a multiple
of 4096. It is now defined as the number of blocks to reserve, with each block being 4096 bytes.

This macro is defined in the BIOS prior to Dynamic C version 9.30 and in memconfig. 1ib thereafter.

FS2_SHIFT DOESNT UPDATE FPOS

If this macro is defined before the #use fs2.11ib statement in an application, multiple file descriptors
can be opened, but their current position will not be updated if £shift () is used.

132 digi.com File Systems

www.digi.com

FS2_USE_PROGRAM FLASH

The number of kilobytes reserved in the first flash for use by FS2. If not defined in an application, it
defaults to zero, meaning that the first flash is not used by FS2. The actual amount of flash used by FS2 is
determined by the minimum of this macro and XMEM RESERVE SIZE.

XMEM_RESERVE_SIZE

This macro is the number of bytes (which must be a multiple of 4096) reserved in the first flash for use by
FS2 and possibly other customer-defined purposes. This is defined as 0x0000. Memory set aside with
XMEM RESERVE_SIZE will NOT be available for xmem code.

This macro is defined in the BIOS prior to Dynamic C version 9.30 and in memconfig. 1ib thereafter.

10.1.2.3 FS2 and Use of the First Flash
To use the first flash in FS2, follow these steps:

1. Define XMEM RESERVE_SIZE (currently set to 0x0000) to the number of bytes to allocate in the first
flash for the file system.

2. Define FS2 USE PROGRAM FLASH to the number of KB (1024 bytes) to allocate in the first flash
for the file system. Do this in the application code before #use "fs2.1ib".

3. Obtain the LX! number of the first flash: Call £ s_get other 1x () when there are two flash memo-
ries; call fs get flash 1x () when there is only one.

4. If desired, create additional logical extents by calling the FS2 function £s_setup () to further parti-
tion the device. This function can also change the logical sector sizes of an extent. Please see the func-
tion description for £s setup () in the Dynamic C Function Reference Manual for more
information.

Example Code Using First Flash in FS2

If the target board has two flash memories, the following code will cause the file system to use the first
flash:

FSLXnum flashl; // logical extent number
File f; // struct for file information

flashl = fs get other 1x();
if (flashl) {
fs set 1x(flashl, flashl);
fcreate (&£, 10);

}

To obtain the logical extent number for a one flash board, £s_get flash 1x () mustbe called instead
of fs _get other 1x().

i. For a description of logical extents please see Section 10.1.4.2, “Logical Extents (LX),” on
page 136.

Dynamic C User’s Manual digi.com 133

www.digi.com

10.1.3 File System API Functions

These functions are defined in FS2 . LIB. For more information please see the Dynamic C Function
Reference Manual or from within Dynamic C you can use the Function Lookup feature, with its conve-
nient Ctrl+H shortcut that will take you directly to a function’s description if the cursor is on its name in
the active edit window.

Table 10-1. FS2 API

Command Description
fs setup (FS2) Alters the initial default configuration.
fs init (FS2) Initialize the internal data structures for the file system.
fs format (FS2) Initialize flash and the internal data structures.
1x format Formats a specified logical extent (LX).
fs set 1x (FS2) Sets the default LX numbers for file creation.
fs get 1x (FS2) Returns the current LX number for file creation.
fcreate (FS2) Creates a file and open it for writing.
fcreate unused (FS2) Creates a file with an unused file number.
fopen rd (FS2) Opens a file for reading.
fopen wr (FS2) Opens a file for writing (and reading).
fshift Removes specified number of bytes from beginning of file.
fwrite (FS2) Writes to a file starting at “current position.”
fread (FS2) Reads from the current file pointer.
fseek (FS2) Moves the read/write pointer.
ftell (FS2) Returns the current offset of the file pointer.

Flushes any buffers retained in RAM to the underlying

fs_sync (¥FS2) hardware device.

Flushes buffers retained in RAM and associated with the

tflush (FS2) specified file to the underlying hardware device.

Returns the LX number of the preferred flash device (the

fs_get_flash Ix (FS2) 15 4 flash if available).

fs get 1x size (FS2) Returns the number of bytes of the specified LX.

fs get other lx (FS2) Returns LX # of the non-preferred flash (usually the first

flash).
fs get ram 1x (FS2) Return the LX number of the RAM file system device.
fclose Closes a file.
fdelete (FS2) Deletes a file.

134 digi.com File Systems

www.digi.com

10.1.3.1 FS2 API Error Codes

The library ERRNO . LIB contains a list of all possible error codes returnable by the FS2 API. These error
codes mostly conform to POSIX standards. If the return value indicates an error, then the global variable
errno may be examined to determine a more specific reason for the failure. The possible errno codes
returned from each function are documented with the function.

10.1.4 Setting up and Partitioning the File System

This step merits some thought before plowing ahead. The context within which the file system will be used
should be considered. For example, if the target board contains both battery-backed SRAM and a second
flash chip, then both types of storage may be used for their respective advantages. The SRAM might be
used for a small application configuration file that changes frequently, and the flash used for a large log
file.

FS2 automatically detects the second flash device (if any) and will also use any SRAM set aside for the
file system (if FS2 RAM RESERVE is set).

10.1.4.1 Initial Formatting

The filesystem must be formatted when it is first used. The only exception is when a flash memory device
is known to be completely erased, which is the normal condition on receipt from the factory. If the device
contains random data, then formatting is required to avoid the possibility of some sectors being perma-
nently locked out of use.

Formatting is also required if any of the logical extent parameters are changed, such as changing the logi-
cal sector size or re-partitioning. This would normally happen only during application development.

The question for application developers is how to code the application so that it formats the filesystem
only the first time it is run. There are several approaches that may be taken:

¢ A special program that is loaded and run once in the factory, before the application is loaded. The spe-
cial program prepares the filesystem and formats it. The application never formats; it expects the file-
system to be in a proper state.

¢ The application can perform some sort of consistency check. If it determines an inconsistency, it calls
format. The consistency check could include testing for a file that should exist, or by checking some
sort of "signature" that would be unlikely to occur by chance.

e Have the application prompt the end-user, if some form of interaction is possible.
¢ A combination of one or more of the above.

¢ Rely on a flash device being erased. This would be OK for a production run, but not suitable if battery-
backed SRAM was being used for part of the filesystem.

Dynamic C User’s Manual digi.com 135

www.digi.com

10.1.4.2 Logical Extents (LX)

The presence of both “devices” causes an initial default configuration of two logical extents (a.k.a., LXs)
to be set up. An LX is analogous to disk partitions used in other operating systems. It represents a contigu-
ous area of the device set aside for file system operations. An LX contains sectors that are all the same
size, and all contiguously addressable within the one device. Thus a flash device with three different sector
sizes would necessitate at least three logical extents, and more if the same-sized sectors were not adjacent.

Files stored by the file system are comprised of two parts: one part contains the actual application data, and
the other is a fixed size area controlled by the file system containing data that tracks the file status. This
second area, called metadata, is analogous to a “directory entry” of other operating systems. The metadata
consumes one sector per file.

The data and metadata for a file are usually stored in the same LX, however they may be separated for per-
formance reasons. Since the metadata needs to be updated for each write operation, it is often advanta-
geous to store the metadata in battery-backed SRAM with the bulk of the data on a flash device.

Specifying Logical Extents
When a file is created, the logical extent(s) to use for the file are defined. This association remains until the

file is deleted. The default LX for both data and metadata is the flash device (LX #1) if it exists; otherwise
the RAM LX. If both flash and RAM are available, LX #]1 is the flash device and LX #2 is the RAM.

When creating a file, the associated logical extents for the data and the metadata can be changed from the
default by calling fs set 1x (). This functions takes two parameters, one to specify the LX for the
metadata and the other to specify the LX for the data. Thereafter, all created files are associated with the
specified LXs until anew call to fs_set 1x () is made. Typically, there will be a call to

fs_set 1x () before each file is created; doing so ensures that the new file gets created with the desired
associations. The file creation function, fcreate (), may be used to specify the LX for the metadata by
providing a valid LX number in the high byte of the function’s second parameter. This will override any
LX number set for the metadatain fs_set 1x().

Further Partitioning

The initial default logical extents can be divided further. This must be done before calling fs _init ().
The function to create sub-partitions is called £s_setup () . This function takes an existing LX number,
divides that LX according to the given parameters, and returns a newly created LX number. The original
partition still exists, but is smaller because of the division. For example, in a system with LX#1 as a flash
device of 256K and LX#2 as 4K of RAM, an initial call to £s_setup () might be made to partition
LX#1 into two equal sized extents of 128K each. LX#1 would then be 128K (the first half of the flash) and
LX#3 would be 128K (the other half). LX#2 is untouched.

Having partitioned once, £s_setup () may be called again to perform further subdivision. This may be
done on any of the original or new extents. Each call to £s _setup () in partitioning mode increases the
total number of logical extents. You will need to make sure that FS_MAX LX is defined to a high enough
value that the LX array size is not exceeded.

While developing an application, you might need to adjust partitioning parameters. If any parameter is
changed, FS2 will probably not recognize data written using the previous parameters. This problem is
common to most operating systems. The “solution” is to save any desired files to outside the file system
before changing its organization; then after the change, force a format of the file system.

136 digi.com File Systems

www.digi.com

10.1.4.3 Logical Sector Size

fs_setup () canalso be used to specify non-default logical sector (LS) sizes and other parameters. FS2
allows any logical sector size between 64 and 8192 bytes, providing the LS size is an exact power of 2.
Each logical extent, including sub-partitions, can have a different LS size. This allows some performance
optimization. Small LSs are better for a RAM LX, since it minimizes wasted space without incurring a
performance penalty. Larger LSs are better for bulk data such as logs. If the flash physical sector size (i.e.
the actual hardware sector size) is large, it is better to use a correspondingly large LS size. This is espe-
cially the case for byte-writable devices. Large LSs should also be used for large LXs. This minimizes the
amount of time needed to initialize the file system and access large files. As a rule of thumb, there should
be no more than 1024 LSs in any LX. The ideal LS size for RAM (which is the default) is 128 bytes. 256
or 512 can also be reasonable values for some applications that have a lot of spare RAM.

Sector-writable flash devices require: LS size > PS size. Byte-writable devices, however, may use any
allowable logical sector size, regardless of the physical sector size.

Sample program Samples\FileSystem\FS2DEMO?2 illustrates use of £s_setup (). This sample
also allows you to experiment with various file system settings to obtain the best performance.

FS2 has been designed to be extensible so it will work with future flash and other non-volatile storage
devices. Writing and installing custom low-level device drivers is beyond the scope of this document,
however see FS2.LIB and FS DEV.LIB for hints.

10.1.5 File Identifiers

There are two ways to identify a particular file in the file system: file numbers and file names.

10.1.5.1 File Numbers

The file number uniquely identifies a file within a logical extent. File numbers must be unique within the
entire file system. FS2 accepts file numbers in word format:

typedef word FileNumber

The low-order byte specifies the file number and the high-order byte specifies the LX number of the meta-
data (1 through number of LXs). If the high-order byte is zero, then a suitable “default” LX will be located
by the file system. The default LX will default to 1, but will be settable via a #define, for file creation.
For existing files, a high-order byte of zero will cause the file system to search for the LX that contains the
file. This will require no or minimal changes to existing customer code.

Only the metadata LX may be specified in the file number. This is called a “fully-qualified” file number
(FQFN). The LX number always applies to the file metadata. The data can reside on a different LX, how-
ever this is always determined by FS2 once the file has been created.

10.1.5.2 File Names

There are several functions in ZSERVER . L IB that can be used to associate a descriptive name with a file.
The file must exist in the flash file system before using the auxiliary functions listed in the following table.
These functions were originally intended for use with an HTTP or FTP server, so some of them take a
parameter called servermask. To use these functions for file naming purposes only, this parameter
should be SERVER USER.

For a detailed description of these functions please refer to the Dynamic C TCP/IP User s Manual, Vol 2,
or use keyboard shortcut Ctrl+H in Dynamic C to use the Library Lookup feature.

Dynamic C User’s Manual digi.com 137

www.digi.com

Table 10-2. Flash File System Auxiliary Functions

Command Description

Associate a name with the flash file system file number. The return
sspec_addfsfile value is an index into an array of structures associated with the
named files.

Read a file represented by the return value of

sspec_readfile sspec_addfsfile into a buffer.

sspec_getlength Get the length (number of bytes) of the file.

Get the file system file number (1- 255). Cast return value to

sspec getfileloc
- FILENUMBER.

Find the index into the array of structures associated with named

sspec_tindname files of the file that has the specified name.

Get file type. For flash file system files this value will be

sspec_getfiletype SSPEC_FSFILE.

Find the next named file in the flash file system, at or following the

fi fil . . .
sspec_tindnextfile specified index, and return the index of the file.

sspec_remove Remove the file name association.

Saves to the flash file system the array of structures that reference

SSpec_save the named files in the flash file system.

Restores the array of structures that reference the named files in the

sspec_restore flash file system.

138 digi.com File Systems

www.digi.com

10.1.6 Skeleton Program Using FS2
The following program uses some of the FS2 API. It writes several strings into a file, reads the file back
and prints the contents to the Stdio window.

#use "FS2.LIB"
#define TESTFILE 1

main ()
{
File file;
static char buffer[256];

fs init (0, 0);

if (!fcreate(&file, TESTFILE) && fopen wr(&file, TESTFILE))
{

printf ("error opening TESTFILE %d\n", errno);

return -1;

}

fseek(&file, 0, SEEK END) ;
fwrite(&file,"hello", 6) ;
fwrite(&file,"12345",0);
fwrite(&file,"67890",6) ;
fseek (&file, 0, SEEK SET);

while (fread (&file,buffer, 6)>0) {
printf ("$s\n",buffer) ;
}

fclose (&file) ;

For a more robust program, more error checking should be included. See the sample programs in the
Samples\FILESYSTEM folder for more complex examples, including error checking, formatting, parti-
tioning and other new features.

Dynamic C User’s Manual digi.com 139

www.digi.com

10.2 FAT File System

Dynamic C 8.51 introduced a FAT (File Allocation Table) file system. The small footprint of this well-
defined industry-standard file system makes it ideal for embedded systems. The Dynamic C implementa-
tion of FAT has a directory structure that can be accessed with either Unix or DOS style paths. The stan-
dard directory structure allows monitoring, logging, Web browsing, and FTP updates of files.

The FAT filesystem is included with Dynamic C starting with version 9.60. In earlier versions of
Dynamic C, FAT was sold separately.

FAT version 1.02 supports SPI-based serial flash devices. FAT versions 2.01 and 2.05 also support SPI-
based serial flash devices and require Dynamic C 9.01 or later. FAT version 2.05 introduces support for
NAND flash devices. FAT version 2.10 extends uC/OS-II compatibility to make the FAT API reentrant
from multiple tasks. FAT version 2.13 adds support for SD cards and requires Dynamic C 9.60 or later. In
all versions of the FAT, a battery-backed write-back cache reduces wear on the flash device and a round-
robin cluster assignment helps spread the wear over its surface.

Please be sure check the Digi website for software patches and updates to Dynamic C, the FAT filessytem,
and for your specific hardware:

www.digi.com/support/

The FAT library can be used in either blocking or non-blocking mode and supports both FAT12 and FAT16.
(See Section 10.2.5.3.1 for more information on these FAT types.)

Let’s define some terms before continuing.

* A device is a single physical hardware item such as a hard drive, a serial flash or a NAND flash. E.g.,
one serial flash is a single device. The device, in turn, can host one to four partitions.

* A partition is a range of logical sectors on a device. A real-world example of a partition is what is com-
monly known as the C drive on a PC.

* A driver is the software interface that handles the hardware-specific aspects of any communication to
or from the device.

* Blocking is a term that describes a function’s behavior in regards to completion of the requested task. A
blocking function will not return until it has completely finished its task. In contrast, a non-blocking
function will return to its calling function before the task is finished if it is waiting for something. A
non-blocking function can return a code that indicates it is not finished and should be called again.
Used in conjunction with cooperative multitasking, non-blocking functions allow other processes to
proceed while waiting for hardware resources to finish or become available.

Operations performed by the Dynamic C FAT implementation are:
¢ Formatting and partitioning of devices

¢ Formatting partitions

e File operations: create, open, close, delete, seek, read and write

e Directory' operations: create, read and delete
e Labels: create and delete

i. We use the terms directory and subdirectory somewhat interchangeably. The exception is the
root directory—it is never called a subdirectory. Any directory below the root directory may be
referred to as a directory or a subdirectory.

140 digi.com File Systems

www.digi.com
http://www.digi.com/support/

10.2.1 Overview of FAT Documentation

A sample program is reviewed in Section 10.2.2. Two additional sample programs, one for use with the
blocking mode of the FAT and the other for use with the non-blocking mode are described in

Section 10.2.3. Then Section 10.2.4 gives detailed descriptions of the various FAT file system functions
(formatting, opening, reading, writing, and closing). Short, focused examples accompany each description.
There is some general information about FAT file systems and also some web links for further study in
Section 10.2.5.

10.2.2 Running Your First FAT Sample Program

To run FAT samples, you need a Rabbit-based board with a supported flash type, such as the SPI-based
serial flash device available on the RCM3300 or the RCM3700. FAT versions 2.01 and 2.05 require
Dynamic C 9.01 or later. FAT version 2.05 extends the list of supported flash types to include NAND flash
devices, such as those on the RCM3360 and 3370. FAT version 2.13 requires Dynamic C 9.60 or later and
adds support for SD cards, available on the RCM3900 and 3910.

The board must be powered up and connected to a serial port on your PC through the programming cable
to download a sample program.

In this section we look at fat create.c, which demonstrate the basic use of the FAT file system. If
you are using a serial or NAND flash device that has not been formatted or a removable device that was
not formatted using Dynamic C, you must run Samples\FileSystem\Fmt Device. c before you
can run any other sample FAT program. The program, Fmt Device. c, creates the default configuration
of one partition that takes up the entire device.

If you are using an SD card, run Fmt Device. c to remove the factory FAT32 partition and create a
FAT16 partition. Be aware that although multiple partitions are possible on removable cards, most PC’s
will not support cards formatted in this fashion.

If you are using a removable NAND flash (XD cards), running Fmt Device. c causes the device to no
longer be usable without the Rabbit-based board or the Rabbit USB Reader for XD cards. Insert the
NAND flash device into a USB-based flash card reader and format it to regain this usability. Note that this
will only work if you have not defined the macro NFLASH CANERASEBADBLOCKS. Defining this
macro in a running application destroys proprietary information on the first block of the device, making it
difficult to regain the usability of the NAND device when used without the Rabbit-based board.

If you are using FAT version 2.01 or later, you do not have to run Fmt Device. c if you initialize the
FAT file system with a call to fat AutoMount () instead of fat Init (). The function

fat AutoMount () can optionally format the device if it is unformatted; however,

fat AutoMount () will not erase and overwrite a factory-formatted removable device such as an SD
card. If you are using an SD card, run Fmt Device. c or erase the first three pages with the appropriate
flash utitity (sdflash inspect.cornflash inspect.c).

After the device has been formatted, open Samples\FileSystem\fat create.c.Compile and run
the program by pressing function key F9.

In a nutshell, fat create. c initializes FAT, then creates a file, writes “Hello world!” to it, and then
closes the file. The file is re-opened and the file is read, which displays “Hello world!” in the Dynamic C
Stdio window. Understanding this sample will make writing your own FAT application easier.

Dynamic C User’s Manual digi.com 141

www.digi.com

The sample program has been broken into two functional parts for the purpose of discussion. The first part
deals with getting the file system up and running. The second part is a description of writing and reading

files.

10.2.2.1 Bringing Up the File System
We will look at the first part of the code as a whole, and then explain some of its details.

File Name: Samples\FileSystem\fat create.c

#define FAT BLOCK // use blocking mode

#use "fat.lib" // of FAT library

FATfile my file; // get file handle

char buf[128]; // 128 byte buffer for read/write of file

int main () {

int 1i;

int rc; // Check return codes from FAT API
long prealloc; // Used if the file needs to be created.
fat part *first part; // Use the first mounted FAT partition.

rc = fat AutoMount (FDDF_USE DEFAULT) ;

first part = NULL;
for (i=0;1 < num fat devices * FAT MAX PARTITIONS; ++1i)

{ // Find the first mounted partition
if ((first part = fat part mounted[i]) != NULL) {
break; // Found mounted partition, so use it
}
}
if (first part == NULL) { // Check if mounted partition was found
rc = (rc < 0) ? rc : -ENOPART; // None found, set rc to a FAT error code
} else({
printf ("fat AutoMount () succeeded with return code $d.\n", rc);
re = 0; // Found partition; ignore error, if any
}
if (rc < 0){ // negative values indicate error
if (rc == -EUNFORMAT)
printf ("Device not Formatted, Please run Fmt Device.c\n");
else
printf ("fat AutoMount () failed with return code %d.\n", rc);
exit (1) ;
} // OK, file system exists and is ready to access. Let's create a file.

142

digi.com File Systems

www.digi.com

The first two statements:

#define FAT BLOCK
#use "fat.lib"

cause the FAT library to be used in blocking mode.

FAT version 2.01 introduces a configuration library that chooses initialization settings based on the board
type.The statement #use “fat.lib” brings in this configuration library, which in turn brings in the
appropriate device driver library. The following table lists the device drivers that are available in the differ-
ent FAT versions.

Table 11.
FAT Version Device Driver
1.02,2.01 sflash fat.lib
2.05 sflash_fat.l}b
nflash fat.lib
sflash fat.lib
2.13 nflash fat.lib

SD_fat.lib

Defining the macro DRIVER CUSTOM notifies fat config.1lib thata custom driver or hardware
configuration is being used. For more information on how this works, see Section 10.2.5

Next some static variables are declared: a file structure to be used as a handle to the file that will be created
and a buffer that will be used for reading and writing the file.

Now we are inmain (). First there are some variable declarations: the integer rc is for the code returned
by the FAT API functions. This code should always be checked, and must be checked if the non-blocking
mode of the FAT is used. The descriptions for each function list possible return codes.

The variable prealloc stores the number of bytes to reserve on the device for use by a specific file.
These clusters are attached to the file and are not available for use by any other files. This has some advan-
tages and disadvantages. The obvious disadvantage is that it uses up space on the device. Some advantages
are that having space reserved means that a log file, for instance, could have a portion of the drive set aside
for its use only. Another advantage is that if you are transferring a known amount of information to a file,
pre-allocation not only sets aside the space so you know you will not get half way through and run out, but
it also makes the writing process a little faster as the allocation of clusters has already been dealt with so
there is no need to spend time getting another cluster.

This feature should be used with care as pre-allocated clusters do not show up on directory listings until
data is actually written to them, even though they have locked up space on the device. The only way to get
unused pre-allocated clusters back is to delete the file to which they are attached, or use the

fat truncate() orfat split () functions to trim or split the file. In the case of fat split (),
the pre-allocated space is not freed, but rather attached to the new file created in the split.

Dynamic C User’s Manual digi.com 143

www.digi.com

Lastly, a pointer to a partition structure is declared with the statement:
fat part *first part;

This pointer will be used as a handle to an active partition. (The fat part structure and other data struc-
tures needed by the FAT file system are discussed in fat AutoMount ().) The partition pointer will be
passed to API functions, such as fat open ().

Now acall is made to fat AutoMount (). This function was introduced in FAT version 2.01 as a
replacement for fat Init (). Whereas fat Init () can do all the things necessary to ready the first
partition on the first device for use, it is limited to that. The function fat AutoMount () is more flexi-
ble because it uses data from the configuration file fat config.lib to identify FAT partitions and to
optionally ready them for use, depending on the flags parameter that is passed to it. The flags parameter is
described in the function description for fat AutoMount ().

For this sample program, we are interested in the first usable FAT partition. The foxr loop after the call to
fat AutoMount () finds the partition, if one is available.

The for loop allows us to check every possible partition by using num_fat devices, which is the
number of configured devices, and then multiplying the configured devices by the maximum number of
allowable partitions on a device, which is four. The for loop also makes use of fat part mounted,
an array of pointers to partition structures that is populated by the fat autoMount () call.

144 digi.com File Systems

www.digi.com

10.2.2.2 Using the File System
The rest of fat create.c demonstrates how to use the file system once it is up and running.

File Name: Samples\FileSystem\fat create.c

prealloc = 0;

rc = fat Open(first part, "HELLO.TXT", FAT FILE, FAT CREATE,
&¢my file, &prealloc);

if (rc < 0) {
printf ("fat Open() failed with return code %d\n", rc);
exit (1) ;

rc = fat Write(&my file, "Hello, world!\r\n", 15);

if (rc < 0) {
printf ("fat Write() failed with return code %d\n", rc);
exit (1)

rc = fat Close (&my file);
if (rc < 0) {
printf ("fat Close() failed with return code %d\n", rc);

rc = fat Open(first part, "HELLO.TXT",FAT FILE, 0, &my file,
NULL) ;

if (rc < 0) {
printf ("fat Open() (for read) failed, return code $d\n", rc);
exit (1) ;

rc = fat Read(&my file, buf, sizeof (buf));
if (rc < 0) {
printf ("fat Read() failed with return code %d\n", rc);
}
else {
printf ("Read %d bytes:\n", rc);
printf ("$*.*s", rc, rc, buf); // Printa string which is not NULL terminated
printf ("\n") ;
}
fat UnmountDevice(first part->dev);
printf ("Al1l OK.\n");
return 0;

Dynamic C User’s Manual digi.com 145

www.digi.com

The call to fat Open () creates a file in the root directory and names it HELLO . TXT. A file must be
opened before you can write or read it.
rc = fat Open(first part, "HELLO.TXT", FAT FILE, FAT CREATE,

B &my_fi_le, &prealloc); a a

The parameters are as follows:
e first part points to the partition structure initialized by fat AutoMount ().

e "HELLO.TXT" is the file name, and is always an absolute path name relative to the root directory. All
paths in Dynamic C must specify the full directory path explicitly.

* FAT FILE identifies the type of object, in this case a file. Use FAT DIR to open a directory.

* FAT CREATE creates the file if it does not exist. If the file does exist, it will be opened, and the posi-
tion pointer will be set to the start of the file. If you write to the file without moving the position
pointer, you will overwrite existing data.

Use FAT OPEN instead of FAT CREATE if the file or directory should already exist. If the file does
not exist, you will get an ~-ENOENT error.

Use FAT MUST CREATE if you know the file does not exist. This is a fail-safe way to avoid opening
and overwriting an existing file since an ~-EEXIST error is returned if you attempt to create a file that
already exists.

e gmy file isa file handle that points to an available file structure. It will be used for this file until the
file is closed.

e sprealloc points to the number of bytes to allocate for the file. You do not want to pre-allocate any
more than the minimum number of bytes necessary for storage, and so prealloc was set to 0. You
could also use NULL instead of prealloc and prealloc = 0.

Next, the sample program writes the data "Hello, world!\r\n" to the file.
fat Write(&my file, "Hello, world!\r\n", 15);
The parameters are as follows:

* smy file isa pointer to the file handle opened by fat Open ().

e “Hello, world!\r\n” isthe data written to the file. Note that \ r\n (carriage return, line feed)
appears at the end of the string in the call. This is essentially a FAT (or really, DOS) convention for text
files. It is good practice to use the standard line-end conventions. (If you just use \n, the file will read
just fine on Unix systems, but some DOS-based programs may have difficulties.)

e 15 is the number of characters to write. Be sure to select this number with care since a value that is too
small will result in your data being truncated, and a value that is too large will append any data that
already exists beyond your new data.

146 digi.com File Systems

www.digi.com

The file is closed to release the file handle to allow it to be used to identify a different file.

rc = fat Close(&my file);

The parameter &my file is a handle to the file to be closed. Remember to check for any return code
from fat Close () since an error return code may indicate the loss of data.

The file must be opened for any further work, even though &my file may still reference the desired file.
The file must be open to be active, so we call fat Open () again. Now the file can be read.

rc = fat Read(&my file, buf, sizeof (buf));

The function fat Read () returns the number of characters actually read. The parameters are as follows:
e &my file isahandle to the file to be read.

* Dbuf is a buffer for reading/writing the file that was defined at the beginning of the program.

e sizeof (buf) isthe number of bytes to be read into buf. It does not have to be the full size of the
buffer

Characters are read beginning at the current position of the file. (The file position can be changed with the
fat Seek () function.) If the file contains fewer than sizeof (buf) characters from the current posi-
tion to the end-of-file marker (EOF), the transfer will stop at the EOF. If the file position is already at EOF,
0 is returned. The maximum number of characters read is 32767 bytes per call.

The file can now be closed. Call fat UnmountDevice () ' rather than simply calling fat Close () to
ensure that any data stored in cache will be written to the device. With a write-back cache, writes are
delayed until either:

¢ all cache buffers are full and a new FAT read request requires a “dirty” cache buffer to be written out
before the read can take place, or

e cache buffers for a partition or a device are being flushed due to an unmount call or explicit flush call.

Calling fat UnmountDevice () will close all open files and unmount all mounted FAT partitions. This
is the safest way to shut down a device. The parameter first part->dev is a handle to the device to
be unmounted.

fat UnmountDevice(first part->dev);

NOTE: A removable device must be unmounted in order to flush its data before removal.
Failure to unmount any partition on a device that has been written to could corrupt the file
system.

i. Call fat_ UnmountPartition() when using a FAT version prior to v2.06.

Dynamic C User’s Manual digi.com 147

www.digi.com

10.2.3 More Sample Programs

This section studies blocking sample FAT SHELL. C and non-blocking sample FAT NB Costate.c

More sample programs are in the Dynamic C folder Samples\FileSystem\FAT. For example, there
is udppages . ¢, an application that shows how to combine HTTP, FTP and zserver functionality to cre-
ate web content than can be updated via FTP.

As described in Section 10.2.2, you will need a target board or core module with a supported flash device,
powered up and connected to a serial port on your PC through the programming cable.

10.2.3.1 Blocking Sample

The sample program Samples\FileSystem\FAT SHELL.C allows you to use the FAT library by

entering DOS-like or Unix-like commands. To run this sample, open Dynamic C, then open

FAT SHELL.C. Compile and run FAT SHELL. C by pressing F9. If the flash device has not been for-
matted and partitioned, FAT SHELL. C will format and partition the flash device, and then you will be
prompted to run FAT SHELL. C again (just press F9 when prompted). A display similar to the one shown
in Figure 1 will open in the Dynamic C Stdio window.

Optional parameters are denoted by the square braces [and] following the command name. The [alc] after
“touch” and “mtouch” indicates an optional allocation amount in bytes. The square braces in the descrip-
tion indicate the default value that will be used if the optional parameter is not given.

Figure 1. List of Shell Commands

e

& iy
FAT_Shell commands:
p:

ls
cd [dirname]

=1}
touch filepame Lalcl
mtouch n filename [alc]
wr filename [bytesl]
rmwr n filename [butes]
ap filename [bytesl]
map n filenams [butes]

mikdir dirname
mikdir n dirname
rd filename [bytes]

split filename newfile
trunc filename [bytes]
del filename

rrdic dirname

taLl filename [bytes]

Fat €5§artﬁ Lendx]]
stat filenams
format [pl

hClelpl

EHit

Fartition A is mounted.
A

=63

Set partition where p is parctition id
List current directory

Change directory Lrookl

Print current directory

Create file [1 cluster alloc]

Create n files [1 cluster eachl

tat_HutoMount sucoceeded with return code H.

Write to file [1k]

Write ton files [1k =achl

ppend to file [1

Hppend to n files [1k eachl

Create directory

Create n directories

Read from file [first 1k maxl

Split excess allocation to newfile
Truncate file [lengthl (Free Prealloc.)
Oelete the file

Remowe the dlrectury [myst be emptul
Fead last bytes From file [last 1k ran 1
Print pactition info

Print FHT table [E L5411

Print filesdirectory info

Erase partition or device a,bpe.cas@yuas
Print this help message

Exit this program

You can type “h” and press enter at any time to display the FAT shell commands.

In the following examples the commands that you enter are shown in boldface type. The response from the
shell program is shown in regular typeface.

148

digi.com

File Systems

www.digi.com

> 1s
Listing '' (dir length 16384)

hello.txt rhsvdA len=15 clust=2
>

This shows the HELLO . TXT file that was created using the FAT CREATE. C sample program. The file
length is 15 bytes. Cluster 2 has been allocated for this file. The “ls” command will display up to the first
six clusters allocated to a file.

The flag, rhsvda, displays the file or directory attributes, with upper case indicating that the attribute is
turned on and lower case indicating that the attribute is turned off. In this example, the archive bit is turned
on and all other attributes are turned off.

These are the six attributes:

r - read-only v - volume label
h - hidden file d - directory
s - system a - archive

To create a directory named DIR1, do the following:

> mkdir dirl
Directory '/dirl' created with 1024 bytes
>

This shows that DTR1 was created, and is 1024 bytes (size may vary by flash type).

Now, select DIR1:

> cd dirl
PWD = '/dirl'
>

Add a new file called RABBIT.TXT:

> touch rabbit.txt
File '/dirl/rabbit.txt' created with 1024 bytes
>

Note that the file name was appended to the current directory. Now we can write to RABBIT . TXT. The
shell program has predetermined characters to write, and does not allow you to enter your own data.

> wr rabbit.txt
File '/dirl/rabbit.txt' written with 1024 bytes out of 1024
>

Dynamic C User’s Manual digi.com 149

www.digi.com

To see what was written, use the “rd” command.

> rd rabbit. txt

rabbit.txt 1024 The quick brown fox jumps over the lazy dog
rabbit.txt 1024 The quick brown fox jumps over the lazy dog
rab

Read 1024 bytes out of 1024
>

10.2.3.2 Non-Blocking Sample

To use the FAT file system in non-blocking mode, do not include the statement #define FAT BLOCK
in your application. The program interface to the library is the same as the blocking version, with the
exception of the return code ~EBUSY from many of the API functions.

The sample program Fat NB Costate.c inthe Samples\FileSystem folder is an example of a
non-blocking application. To view the code in its entirety, open it in Dynamic C. The following discussion
will not examine every line of code, but will focus on what shows the non-blocking nature of the FAT
library and how the application takes advantage of it.

Run Fat NB Costate. c and after 10 seconds the Stdio window will show something similar to the fol-
lowing:

Figure 2. Screen Shot of Fat_NB_Costate.c Running

=101 %]
fat_BAutofount (] sycceeded with return code @, -
Fat_ME_Costate Log —— Press any kew to edit.
BE:EE:al — 1.522
AR AE: A2 — .39
AR AE: A3 —— 132,194
AR A A4 —— 15,972
gasegras —— 4,801
B B3 B —— 24, 306
AR AE: A7 —— 21,522
AR AE: A2 — .39
AR EE: A% —— 132,195
i
1| I Ll

Each line is an entry into a file that is stored in the FAT file system. The file is appended once every second
and read and displayed once every ten seconds. In addition to the file system use and the screen output, if
you are using an RCM3300, RCM3700 or PowerCore FLEX development board, the application blinks
the LED on your board.

The code preceding main () brings in the required library and declares the file structure. And, as expected,
there is no #define for the macro FAT BLOCK. At the start of main () some system variable are cre-
ated and initialized. This is followed by the code to bring up the FAT file system, which is similar to what
we examined in Section 10.2.2.1 when looking at fat create. c, with two essential differences. One,
since we have initialized the FAT to be in non-blocking and we are making some calls to FAT functions
that must return before we can continue, we must wait for the return.

150 digi.com File Systems

www.digi.com

A while loop accomplishes our goal of blocking on the function call until it returns something other than
busy.

while ((rc = fat Open(first part, name, FAT FILE, FAT MUST CREATE,
&file, &alloc)) == -EBUSY);

The second difference from our earlier sample is the statement right before fat Open () :
file.state = 0;

This is required before opening a file when using non-blocking mode in order to indicate that the file is not
in use. Only do this once. After you have opened the file, do not alter the contents of the file structure.

If fat Open () succeeds we can go into the non-blocking section of the program: three costatements
inside an endless while loop. The benefit of using the non-blocking mode of the FAT file system is real-
ized when using costatements, an extension of Dynamic C that implements cooperative multitasking.
Instead of waiting while a function finishes its execution, the application can accomplish other tasks.

10.2.3.2.1 Costatement that Writes a File

The first costate is named putdata. It waits for one second and then creates a string to timestamp the
entry of a randomly generated number that is then appended to a file.

while (1) {
costate putdata always on
{
waitfor (DelaySec(1l)):; // Wait for one second to elapse

Note that the always_ on keyword is used. This is required when using a named costatement to force it
to execute every time it is encountered in the execution thread (unless it is made inactive by a call to
CoPause ()).

It is easy to suspend execution within a costate by using the wait for keyword. The costate will relin-
quish control if the argument to wait for (in this case a call to DelaySec ()) evaluates to FALSE. The
next time the execution thread reaches putdata, waitfor will be called again. This will go on until
DelaySec () returns TRUE, i.e., when one second has elapsed from the time DelaySec () was first
called from within waitfor.

After the one second delay, the string to write to the file is placed in a buffer and a looping variable and
position pointer are initialized.

sprintf (obuf, "$02d:%02d:%02d -- %6.3f \n", h, m, s, (25.0 * rand()));
ocount = 0;
optr = obuf;

Before the buffer contents can be written to a file in the FAT file system, we must ensure that no collisions
occur since there is another costate that will attempt to read the file every ten seconds. A file can not be
read from and written to at the same time. In the following code the wait for keyword is used with the
global variable filestate (defined at the top of the application) to implement a locking mechanism. As
soon as the file becomes available for putdata, it is marked unavailable for showdata.

Dynamic C User’s Manual digi.com 151

www.digi.com

waitfor (filestate == 0); // Wait until file is available
filestate = 1; // Show file is being updated

The next block of code appends the latest entry into the file that was opened at the start of the application.

while (ocount < REC_LEN) { // Loop until entire record is written
waitfor ((rc=fat Write(&file, optr, REC LEN - ocount)) != -EBUSY) ;
if (rc < 0){
printf ("fat Write: rc = %d\n",rc);
while ((rc = fat UnmountDevice (first part->dev)) == -EBUSY);
return rc;

}

optr += rc; // Move output pointer

ocount += rc; // Add number of characters written
}
filestate = 0; // Show file is idle

Again, waitfor isused to voluntarily relinquish control, this time while waiting for the write function to
complete. If an error occurs during the write operation the device is unmounted and the application exits.
Otherwise the loop counter and the buffer position pointer are advanced by the number of bytes actually
written. Since this can be less than the requested number of bytes, it is best to check in a loop such as the
while loop shown in putdata.

The last action taken by putdata is to reset filestate, indicating that the open file is available.

10.2.3.2.2 Costatement that Reads and Displays a File

The costatement named showdata waits for ten seconds. Then it waits for the open file to be available,
and when it is, immediately marks it as unavailable.

costate showdata always onf{
waitfor (DelaySec(10))
waltfor (filestate == 0);
filestate = 2;

The next statement modifies the internal file position pointer. The first time this costate runs, readto is
zero, meaning the position pointer is at the first byte of the file. The variable readto is incremented
every time a record is read from the file, allowing showdata to always know where to seek to next.

waitfor (fat Seek(&file, readto, SEEK SET) != -EBUSY);

The rest of showdata is a while loop inside of a while loop. The inner while loop is where each
record is read from the file into the buffer and then displayed in the Stdio window with the printf ()
call. Since fat Read () may return less than the requested number of bytes, the while loop is needed
to make sure that the function will be called repeatedly until all bytes have been read. When the full record
has been read, it will then be displayed to the Stdio window.

152 digi.com File Systems

www.digi.com

The outer while loop controls when to stop reading records from the file. After the last record is read, the
fat Read() function is called once more, returning an end-of-file error. This causes the if statements
that are checking for this error to return TRUE, which resets filestate to zero, breaking out of the
outer while loop and freeing the lock for the putdata costatement to use.

while (filestate) {

icount = 0;

iptr = ibuf;

while (icount < REC LEN) {
waitfor ((rc=fat Read(&file, iptr, REC LEN-icount)) !=-EBUSY) ;
if (rc < 0)
{

if (rc == -EEOF)

filestate = 0;
break;
}
printf ("fat Read: rc = %d\n",rc);
while ((rc=fat UnmountDevice (first part->dev)) == -EBUSY);
return rc;
}
iptr += rc;
icount += rc;
} // end of inner while loop
if (filestate)
{
printf ("%s", ibuf);
readto += REC LEN;

} // end of outer while loop

The other costatement in the endless while loop is the one that blinks the LED. It illustrates that while
using the file system in non-blocking mode, there is still plenty of time for other tasks.

Dynamic C User’s Manual digi.com 153

www.digi.com

10.2.4 FAT Operations

There are some basic groups of operations involved in using the Dynamic C FAT library. These are
described at length in the following sections.

Section 10.2.4.1 “Format and Partition the Device”
e Default Partitioning
¢ Creating Multiple FAT Partitions

* Preserving Existing Partitions

Section 10.2.4.2 “File and Directory Operations”
* Open and Close Operations
e Read and Write Operations
* Going to a Specified Position in a File
® Creating Files and Subdirectories
e Reading Directories

¢ Deleting Files and Directories

10.2.4.1 Format and Partition the Device

The flash device must be formatted before its first use. Formatting it after its first use may destroy infor-
mation previously placed on it.

10.2.4.1.1 Default Partitioning

As a convenience, Samples/FileSystem/Fmt Device. c is provided to format the flash device.
This program can format individual FAT 12/16 partitions, or can format all FAT 12/16 partitions found on
a device. If no FAT 12/16 partitions are found, it offers the option of erasing the entire device and format-
ting it with a single FAT 16 partition. Be aware that this will destroy any data on the device, including that
contained on FAT 32 partitions. This is an easy way to format new media that may contain an empty
FAT32 partition spanning the entire device, such as a new SD or XD card.

After the device has been formatted with Fmt Device. c, an application that wants to use the FAT file

system just has to call the function fat Init () (replaced in FAT version 2.01) or

fat AutoMount ().Ifyou are calling fat AutoMount () refer to Section 10.2.2.1 for an example

of its use. Note that if you call fat AutoMount () using the configuration flag FDDF DEV FORMAT,
you may not need to run Fmt _Device.c.

10.2.4.1.2 Creating Multiple Partitions

To create multiple partitions on the flash device use the sample program FAT Write MBR.c, which will
allow you to easily create as many as four partitions. This program does require that the device be “erased”
before being run. This can be done with the appropriate sample program: sdflash inspect.c,
sflash inspect.cornflash inspect.c. You only need to clear the first three pages on SD
cards or serial flash, or the first page on NAND flash or XD cards. Once this is done, run

FAT Write MBR and it will display the total size of the device in MegaBytes and allow you to specify the
size of each partition until all the space is used. If you specify an amount larger than the space remaining,
then all remaining space will be used for that partition. Once all space is specified, it will ask approval to
write the new partition structure. This utility does not format the partitions, it merely creates their defini-
tions. Run Fmt device. c afterwards and use the 0 or 1 option to format the full device and all parti-

154 digi.com File Systems

www.digi.com

tions will be formatted. Be forewarned that on removable media, using multiple partitions will typically
make the device unusable with PC readers.

The sample program FAT Write MBR. c is distributed with FAT version 2.13. It is also compatible with
FAT versions 2.01, 2.05 and 2.10. If you have one of these earlier versions of the FAT and would like a
copy of FAT Write MBR.c, please contact Technical Support at www.digi.com/support/.

There is a way to create multiple partitions without using the utility FAT Write MBR. c; this auxiliary
method is explained in Section 10.2.5.3.5.

10.2.4.1.3 Preserving Existing Partitions

If the flash device already has a valid partition that you want to keep, you must know where it is so you
can fit the FAT partition onto the device. This requires searching the partition table for both available parti-
tions and available space. An available partition has the partsecsize field of itsmbr part entry
equal to zero.

Lookin 1ib/.../RCM3300/RemoteApplicationUpdate/downloadmanager.lib for the
function dlm initserialflash () for an example of searching through the partition table for avail-
able partitions and space. See the next section for more information on the download manager (DLM) and
how to set up coexisting partitions.

10.2.4.1.4 FAT and DLM Partitions
The RabbitCore RCM3300 comes with a download manager utility that creates a partition on a serial flash

device, which is then used by the utility to remotely update an application. You can set up a device to have
both a DLM partition and a FAT partition.

Run the program Samples/RCM3300/RemoteApplicationUpdate/DLM FAT FORMAT.C.
This program must be run on an unformatted serial flash, i.e., a flash with no MBR. To remove an existing
MBR, first run the program Samples/RCM3300/SerialFlash/SFLASH INSPECT.C to clear the
first three pages.

The program DLM FAT FORMAT . C will set aside space for the DLM partition and use the rest of the
device to create a FAT partition. Then, when you run the DLM software, it will be able to find space for its
partition and will coexist with the FAT partition. This shows the advantage to partitions: Partitions set hard
boundaries on the allocation of space on a device, thus neither FAT nor the DLM software can take space
from the other.

Dynamic C User’s Manual digi.com 155

www.digi.com
http://www.digi.com/support/

10.2.4.2 File and Directory Operations

The Dynamic C FAT implementation supports the basic set of file and directory operations. Remember
that a partition must be mounted before it can be used with any of the file, directory or status operations.

10.2.4.2.1 Open and Close Operations

The fat Open () function opens a file or a directory. It can also be used to create a file or a directory.
When using the non-blocking FAT, check the return code and call it again with the same arguments until it
returns something other than ~-EBUSY..

rc = fat Open(my part, "DIR\\FILE.TXT", FAT FILE, FAT CREATE,
¢my file, &prealloc);

The first parameter, my part, points to a partition structure. This pointer must point to a mounted parti-
tion. Some of the sample programs, like fat create. c, declare a local pointer and then search for a
partition pointer in the global array fat part mounted[]. Other sample programs, like

fat shell.c, define an integer to be used as an index into fat part mounted[]. Both methods
accomplish the same goal of gaining access to a partition pointer.

The second parameter contains the file name, including the directory (if applicable) relative to the root
directory. All paths in Dynamic C must specify the full directory path explicitly, e.g., DIRI\\FILE.EXT
or DIR1/FILE.EXT. The direction of the slash in the pathname is a backslash by default. If you use the
default backslash for the path separator, you must always precede it with another backslash, as shown in
the above call to fat Open (). This is because the backslash is an escape character in a Dynamic C
string. To use the forward slash as the path separator, define the macro FAT USE FORWARDSLASH in
your application (or in FAT . LIB to make it the system default).

The third parameter determines whether a file or directory is opened (FAT FILE or FAT DIR).

The fourth parameter is a flag that limits fat Open () to the action specified. FAT CREATE creates the
file (or directory) if it does not exist. If the file does exist, it will be opened, and the position pointer will be
set to the start of the file. If you write to the file without moving the position pointer, you will overwrite
existing data. Use FAT MUST CREATE if you know the file does not exist; this last option is also a fail-
safe way to avoid opening and overwriting an existing file since an —-EEXIST error message will be
returned if you attempt to create a file that already exists.

The fifth parameter, smy file, is an available file handle. After a file or directory is opened, its handle is
used to identify it when using other API functions, so be wary of using local variables as your file handle.

The final parameter is an initial byte count if the object needs to be created. It is only used if the

FAT CREATE or FAT MUST CREATE flag is used and the file or directory does not already exist. The

byte count is rounded up to the nearest whole number of clusters greater than or equal to 1. On return, the
variable prealloc is updated to the number of bytes allocated. Pre-allocation is used to set aside space
for a file, or to speed up writing a large amount of data as the space allocation is handled once.

Pass NULL as the final parameter to indicate that you are opening the file for reading or that a minimum
number of bytes needs to be allocated to the file at this time. If the file does not exist and you pass NULL,
the file will be created with the minimum one cluster allocation.

Once you are finished with the file, you must close it to release its handle so that it can be reused the next
time a file is created or opened.

156 digi.com File Systems

www.digi.com

rc = fat Close (&my file);

Remember to check the return code from fat Close () since an error return code may indicate the loss
of data. Once you are completely finished, call fat UnmountDevice () to make sure any data stored
in the cache is written to the flash device.

10.2.4.2.2 Read and Write Operations
Use fat Read () to read a file.

rc = fat Read(&my file, buf, sizeof (buf));

The first parameter, &my file, is a pointer to the file handle already opened by fat Open (). The
parameter buf points to a buffer for reading the file. The sizeof (buf) parameter is the number of
bytes to be read into the buffer. It does not have to be the full size of the buffer. If the file contains fewer
than sizeof (buf) characters from the current position to the end-of-file marker (EOF), the transfer will
stop at the EOF. If the file position is already at the EOF, 0 is returned. The maximum number of charac-
ters read is 32767 bytes per call.

The function returns the number of characters read or an error code. Characters are read beginning at the
current position of the file. If you have just written to the file that is being read, the file position pointer
will be where the write left off. If this is the end of the file and you want to read from the beginning of the
file you must change the file position pointer. This can be done by closing the file and reopening it, thus
moving the position pointer to the start of the file. Another way to change the position pointer is to use the
fat Seek () function. This function is explained in Section 10.2.4.2.3.

Use fat ReadDir () toread a directory. This function is explained in Section 10.2.4.2.5.

Use fat Write () or fat xWrite () to write to a file. The difference between the two functions is
that fat xWrite () copies characters from a string stored in extended memory.

rc = fat Write(&my file, "Write datal\r\n", 12);

The first parameter, &my file, is a pointer to the file handle already opened by fat Open (). Because
fat Open () sets the position pointer to the start of the file, you will overwrite any data already in the
file. You will need to call fat Seek () if you want to start the write at a position other than the start of
the file (see Section 10.2.4.2.3).

The second parameter contains the data to write to the file. Note that \ r\n (carriage return, line feed)
appear at the end of the string in the function. This is essentially a FAT (or really, DOS) convention for text
files. It is good practice to use these standard line-end conventions. (If you only use \n, the file will read
just fine on Unix systems, but some DOS-based programs may have difficulties.) The third parameter
specifies the number of characters to write. Select this number with care since a value that is too small will
result in your data being truncated, and a value that is too large will append any data that already exists
beyond your new data.

Remember that once you are finished with a file you must close it to release its handle. You can call the
fat Close () function, or, if you are finished using the file system on a particular partition, call

fat UnmountPartition (), which will close any open files and then unmount the partition. If you
are finished using the device, it is best to call fat UnmountDevice (), which will close any open FAT

Dynamic C User’s Manual digi.com 157

www.digi.com

files on the device and unmount all mounted FAT partitions. Unmounting the device is the safest method
for shutting down after using the device.

10.2.4.2.3 Going to a Specified Position in a File

The position pointer is at the start of the file when it is first opened. Two API functions, fat Tell ()
and fat Seek (), are available to help you with the position pointer.

fat Tell (&émy file, é&pos);
fat Seek(&my file, pos, SEEK SET);

The fat Tell () function does not change the position pointer, but reads its value (which is the number
of bytes from the beginning of the file) into the variable pointed to by &pos. Zero indicates that the posi-
tion pointer is at the start of the file. The first parameter, &my file, is the file handle already opened by
fat Open{().

The fat Seek () function changes the position pointer. Clusters are allocated to the file if necessary, but
the position pointer will not go beyond the original end of file (EOF) unless doing a SEEK RAW. In all
other cases, extending the pointer past the original EOF will preallocate the space that would be needed to
position the pointer as requested, but the pointer will be left at the original EOF and the file length will not
be changed. If this occurs, the error code ~EEOF is returned to indicate the space was allocated but the
pointer was left at the EOF. If the position requires allocating more space than is available on the device,
the error code ~ENOSPC is returned.

The first parameter passed to fat Seek () is the file handle that was passed to fat Open (). The sec-
ond parameter, pos, is a long integer that may be positive or negative. It is interpreted according to the
value of the third parameter. The third parameter must be one of the following:

* SEEK_SET - pos is the byte position to seek, where 0 is the first byte of the file. If pos is less than 0,
the position pointer is set to 0 and no error code is returned. If pos is greater than the length of the file,
the position pointer is set to EOF and error code ~-EEOF is returned.

* SEEK CUR - seek pos bytes from the current position. If pos is less than 0 the seek is towards the
start of the file. If this goes past the start of the file, the position pointer is set to 0 and no error code is
returned. If pos is greater than 0 the seek is towards EOF. If this goes past EOF the position pointer is
set to EOF and error code —~EEOF is returned.

* SEEK END - seek to pos bytes from the end of the file. That is, for a file that is x bytes long, the state-
ment:

fat Seek (&my file, -1, SEEK END);

will cause the position pointer to be set at x-1 no matter its value prior to the seek call. If the value of
pos would move the position pointer past the start of the file, the position pointer is set to O (the start of
the file) and no error code is returned. If pos is greater than or equal to 0, the position pointer is set to
EOF and error code -EEOF is returned.

* SEEK RAW - is similar to SEEK_SET, but if pos goes beyond EOF, using SEEK_RAW will set the file

length and the position pointer to pos. This adds whatever data exists on the allocated space onto the
end of the file..

158 digi.com File Systems

www.digi.com

10.2.4.2.4 Creating Files and Subdirectories

While the fat Open () function is versatile enough to not only open a file but also create a file or a sub-
directory, there are API functions specific to the tasks of creating files and subdirectories.

The fat CreateDir () function is used to create a subdirectory one level at a time.

rc = fat CreateDir (my part, "DIR1");

The first parameter, my part, points to a partition structure. This pointer must point to a mounted parti-
tion. Some of the sample programs, like fat create. c, declare a local pointer and then search for a
partition pointer in the global array fat part mounted[]. Other sample programs, like

fat shell.c, define an integer to be used as an index into fat part mounted[]. Both methods
accomplish the same goal of gaining access to a partition pointer.

The second parameter contains the directory or subdirectory name relative to the root directory. If you are
creating a subdirectory, the parent directory must already exist.

Once DIRI is created as the parent directory, a subdirectory may be created, and so on.

rc = fat CreateDir (my part, "DIR1/SUBDIR");

Note that a forward slash is used in the pathname instead of a backslash. Either convention may be used.
The backslash is used by default. To use a forward slash instead, define FAT USE FORWARDSLASH in
your application or in FAT . LIB.

A file can be created using the fat CreateFile () function. All directories in the path must already
exist.

rc = fat CreateFile(my part, "DIR1/SUBDIR/FILE.TXT", &prealloc,
&my file);

The first parameter, my part, points to the static partition structure set up by fat AutoMount ().

The second parameter contains the file name, including the directories (if applicable) relative to the root
directory. All paths in the FAT library are specified relative to the root directory.

The third parameter indicates the initial number of bytes to pre-allocate. At least one cluster will be allo-
cated. If there is not enough space beyond the first cluster for the requested allocation amount, the file will
be allocated with whatever space is available on the partition, but no error code will be returned. If no clus-
ters can be allocated, the —-ENOSPC error code will return. Use NULL to indicate that no bytes need to be
allocated for the file at this time. Remember that pre-allocating more than the minimum number of bytes
necessary for storage will reduce the available space on the device.

The final parameter, smy file, is a file handle that points to an available file structure. If NULL is
entered, the file will be closed after it is created.

Dynamic C User’s Manual digi.com 159

www.digi.com

10.2.4.2.5 Reading Directories

The fat ReadDir () function reads the next directory entry from the specified directory. A directory
entry can be a file, directory or a label. A directory is treated just like a file.

fat ReadDir (&dir, &dirent, mode);

The first parameter specifies the directory; &dir is an open file handle. A directory is opened by a call to
fat OpenDir () orby passing FAT DIRinacallto fat Open (). The second parameter, &dirent,
is a pointer to a directory entry structure to fill in. The directory entry structure must be declared in your
application, for example:

fat dirent dirent;

Search Conditions

The last parameter, mode, determines which directory entry is being requested, a choice that is built from
a combination of the macros described below. To understand the possible values for mode, the first thing
to know is that a directory entry can be in one of three states: empty, active or deleted. This means you
must choose one of the default flags described below, or one or more of the following macros:

e FAT INC_ACTIVE - include active entries. This is the default setting if other FAT INC * macros
are not specified; i.e., active files are included unless FAT INC DELETED, FAT INC EMPTY, or
FAT INC_LNAME is set.

* FAT INC DELETED - include deleted entries
e FAT INC_EMPTY - include empty entries

e FAT INC LNAME - include long name entries (this is included for completeness, but is not used since
long file names are not supported)

The above macros narrow the search to only those directory entries in the requested state. The search is
then refined further by identifying particular attributes of the requested entry. This is done by choosing one
or more of the following macros:

* FATATTR _READ ONLY - include read-only entries

e FATATTR HIDDEN - include hidden entries

* FATATTR_ SYSTEM - include system entries

* FATATTR _VOLUME ID -include label entries

* FATATTR DIRECTORY - include directory entries

* FATATTR ARCHIVE - include modified entries

Including a FATATTR_* macro means you do not care whether the corresponding attribute is turned on or
off. Not including a FATATTR _* macro means you only want an entry with that particular attribute turned
off. Note that the FAT system sets the archive bit on all new files as well as those written to, so including
FATATTR ARCHIVE in your mode setting is a good idea.

For example, if mode is (FAT INC ACTIVE) then the next directory entry that has all of its attributes
turned off will be selected; i.e., an entry that is not read only, not hidden, not a system file, not a directory
or a label, and not archived. In other words, the next writable file that is not hidden, system or already
archived is selected.

160 digi.com File Systems

www.digi.com

But, if you want the next active file and do not care about the file’s other attributes, mode should be
(FAT_INC_ACT IVE | FATATTR READ ONLY | FATATTR HIDDEN | FATATTR SYSTEM |
FATATTR ARCHIVE). This search would only exclude directory and label entries.

Now suppose you want only the next active read-only file, leaving out hidden or system files. The next
group of macros allows this search by filtering on whether the requested attribute is set. The filter macros
are:

e FAT FIL RD ONLY - filter on read-only attribute

* FAT FIL HIDDEN - filter on hidden attribute

* FAT FIL SYSTEM - filter on system attribute

e FAT FIL LABEL - filter on label attribute

* FAT FIL DIR - filter on directory attribute

e FAT FIL ARCHIVE - filter on modified attribute

If you set mode to (FAT INC ACTIVE | FATATTR READ ONLY | FAT FIL RD ONLY |
FATATTR ARCHIVE), the result will be the next active file that has its read-only attribute set (and has
the archive attribute in either state).

NOTE: If you have FAT version 2.05 or earlier, you do not have access to the
FAT FIL_* macros.

Default Search Flags

To make things easier, there are two predefined mode flags. Each one may be used alone or in combination
with the macros already described.

* FAT INC ALL - selects any directory entry of any type.

e FAT INC DEF - selects the next active file or directory entry, including read-only or archived files.
No hidden, system, label, deleted, or empty directories or files will be selected. This is typically what
you see when you do a directory listing on your PC.

Search Flag Examples
Here are some more examples of how the flags work.

1. If you want the next hidden file or directory:

Start with the FAT INC DEF macro default flag. This flag does not allow hidden files, so we
need FATATTR HIDDEN. Then to narrow the search to consider only a hidden file or directory,
we need the macro FAT FIL HIDDEN to filter on files or directories that have the hidden
attribute set. That is, mode is set to:

FAT INC DEF | FATATTR HIDDEN | FAT FIL HIDDEN

Dynamic C User’s Manual digi.com 161

www.digi.com

2. If you want the next hidden directory:

Start with the FAT INC DEF macro default flag. To narrow the search to directories only, we
want entries with their directory attribute set; therefore, OR the macros FATATTR DIRECTORY
and FAT FIL DIR. Then OR the macros FATATTR HIDDEN and FAT FIL HIDDEN to search
only for directories with their hidden attribute set. Set mode to:

FAT INC DEF | FATATTR DIRECTORY | FAT FIL DIR | FATATTR HIDDEN |
FAT FIL HIDDEN

3. If you want the next hidden file (no directories):

Start with the predefined flag, FAT INC_ DEF. This flag allows directories, which we do not want, so
we do an AND NOT of the FATATTR DIRECTORY macro.

Next we want to narrow the search to only entries that have their hidden attribute set. The default flag
does not allow hidden flags, so we need to OR the macros FATTR HIDDEN and FAT FIL HIDDEN.

That is, set mode to:

FAT INC DEF & ~FATATTR DIRECTORY | FATATTR HIDDEN | FAT FIL HIDDEN

4. If you want the next non-hidden file (no directories):

First, select the FAT INC DEF filter default flag. This flag allows directories, which we do not want,
so we do an AND NOT of the FATATTR DIRECTORY macro. The default flag already does not allow
hidden files, so we are done. That is, set mode to:

FAT INC DEF & ~FATATTR DIRECTORY

5. Finally let’s see how to get the next non-empty entry of any type.

Start with the predefined flag, FAT INC ALL. This flag selects any directory entry of any type. Since
we do not want empty entries, we have to remove that search condition from the flag, so we do an AND
NOT for the FAT INC_EMPTY macro to filter out the empty entries. That means mode is the bitwise
combination of the macros:

mode = FAT INC ALL & ~FAT INC EMPTY

10.2.4.2.6 Deleting Files and Directories

The fat Delete () function is used to delete a file or directory. The second parameter sets whether a
file or directory is being deleted. Only one file or directory may be deleted at any one time—this means
that you must call fat Delete () atleast twice to delete a file and its associated directory (if the direc-
tory has no other files or subdirectories since a directory must be empty to be deleted).

fat Delete(my part, FAT FILE, "DIR/FILE.TXT");

The first parameter, my part, points to the static partition structure that was populated by

fat AutoMount (). The second parameter is the file type, FAT FILE or FAT DIR, depending on
whether a file or a directory is to be deleted. The third parameter contains the file name, including the
directory (if applicable) relative to the directory root. All paths in the FAT library are specified relative to
the root directory.

162 digi.com File Systems

www.digi.com

10.2.4.3 Error Handling

Most routines in the FAT library return an int value error code indicating the status of the requested opera-
tion. Table 12 contains a list of error codes specific to the FAT file system. Most of these codes, along
with some other error codes, are defined in/Lib/../ERRNO.LIB.

Table 12. FAT-Specific Error Codes

Code Value Description
EOF 231 End of File Encountered
EEOF 41 End-of-file marker reached
ETYPE 232 Incorrect Type
EPATHSTR 233 Invalid Path String
EROOTFULL 234 Root Directory is Full
EUNFORMAT 235 Unformatted Volume
EBADPART 236 Invalid Partition
ENOPART 237 Unpartitioned / Unformatted Media
ENOTEMPTY 238 Open Files in Partition / Directory to be Deleted
EPERM 1 Operation not permitted
ENOENT 2 No such file or directory
EIO 5 1/O error
EBUSY 16 Device or resource busy
EEXIST 17 File exists
ENODEV 19 No such device
ENOSPC 28 No space left on device
ENOTEMPTY 39 Directory is not empty
ENOMEDIUM 123 No medium found

Dynamic C User’s Manual digi.com 163

www.digi.com

10.2.5 More FAT Information

The FAT file system stores and organizes files on a storage device such as a hard drive or a memory
device.

10.2.5.1 Clusters and Sectors

Every file is stored on one or more clusters. A cluster is made up of a contiguous number of bytes called
sectors and is the smallest unit of allocation for files. The Dynamic C FAT implementation supports a sec-
tor size of 512 bytes. Cluster sizes depend on the media. The table below gives the cluster sizes used for
some of our RabbitCore modules.

Table 13. Cluster Sizes on Flash Devices

RabbitCore Model Flash Device N“":Z":’c"lzgfe";m’s
RCM 3700 1 MB Serial Flash 1
RCM 3300 4 and 8 MB Serial Flash 2
RCM3360/70 NAND Flash 32

The cluster size for a NAND device corresponds to its page size. Note that a file or directory takes at mini-
mum one cluster. On a NAND device the page size is 16K bytes; therefore, while it is allowable to write
very small files to the FAT file system on a NAND device, it is not space efficient. Even the smallest file
takes at least 16,000 bytes of storage. Cluster sizes for SD cards vary with the size of the card inserted. To
determine the number of sectors per cluster on an SD card, divide the size of the card by 32MB.

10.2.5.2 The Master Boot Record

The master boot record (MBR) is located on one or more sectors at the physical start of the device. Its
basic structure is illustrated in Figure 3. The boot region of the MBR contains DOS boot loader code,
which is written when the device is formatted (but is not otherwise used by the Dynamic C FAT file sys-
tem). The partition table follows the boot region. It contains four 16-byte entries, which allows up to four
partitions on the device. Partition table entries contain some critical information: the partition type
(Dynamic C FAT recognizes partition types FAT12 and FAT16) and the partition’s starting and ending sec-
tor numbers. There is also a field denoting the total number of sectors in the partition. If this number is
zero, the corresponding partition is empty and available.

164 digi.com File Systems

www.digi.com

Figure 3. High-Level View of an MBR

Master Boot Record (MBR)
Entry__, 4000
Boot Region
Ox1BE Partition 0 "%
Ox1CE Partition 1 '(—:
Ox1DE Partition 2 é
Ox1EE Partition 3 "5.“
OxIFE Signature

NOTE: Some devices are formatted without an MBR and, therefore, have no partition
table. This configuration is not currently supported in the Dynamic C FAT file system.

10.2.5.3 FAT Partitions

The first sector of a valid FAT file system partition contains the BIOS parameter block (BPB); this is fol-
lowed by the file allocation table (FAT), and then the root directory. The figure below shows a device with

two FAT partitions.

Figure 4. Two FAT Partitions on a Device

Partition 0 Partition 1
N N
BPB BPB
MBR FAT | Data Area FAT . Data Area
ROOT ROOT 1
\ A
Sector 0 First Sector Start of First Sector Start of
of Device of Partiton 1 Cluster 2 of Partition 2 Cluster 2
10.2.5.3.1 BPB

The fields of the BPB contain information describing the partition:

¢ the number of bytes per sector

¢ the number of sectors per cluster (see Table 13)
e the total count of sectors on the partition

e the number of root directory entries

¢ plus additional information not mentioned here

Dynamic C User’s Manual digi.com

165

www.digi.com

The FAT type (FAT12 or FAT16) is determined by the count of clusters on the partition. The “12”” and “16”
refer to the number of bits used to hold the cluster number. The FAT type is calculated using information
found in the BPB. Information from a BPB on a mounted partition is stored in the partition structure (of
type fat part)populated by fat AutoMount ().

Partitions greater than or equal to 2 MB will be FAT16. Smaller partitions will be FAT12. To save code
space, you can compile out support for either FAT type. Find the lines

#define FAT FATI12 // comment out to disable FAT12 support
#define FAT FATI1G6 // comment out to disable FAT16 support

inLIB/../FAT.LIB, make your change, and then recompile your application.

10.2.5.3.2 FAT

The file allocation table is the structure that gives the FAT file system its name. The FAT stores informa-
tion about cluster assignments. A cluster is either assigned to a file, is available for use, or is marked as
bad. A second copy of the FAT immediately follows the first.

10.2.5.3.3 Root Directory

The root directory has a predefined location and size. It has 512 entries of 32 bytes each. An entry in the
root directory is either empty or contains a file or subdirectory name (in 8.3 format), file size, date and
time of last revision and the starting cluster number for the file or subdirectory.

10.2.5.3.4 Data Area

The data area takes up most of the partition. It contains file data and subdirectories. Note that the data area
of a partition must, by convention, start at cluster 2.

10.2.5.3.5 Creating Multiple FAT Partitions

FAT version 2.13 introduces FAT Write MBR. c, a utility that simplifies the creation of multiple parti-
tions. It is distributed with FAT version 2.13. It is also compatible with FAT versions 2.01, 2.05 and 2.10. If
you have one of these earlier versions of the FAT and would like a copy of FAT Write MBR.c, please
contact Technical Support at www.digi.com/support/. See Section 10.2.4.1.2 for information on
running this utility.

Without the use of FAT Write MBR.c, creating multiple FAT partitions on the flash device requires a
little more effort than the default partitioning. If the flash device does not contain an MBR, i.e., the device
is not formatted, both fat Init () and fat AutoMount () return an error code (-EUNFORMAT)
indicating this fact. So the next task is to write the MBR to the device. This is done with a call to

fat FormatDevice (). Since we want more than one partition on the flash device,

fat FormatDevice () must be called with a mode parameter of zero.

Before calling fat FormatDevice (), partition specific information must be set in the mbr part
entries for each partition you are creating. The following code shows possible information for partition 0
where MY PARTITION SIZE is equal to the size of the desired partition in bytes, 512 is the flash sector
size, and dev points to the mbr part structure.

166 digi.com File Systems

www.digi.com
http://www.digi.com/support/

memset (dev->part, 0, sizeof (mbr part));
dev->part[0] .starthead = 0OxXFE;
dev->part[0] .endhead = OxFE;

[0]
dev->part[0] .startsector = 1;
dev->part[0] .partsecsize = (MY PARTITION SIZE / 512) + 1;
dev->part[0] .parttype = (dev->part[0].partsecsize < SEC 2MB) ? 1: 6;

The memset () function is used to initialize the entry to zero. The values for starthead and endhead
should be OxFE to indicate that the media uses LBA (Logical Block Addressing) instead of head and cylin-
der addressing. The FAT library uses LBA internally. The values for the startsector, partsecsize
and parttype fields determine where the partition starts, how many sectors it contains and what parti-
tion type it is. The number of sectors in the partition is calculated by dividing the number of raw bytes in
the partition by the sector size of the flash. The number of raw bytes in the partition includes not only
bytes for file storage, but also the space needed by the BPB and the root directory. One is added to dev—
>partsecsize to ensure an extra sector is assigned if MY PARTITION SIZE is not evenly divisible
by the size of a flash sector. The partition type (. parttype) is determined by the partition size: 1 indi-
cates FAT12 and 6 indicates FAT16. Fill in an mbr part structure for each partition you are creating.
The remaining entries should be zeroed out.

When laying out partitions, there are three basic checks to make sure the partitions fit in the available
device space and do not overlap.

1. No partition can start on a sector less than 1.

2. Each partition resides on sectors from startsector through startsector+partsecsize-1.
No other partition can have a startsector value within that range.

3. No partition ending sector (startsector+partsecsize-1) can be greater than or equal to the
total sectors on the device.

The partition boundaries are validated in the call to fat FormatDevice () and the function will return
an error if any of the partition boundaries are invalid. If fat FormatDevice () returns success, then
call fat AutoMount () with flags of FDDF_COND PART FORMAT | FDDF_MOUNT DEV_# |

FDDF MOUNT PART ALL; where # is the device number for the device being partitioned. This will for-
mat and mount the newly created partitions.

10.2.5.4 Directory and File Names

File and directory names are limited to 8 characters followed by an optional period (.) and an extension of
up to 3 characters. The characters may be any combination of letters, digits, or characters with code point
values greater than 127. The following special characters are also allowed:

$ 5 ' - @~ ())" # &

File names passed to the file system are always converted to upper case; the original case value is lost.

The maximum size of a directory is limited by the available space. It is recommended that no more than
ten layers of directories be used with the Dynamic C FAT file system.

Dynamic C User’s Manual digi.com 167

www.digi.com

10.2.5.5 pC/OS-ll and FAT Compatibility

Versions of the FAT file system prior to version 2.10 are compatible with nC/OS-II only if FAT API calls
are confined to one pC/OS-II task. To make the FAT API reentrant from multiple tasks, you must do the
following:

¢ Use FAT version 2.10
e #define FAT USE UCOS_ MUTEX before #use'ing FAT . LIB

e Call the function fat InitUCOSMutex (priority) after calling OSInit () and before calling
FAT APIs or beginning multitasking; the parameter “priority” MUST be a higher priority than all tasks
using FAT APIs

¢ (Call only high-level fat APIs with names that begin with “fat_”

See the function description for fat InitUCOSMutex () for more details, and the sample program
Samples/FileSystem/FAT UCOS.C for a demonstration of using FAT with pC/OS-II.

10.2.5.6 SF1000 and FAT Compatibility

There are two macros that need to be defined for the FAT to work with the SF1000 Serial Flash Expansion
Board.

#define SF_SPI DIVISOR 5
#define SF_SPI INVERT RX

10.2.5.7 Hot-Swapping an xD Card

Hot-swapping is currently supported on the RCM3365 and the RCM3375. FAT version 2.10 or later is
required. Two sample programs are provided in Samples/FileSystem to demonstrate this feature:
FAT HOT SWAP.Cand FAT HOT SWAP 3365 75.C. The samples are mostly identical: they both
test for a keyboard hit to determine if the user wants to hot-swap the xD card, but, in addition, the sample
program FAT HOT SWAP_ 3365 75.C also checks for a switch press and indicates a ready-to-mount
condition with an LED.

After unmounting the xD card call fat config init (). This disconnects drive and device struc-
tures from internal tables to work around a potential problem swapping from smaller to larger removable
devices.

As demonstrated in the sample programs, an xD card should only be removed after it has unmounted with
fat UnmountDevice () and no operations are happening on the device.

Only fat AutoMount () should be used to remount xD cards. In addition, the function
nf XD Detect () should be called to verify xD card presence before attempting to remount an xD card.

xD cards formatted with versions of the FAT prior to 2.10 did not have unique volume labels. If there is a
chance that two such cards may be swapped, call fat autoMount () with the FDDF NO RECOVERY
flag set. This means that if there is a write cache entry to be written, it will not be written. The function

fat UnmountDevice () flushes the cache (i.e., writes all cache entries to the device) before unmount-
ing, so this should not generally be a problem if the device was properly unmounted.

168 digi.com File Systems

www.digi.com

10.2.5.8 Hot-Swapping an SD Card

Hot-swapping is currently supported on the RCM3900 and the RCM3910. FAT version 2.14 or later is
required. A sample program is provided in Samples/FileSystem to demonstrate this feature:

FAT HOT SWAP SD.C. The sample tests for a keyboard hit to determine if the user wants to hot-swap
the SD card.

Hot-swapping an SD card requires that you unmount the device before removal, as the FAT filesystem
employs a cache system that may not have written all information to the device unless unmounted.

As demonstrated in the sample program, the SD card should only be removed after it has unmounted with
fat UnmountDevice () and no operations are happening on the device. Only fat AutoMount ()
should be used to remount SD cards. In addition, the function sdspi debounce () should be called to
verify SD card presence before attempting to remount an SD card.

10.2.5.9 Unsupported FAT Features

At this time, the Dynamic C FAT file system does not support the following.
e Single-volume drives (they do not have an MBR)

e FAT32 or long file or directory names

e Sector sizes other than 512 bytes

¢ Direct parsing of relative paths

e Direct support of a “working directory”

* Drive letters (the FAT file system is not DOS)

10.2.5.10 References

There are a number of good references regarding FAT file systems available on the Internet. Any reason-
able search engine will bring up many hits if you type in relevant terms, such as “FAT,” “file system,” “file
allocation table,” or something along those lines. At the time of this writing, the following links provided
useful information.

1. This link is to Microsoft’s “FAT32 File System Specification,” which is also applicable to FAT12 and
FAT16.

www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx

2. This article gives a brief history of FAT.
http://en.wikipedia.org/wiki/File Allocation_Table

3. These tutorials give lots of details plus links to more information.
www.serverwatch.com/tutorials/article.php/2239651
www.pcguide.com/ref/hdd/file/fat.htm

Dynamic C User’s Manual digi.com 169

www.digi.com
http://www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx
http://en.wikipedia.org/wiki/File_Allocation_Table
http://www.serverwatch.com/tutorials/article.php/2239651
http://www.pcguide.com/ref/hdd/file/fat.htm

170 digi.com File Systems

www.digi.com

RABBIT = PRODUCT MANUAL

11. USING ASSEMBLY LANGUAGE

This chapter gives the rules for mixing assembly language with Dynamic C code. A reference guide to the
Rabbit Instruction Set is available from the Help menu of Dynamic C.

11.1 Mixing Assembly and C

Dynamic C permits assembly language statements to be embedded in C functions and/or entire functions
to be written in assembly language. C statements may also be embedded in assembly code. C-language
variables may be accessed by the assembly code.

11.1.1 Embedded Assembly Syntax

Use the #asm and #endasm directives to place assembly code in Dynamic C programs. For example, the
following function will add two 64-bit numbers together. The same program could be written in C, but it
would be many times slower because C does not provide an add-with-carry operation (adc).

void eightadd(char *chl, char *ch2) {

#asm
1d hl, (sp+@SP+ch2) ; get source pointer
ex de, hl ; save in register DE
1d hl, (sp+@SP+chl) ; get destination pointer
1d b, 8 ; number of bytes
X0r a ; clear carry
loop:
1d a, (de) ; ch2 source byte
adc a, (hl) ; add chl byte
1d (hl),a ; store result to chl address
inc hl ; increment chl pointer
inc de ; increment ch2 pointer
djnz loop ; do 8 bytes
; chl now points to 64 bit result

#endasm

}

The keywords debug and nodebug can be placed on the same line as #asm. Assembly code blocks are
nodebug by default. This saves space and unnecessary calls to the debugger kernel.

All blocks of assembly code within a C function are assembled in nodebug mode. The only exception to
this is when a block of assembly code is explicitly marked with debug. Any blocks marked debug will
be assembled in debug mode even if the enclosing C function is marked nodebug.

Dynamic C User’s Manual digi.com 171

www.digi.com

11.1.2 Embedded C Syntax

A C statement may be placed within assembly code by placing a “c” in column 1. Note that the registers
used in the embedded C statement will be changed.

#asm

InitValues::

c start time = 0;

c counter = 256;
ret

#endasm

11.1.3 Setting Breakpoints in Assembly

There are two ways to enable software breakpoint support in assembly code.

One way is to explicitly mark the assembly block as debug (the default condition is nodebug). This
causes the insertion of RST 0x28 instructions between each assembly instruction. These RST 0x28
instructions may cause jump relative (i.e., Jj r) instructions to go out of range, but this problem can be
solved by changing the relative jump (J r) to an absolute jump (jp). Below is an example.

fasm debug
function::

ret
#endasm
The other way to enable breakpoint support in a block of assembly code is to add a C statement before the

desired assembly instruction. Note that the assembly code must be contained in a debug C function to
enable C code debugging. Below is an example.

debug dummyfunction () {
#asm
function::

label:
c ; // add line of C code to permit a breakpoint before jump relative
jr nc, label

ret
#endasm

}

Note: Single stepping through assembly code is always allowed if the assembly window is
open.

172 digi.com Using Assembly Language

www.digi.com

11.2 Assembler and Preprocessor

The assembler parses most C language constant expressions. A C language constant expression is one whose
value is known at compile time. All operators except the following are supported:

Table 11-1. Operators Not Supported By The Assembler

Operator Symbol Operator Description
2: conditional
dot
-> points to
* dereference

11.2.1 Comments

C-style comments are allowed in embedded assembly code. The assembler will ignore comments begin-
ning with:

; text from the semicolon to the end of line is ignored.
// text from the double forward slashes to the end of line is ignored.
/* text between slash-asterisk and asterisk-slash is ignored */

11.2.2 Defining Constants
Constants may be created and defined in assembly code with the assembly language keyword db (define
byte). db should be followed immediately by numerical values and strings separated by commas. For
example, each of the following lines define the string “ABC”.

db ' A' , |l B |l , 1 c '

db "ABC"

db 0x41, 0x42, 0x43

The numerical values and characters in strings are used to initialize sequential byte locations.

If separate I&D space is enabled, assembly constants should either be put in their own assembly block
with the const keyword or be done in C.

#asm const
myrootconstants::
db 0x40, 0x41, 0x42

#endasm

or

const char myrootconstants[] = {‘\x40’, ‘\x41’, ‘\x42'}

Dynamic C User’s Manual digi.com 173

www.digi.com

If separate I&D space is enabled, db places bytes in the base segment of the data space when it is used
with const. If the const keyword is absent, i.e.,

#asm
myrootconstants::
db 0x40, 0x41, 0x42

#endasm

the bytes are placed somewhere in the instruction space. If separate 1&D space is disabled (the default con-
dition), the bytes are placed in the base segment (aka, root segment) interspersed with code.

Therefore, so that data will be treated as data when referenced in assembly code, the const keyword
must be used when separate 1&D space is enabled. For example, this won't work correctly without const:

#asm const
label::

db 0xb5a
#endasm

main () {
#asm

1d a, (label) // 1d Ox5atorega
#endasm

}

The assembly language keyword dw defines 16-bit words, least significant byte first. The keyword dw
should be followed immediately by numerical values:

dw 0x0123, OxFFFF, xyz

This example defines three constants. The first two constants are literals, and the third constant is the
address of variable xyz.

The numerical values initialize sequential word locations, starting at the current code address.

174 digi.com Using Assembly Language

www.digi.com

11.2.3 Multiline Macros

The Dynamic C preprocessor has a special feature to allow multiline macros in assembly code. The pre-
processor expands macros before the assembler parses any text. Putting a $\ at the end of a line inserts a
new line in the text. This only works in assembly code. Labels and comments are not allowed in multiline
macros.

#define SAVEFLAG $\

1d a,b $\

push af $\

pop bc
#asm

1d b, 0x32
SAVEFLAG

#endasm

11.2.4 Labels

A label is a name followed by one or two colons. A label followed by a single colon is /ocal, whereas one
followed by two colons is global. A local label is not visible to the code out of the current embedded
assembly segment (i.e., code before the #asm or after the #endasm directive is outside of that embbeded
assembly segment).

Unless it is followed immediately by the assembly language keyword equ, the label identifies the current
code segment address. If the label is followed by equ, the label “equates” to the value of the expression
after the keyword equ.

Because C preprocessor macros are expanded in embedded assembly code, Rabbit recommends that pre-
processor macros be used instead of equ whenever possible.

11.2.5 Special Symbols

This table lists special symbols that can be used in an assembly language expression.

Table 11-2. Special Assembly Language Symbols

Symbol Description

Indicates the amount of stack space (in bytes) used for stack-based

P . . .
es variables. This does not include arguments.
Constant for the current code location. For example:
apC 1d hl, @PC

loads the code address of the instruction. 1d hl,@PC+3 loads the address
after the instruction since it is a 3 byte instruction.

Evaluates the offset from the frame reference point to the stack space
@RETVAL reserved for the st ruct function returns. See Section 11.4.1.2 for
more information on the frame reference point.

@LENGTH Determines the next reference address of a variable plus its size.

Dynamic C User’s Manual digi.com 175

www.digi.com

11.2.6 C Variables

C variable names may be used in assembly language. What a variable name represents (the value associ-
ated with the name) depends on the variable. For a global or static local variable, the name represents the
address of the variable in root memory. For an auto variable or formal argument, the variable name rep-
resents its own offset from the frame reference point.

The following list of processor register names are reserved and may not be used as C variable names in
assembly: A, B, C, D, E, F, H, L, AF, HL, DE, BC, IX, 1Y, SP, PC, XPC, IP, IIR and EIR.

The name of a structure element represents the offset of the element from the beginning of the structure. In
the following structure, for example, for the following structure

struct s {
int x;
int y;
int z;

}s

the embedded assembly expression s+x evaluates to 0, s+y evaluates to 2, and s+z evaluates to 4,

[P

regardless of where structure “s” may be.
In nested structures, offsets can be composite, as shown here.

struct s{ // offset into s
int x; // 0
struct a { // 2(i.e., sizeof(x))
int b; // 2, offsetis O relative to a
int c; // 4, offset is 2 relative to a
}i
}i

Just like in the first definition of structure “s”, the assembly expression s+x evaluates to 0; s+a evaluates to
2 and s+b evaluates to 2 (both expressions evaluate to the same value because both “a” and “b” are offset
“0” from “a”); and finally, s+c evaluates to 4 because s+a evaluates to 2 and a+c evaluates to 2.

176 digi.com Using Assembly Language

www.digi.com

11.3 Stand-Alone Assembly Code

A stand-alone assembly function is one that is defined outside the context of a C language function.

A stand-alone assembly function has no auto variables and no formal parameters. It can, however, have
arguments passed to it by the calling function. When a program calls a function from C, it puts the first
argument into a primary register. If the first argument has one or two bytes (int, unsigned int,
char, pointer), the primary register is HL (with register H containing the most significant byte). If
the first argument has four bytes (Long, unsigned long, float), the primary register is BC:DE
(with register B containing the most significant byte). Assembly-language code can use the first argument
very efficiently. Only the first argument is put into the primary register, while a// arguments—including the
first, pushed last—are pushed on the stack.

C function values return in the primary register, if they have four or fewer bytes, either in HL. or BC:DE.

Assembly language allows assumptions to be made about arguments passed on the stack, and auto vari-
ables can be defined by reserving locations on the stack for them. However, the offsets of such implicit
arguments and variables must be kept track of. If a function expects arguments or needs to use stack-based
variables, Rabbit recommends using the embedded assembly techniques described in the next section.

11.3.1 Stand-Alone Assembly Code in Extended Memory

Stand-alone assembly functions may be placed in extended memory by adding the xmem keyword as a
qualifier to #asm, as shown below. Care needs be taken so that branch instructions do not jump beyond
the current xmem window. To help prevent such bad jumps, the compiler limits xmem assembly blocks to
4096 bytes. Code that branches to other assembly blocks in xmem should always use 1jp or 1call.

#asm xmem

main: :

lcall fcn in xmem
lret

#endasm

#asm xmem
fcn in xmem: :
lret

#endasm

Dynamic C User’s Manual digi.com 177

www.digi.com

11.3.2 Example of Stand-Alone Assembly Code

The stand-alone assembly function foo () can be called from a Dynamic C function.

int foo (int); // A function prototype can be declared for stand-alone
// assembly functions, which will cause the compiler
// to perform the appropriate type-checking.
main () {
int i,7;
i=1;
j=foo (1) ;
}

#asm
foo::

1d hl,?2 // The return value expected by main() is put
ret // in HL just before foo() returns
#endasm

The entire program can be written in assembly.

#asm
main: :

ret
#endasm

11.4 Embedded Assembly Code

When embedded in a C function, assembly code can access arguments and local variables (either auto or
static) by name. Furthermore, the assembly code does not need to manipulate the stack because the
functions prolog and epilog already do so.

11.4.1 The Stack Frame

The purpose and structure of a stack frame should be understood before writing embedded assembly code.
A stack frame is a run-time structure on the stack that provides the storage for all auto variables, function
arguments and the return address for a particular function. If the IX register is used for a frame reference
pointer, the previous value of IX is also kept in the stack frame.

178 digi.com Using Assembly Language

www.digi.com

11.4.1.1 Stack Frame Diagram
Figure 11.1 shows the general appearance of a stack frame.

Figure 11.1 Assembly Code Stack Frame

Stack Frame

= Last Auto Variable -

o

Optional — °

| , -

— First Auto Variable —

< Frame Reference
Point

Optional — - IX Register -

Return Address

First Parameter
— (pushed last) -
: L o i
Optional .

- o -
— Last Parameter - (stack grows down)
(pushed first)

Lower Addresses

: | r Structure Return
Optional B Space _ Higher Addresses

The return address is always necessary. The presence of auto variables depends on the function definition.
The presence of arguments and structure return space depends on the function call. (The stack pointer may
actually point lower than the indicated mark temporarily because of temporary information pushed on the
stack.)

The shaded area in the stack frame is the stack storage allocated for auto variables. The assembler sym-
bol @SP represents the size of this area.

11.4.1.2 The Frame Reference Point

The frame reference point is a location in the stack frame that immediately follows the function’s return
address. The IX register may be used as a pointer to this location by putting the keyword use i x before
the function, or the request can be specified globally by the compiler directive #useix. The default is
#nouseix. If the IX register is used as a frame reference pointer, its previous value is pushed on the
stack after the function’s return address. The frame reference point moves to encompass the saved X
value.

Dynamic C User’s Manual digi.com 179

www.digi.com

11.4.2 Embedded Assembly Example

The purpose of the following sample program, asm1l . c, is to show the different ways to access stack-

based variables from assembly code.

void func(char ch, int i, long 1qg);

main () {
char ch;
int 1i;
long 1lg;

ch = 0x11;
i = 0x2233;
1lg = 0x44556677L;
func(ch, i, 1g9);
}

void func (char ch, int i, long 1lg) {
auto int x;
auto int z;

x = 0x8888;
z 0x9999;

#asm
// This is equivalent to the C statement: x = 0x8888
1d hl, 0x8888
1d (sp+@SP+x), hl

// This is equivalent to the C statement: z = 0x9999
1d hl, 0x9999
1d (sp+@SP+z), hl

// @SP+i gives the offset of i from the stack frame on entry.
// On the Rabbit, this is how HL is loaded with the value in i.
1d hl, (sp+@SP+1)

// This works if func() is useix; however, if the [X register
// has been changed by the user code, this code will fail.
1d hl, (ix+1i)

// This method works in either case because the assembler adjusts the
// constant @SP, so changing the function to nouseix with the keyword
// nouseix, or the compiler directive #nouseix will not break the code.
// But, if SP has been changed by user code, (e.g., a push) it won't work.
1d hl, (sp+@SP+1g+2)
1d b,h
1d €y L
1d hl, (sp+@SP+1g)
ex de, hl

#endasm

}

180

digi.com

Using Assembly Language

www.digi.com

11.4.3 The Disassembled Code Window

A program may be debugged at the assembly level by opening the Disassembled Code window (aka, the
Assembly window). Single stepping and breakpoints are supported in this window. When the “Disassem-
bled Code” window is open, single stepping occurs instruction by instruction rather than statement by
statement. The figure below shows the “Disassembled Code” window for the example code, asml . c.

Figure 11.2 Disassembled Code Window

Address | Opcode Instruction Zycles
[ASM1.C(8)1: ch = Ox11;
G] [IS =
a Sp
1§76 3611 1d (hi),ox11 7
1f78 EF rst Ox 28 8
[ASM1.CC(10)1: i = Ox2233:
1§79 213322 1d hl, 22233 6
1f7c D44 1d (sp+4),hl 11
1f7¢ EF rst PxZ28 8
[ASM1.C(12)1: lg = 0Ox44556677L;
1£7¢ 210002 1d hl, 2x200R 6
1§82 39 add sp 2
1¢,83 117766 1d de . Ox6677 6
1,86 215544 1d bc, @x4455 6
1§89 (CD5328 call slong_ 12
1f8c EF rst BOx 28 8
[ASMI1.C(14)1: func(ch,i,la):
1f8d 2idoea 1d hl, ox000@ 6
1f99 395 add hl.s 2
1£91 ©SF 1d e (RS 5
1§92 23 inc hi 2
1§93 56 1d d,(hl) 5
1§94 23 inc hi 2
1§95 4E 1d c,(hl) 5
1§96 23 inc hi 2
1§97 46 1d b, (hl) 5
1§98 C5 push bc 10
1¢99 DS us de 10
1f9a C408 Td hl,(sp+8) 9
1f9¢c ES5 Tus h hl 10
1f9d 21eCoa d hi, axoR0C 6
1fald 9 add hl, Sﬁ 2
1fal DDE4e22 1d hl)(hl+@) 11
fad 2600 d h, Ox2@ 4
1fa6 ES push hl 10
1fa7 CDB&1F call func 12
faa nop 2
1fab 2708 add sp, Ox08 4
rst X 8

lfad EF
[ASM1.C(15)1: 3

The Disassembled Code window shows the memory address on the far left, followed by the opcode bytes,
followed by the mnemonics for the instruction. The last column shows the number of cycles for the
instruction, assuming no wait states. The total cycle time for a block of instructions will be shown at the
bottom of the window when the block is selected. The total assumes one execution per instruction, so the
user must take looping and branching into consideration when evaluating execution times.

Dynamic C User’s Manual digi.com 181

www.digi.com

11.4.4 Local Variable Access
Accessing static local variables is simple because the symbol evaluates to the address directly. The follow-
ing code shows, for example, how to load static variable y into HL.

1d hl, (y) ; load hl with contents of y

11.4.4.1 Using the IX Register as a Frame Pointer
Using IX as a frame pointer is a convenient way to access stack variables in assembly. Using SP requires
extra bookkeeping when values are pushed on or popped off the stack.

Now, access to stack variables is easier. Consider, for example, how to load ch into register A.

1d a, (ix+ch) ; a<--ch

The [X+offset load instruction takes 9 clock cycles and opcode is three bytes. If the program needs to load
a four-byte variable such as 1g, the IX+offset instructions are as follows.

1d hl, (ix+1g+2) ; load LSB of Ig

1d b,h ; longs are normally stored in BC:DE
1d c, L

1d hl, (ix+1qg) ; load MSB of g

ex de,hl

This takes a total of 24 cycles.

The offset from IX is a signed 8-bit integer. To use [X+offset, the variable must be within +127 or —128
bytes of the frame reference point. The @ SP method is the only method for accessing variables out of this
range. The @SP symbol may be used even if [X is the frame reference pointer.

11.4.4.2 Using Index Registers as Pointers to Aggregate Types
The members of Dynamic C aggregate types (structures and unions) can be accessed from within an
assembly block of code using any of the index registers: IX, 1Y, SP.

The library pool. 1ib has code that illustrates using an index register in assembly to access the member
of a structure that was defined in Dynamic C. Refer to the function palloc fast ().

Here is another example:

typedef struct{
int x;
int y;
long time;
}TStruct;

void func(int x, int y, TStruct *s) {
#asm

1d ix, (sp+@SP+s)

1d hl, (ix+[TStruct]+y)

#endasm

}

182 digi.com Using Assembly Language

www.digi.com

11.4.4.3 Functions in Extended Memory
If the xmem keyword is present, Dynamic C compiles the function to extended memory. Otherwise, Dynamic C
determines where to compile the function. Functions compiled to extended memory have a 3-byte return address
instead of a 2-byte return address.

Because the compiler maintains the offsets automatically, there is no need to worry about the change of
offsets. The @SP approach discussed previously as a means of accessing stack-based variables works
whether a function is compiled to extended memory or not, as long as the C-language names of local vari-
ables and arguments are used.

A function compiled to extended memory can use IX as a frame reference pointer as well. This adds an
additional two bytes to argument offsets because of the saved X value. Again, the IX+offset approach dis-
cussed previously can be used because the compiler maintains the offsets automatically.

11.5 C Calling Assembly

Dynamic C does not assume that registers are preserved in function calls. In other words, the function
being called need not save and restore registers.

11.5.1 Passing Parameters

When a program calls a function from C, it puts the first argument into HL (if it has one or two bytes) with
register H containing the most significant byte. If the first argument has four bytes, it goes in BC:DE (with
register B containing the most significant byte). Only the first argument is put into the primary register,
while all arguments—including the first, pushed last—are pushed on the stack.

11.5.2 Location of Return Results

If a C-callable assembly function is expected to return a result (of primitive type), the function must pass
the result in the “primary register.” If the result is an int, unsigned int, char, or a pointer, return
the result in HL (register H contains the most significant byte). If the resultisa 1long, unsigned
long, or float, return the result in BCDE (register B contains the most significant byte). A C function
containing embedded assembly code may, of course, use a C return statement to return a value. A
stand-alone assembly routine, however, must load the primary register with the return value before the
ret instruction.

11.5.3 Returning a Structure

In contrast, if a function returns a structure (of any size), the calling function reserves space on the stack
for the return value before pushing the last argument (if any). Dynamic C functions containing embedded
assembly code may use a C return statement to return a value. A stand-alone assembly routine, how-
ever, must store the return value in the structure return space on the stack before returning.

Inline assembly code may access the stack area reserved for structure return values by the symbol
@RETVAL, which is an offset from the frame reference point.

Dynamic C User’s Manual digi.com 183

www.digi.com

The following code shows how to clear field £1 of a structure (as a returned value) of type struct s.

typedef struct ss {

int £0; // first field
char f1; // second field
} xyz;

Xyz my struct;
my struct = func();

xyz. .lel'lC () {

#asm
XOor a ; clear register A.
1d hl, @SP+@RETVAL+ss+fl ; hl <- the offset from SP to f1 field of returned struct
add hl, sp ; hl now points to fl.
1d (hl),a ; load a (now 0) to f1.
#endasm

}

It is crucial that QRSP be added to @RETVAL because @RRETVAL is an offset from the frame reference
point, not from the current SP.

184 digi.com Using Assembly Language

www.digi.com

11.6 Assembly Calling C

A program may call a C function from assembly code. To make this happen, set up part of the stack frame
prior to the call and “unwind” the stack after the call. The procedure to set up the stack frame is described
here.

1. Save all registers that the calling function wants to preserve. A called C function may change the value
of any register. (Pushing registers values on the stack is a good way to save their values.)

2. If the function return is a st ruct, reserve space on the stack for the returned structure. Most functions
do not return structures.

. Compute and push the last argument, if any.
. Compute and push the second to last argument, if any.

. Continue to push arguments, if there are more.

AN O W

. Compute and push the first argument, if any. Also load the first argument into the primary register (HL
for int, unsigned int, char, and pointers, or BCDE for long, unsigned long, and
float)ifitis of a primitive type.

7. Issue the call instruction.

The caller must unwind the stack after the function returns.

1. Recover the stack storage allocated to arguments. With no more than 6 bytes of arguments, the program
may pop data (2 bytes at time) from the stack. Otherwise, it is more efficient to compute a new SP
instead. The following code demonstrates how to unwind arguments totaling 36 bytes of stack storage.

; Note that HL is changed by this code!
; Use “ex de,hl” to save HL if HL has the return value

;;;ex de,hl ; save HL (if required)
1d hl, 36 ; want to pop 36 bytes
add hl, sp ; compute new SP value
1d sp,hl ; put value back to SP

;;:ex de,hl ; restore HL (if required)

2. If the function returns a st ruct, unload the returned structure.
3. Restore registers previously saved. Pop them off if they were stored on the stack.

4. If the function return was not a st ruct, obtain the returned value from HL or BCDE.

Dynamic C User’s Manual digi.com 185

www.digi.com

11.7 Interrupt Routines in Assembly

Interrupt Service Routines (ISRs) may be written in Dynamic C (declared with the keyword interrupt). But
since an assembly routine may be more efficient than the equivalent C function, assembly is more suitable
for an ISR. Even if the execution time of an ISR is not critical, the latency of one ISR may affect the
latency of other ISRs.

Either stand-alone assembly code or embedded assembly code may be used for ISRs. The benefit of
embedding assembly code in a C-language ISR is that there is no need to worry about saving and restoring
registers or reenabling interrupts. The drawback is that the C interrupt function does save all registers,
which takes some amount of time. A stand-alone assembly routine needs to save and restore only the regis-
ters it uses.

11.7.1 Steps Followed by an ISR

The CPU loads the Interrupt Priority register (IP) with the priority of the interrupt before the ISR is called.
This effectively turns off interrupts that are of the same or lower priority. Generally, the ISR performs the
following actions:

1. Save all registers that will be used, i.e., push them on the stack. Interrupt routines written in C save all
registers automatically. Stand-alone assembly routines must push the registers explicitly.

2. Push and pop the LXPC as a defensive programming strategy to avoid corrupting large memory support.
For example, the LCALL instruction clears the LXPC so it is essential that this register is saved before
issuing an LCALL and restored after the LRET.

3. Determine the cause of the interrupt. Some devices map multiple causes to the same interrupt vector. An
interrupt handler must determine what actually caused the interrupt.

4. Remove the cause of the interrupt.

5. If an interrupt has more than one possible cause, check for all the causes and remove all the causes at the
same time.

6. When finished, restore registers saved on the stack. Naturally, this code must match the code that saved
the registers. Interrupt routines written in C perform this automatically. Stand-alone assembly routines
must pop the registers explicitly.

7. Restore the interrupt priority level so that other interrupts can get the attention of the CPU. ISRs written
in C restore the interrupt priority level automatically when the function returns. However, stand-alone
assembly ISRs must restore the interrupt priority level explicitly by calling ipres.

The interrupt priority level must be restored immediately before the return instructions ret or
reti. If the interrupts are enabled earlier, the system can stack up the interrupts. This may or
may not be acceptable because there is the potential to overflow the stack.

8. Return. There are two types of interrupt returns: ret and reti.

The value in IP is shown in the status bar at the bottom of the Dynamic C window. If a breakpoint is
encountered, the IP value shown on the status bar reflects the saved context of IP from just before the
breakpoint.

186 digi.com Using Assembly Language

www.digi.com

11.7.2 Modifying Interrupt Vectors

Prior to Dynamic C 7.30, interrupt vector code could be modified directly. By reading the internal and
external interrupt registers, IIR and EIR, the location of the vector could be calculated and then written to
because it was located in RAM. This method will not work if separate 1&D space is enabled because the
vectors must be located in flash. To accommodate separate I&D space, the way interrupt vectors are set up
and modified has changed slightly. Please see the designer’s handbook for your Rabbit microprocessor
(e.g., the Rabbit 3000 Designer s Handbook) for detailed information about how the interrupt vectors are
set up. This section will discuss how to modify the interrupt vectors after they have been set up.

For backwards compatibility, “modifiable” vector relays are provided in RAM. In C, they can be accessed
through the SetVectIntern and SetVectExtern functions. In assembly, they are accessed through

INTVEC BASE + <vector offset> or XINTVEC BASE + <vector offset>. The values for <vector offset>
are defined in 1ib\..\bioslib\sysio.lib, and are listed here for convenience.

Table 11-3. Internal Interrupts and their Offset from INTVEC_BASE

PERIODIC OFS SERA_OFS
RST10 OFS SERB_OFS
RST18 OFS SERC_OFS
RST20 OFS SERD_OFS
RST28 OFS SERE_OFS
RST38 OFS SERF_OFS
SLAVE_OFS QUAD OFS
TIMERA OFS INPUTCAP OFS
TIMERB_OFS

Table 11-4. External Interrupts and their
Offset from XINTVEC_BASE

EXTO_ OFS

EXT1_OFS

Dynamic C User’s Manual digi.com 187

www.digi.com

The following example from RS232 . LIB illustrates the new I&D space compatible way of modifying
interrupt vectors.

The following code fragment to set up the interrupt service routine for the periodic interrupt from Dynamic
C 7.25 is not compatible with separate I&D space:

#asm xmem

; *** Old method ***
1d a,iir ; get the offset of interrupt table
1d h,a
1d 1,0x00
1d iy,hl
1d (iy),0c3h ; Jp instruction entry
inc iy
1d hl,periodic isr ; set service routine
1d (iy),hl
#endasm

The following code fragment shows an I1&D space compatible method for setting up the ISR for the peri-
odic interrupt in Dynamic C 7.30:

#asm xmem

; *** New method ***
1d a, 0xc3 ; jp instruction entry
1d hl, periodic isr ; set service routine
1d (INTVEC_ BASE+PERIODIC OFS), a ;write to the interrupt table
1d (INTVEC BASE+PERIODIC OFS+1), hl
fendasm

When separate I&D space is enabled, INTVEC_ BASE points to a proxy interrupt vector table in RAM
that is modifiable. The code above assumes that the actual interrupt vector table pointed to by the IIR is set
up to point to the proxy vector. When separate I&D space is disabled, INTVEC BASE and the IIR point to
the same location. The code above is an example only, the default configuration for the periodic interrupt
is not modifiable.

188 digi.com Using Assembly Language

www.digi.com

The following example from RS232 . LIB illustrates the new I&D space compatible way of modifying

interrupt vectors.

The following function serAclose () from Dynamic C 7.25, is not compatible with separate I&D
space:

#asm xmem

serAclose::
1d a,iir ; hl=spaisr_start, de={iir,0xe0}
1d h,a
1d 1, 0xc0
1d a,0xc9 ; retin first byte
ipset 1
1d (hl),a
1d a, 0x00 ; disable interrupts for port
1ld (SACRShadow), a
ioi 1d (SACR), a
ipres
lret

#endasm

This version of serAclose () in Dynamic C 7.30 is compatible with separate I&D space:

#asm xmem

serAclose::
1d a, 0xc9
ipset 1
1d (INTVEC _BASE + SERA OFS), a ; ret in first byte of spaisr_start
1d a, 0x00 ; disable interrupts for port

1ld (SACRShadow), a
ioi 1d (SACR), a

ipres

lret

#endasm

Dynamic C User’s Manual digi.com

189

www.digi.com

If separate I&D space is enabled, using the modifiable interrupt vector proxy in RAM adds about 80 clock
cycles of overhead to the execution time of the ISR. To avoid that, the preferred way to set up interrupt
vectors is to use the new keyword, interrupt vector, to set up the vector location at compile time.

When compiling with separate 1&D space, modify applications that use SetVectIntern (),
SetVectExtern2000 () or SetVectExtern3000 () touse interrupt vector instead.

The following code, from /Samples/TIMERB/TIMER B.C, illustrates the change that should be
made.

void main ()

{

#if SEPARATE INST DATA

interrupt vector timerb intvec timerb isr;
#else

SetVectIntern (0x0B, timerb isr); // setup ISR
#endif

If interrupt vector is used multiple times for the same interrupt vector, the last one encountered by
the compiler will override all previous ones.

interrupt vector is syntactic sugar for using the origin directives and assembly code. For example,
the line:

interrupt vector timerb intvec timerb isr;

is equivalent to:
#rcodorg timerb intvec apply
#asm
jp timerb isr

#endasm

#rcodorg rootcode resume

190 digi.com Using Assembly Language

www.digi.com

Table 11-5 lists the defined interrupt vector names that may be used with interrupt vector, along

with their ISRs.

Table 11-5. Interrupt Vector and ISR Names

Interrupt Vector Name

ISR Name

Default Condition

periodic_intvec

periodic_isr

Fast and nonmodifiable

rstl0_intvec

User defined name

User defined

rstl8 intvec

rst20_intvec

rst28 intvec

These interrupt vectors and their ISRs should never be altered
by the user because they are reserved for the debug kernel.

rst38 intvec

User defined name

User defined

slave intvec

slave isr

Fast and nonmodifiable

timera intvec

User defined name

User defined

timerb intvec

User defined name

User defined

inputcap intvec

User defined name

quad intvec

gqd isr

ext0 intvec

User defined name

extl intvec

User defined name

DevMateSerialISR |Fast and nonmodifiable

sera intvec? .

- spa_isr User defined
serb intvec spb_isr
serc_intvec spc_isr
serd intvec spd_isr
sere intvec spe isr
serf intvec spf isr User defined

a. Please note that this ISR shares the same interrupt vector as DevMateSerial ISR. Using
spa_isr precludes Dynamic C from communicating with the target.

Dynamic C User’s Manual

digi.com

191

www.digi.com

11.8 Common Problems

If you have problems with your assembly code, consider the possibility of any of the following situations:

e Unbalanced stack.
Ensure the stack is “balanced” when a routine returns. In other words, the SP must be same on
exit as it was on entry. From the caller’s point of view, the SP register must be identical before
and after the call instruction.

» Using the @SP approach after pushing temporary information on the stack.
The @sP approach for inline assembly code assumes that SP points to the low boundary of the
stack frame. This might not be the case if the routine pushes temporary information onto the
stack. The space taken by temporary information on the stack must be compensated for.

The following code illustrates the concept.

; SP still points to the low boundary of the call frame
push hl ; save HL

; SP now two bytes below the stack frame!

1d hl, @SP+x+2 ; Add 2 to compensate for altered SP

add hl, sp ; compute as normal
1d a, (hl) ; get the content
pop hl ; restore HL

; SP again points to the low boundary of the call frame

e Registers not preserved.
In Dynamic C, the caller is responsible for saving and restoring all registers. An assembly rou-
tine that calls a C function must assume that all registers will be changed.

Unpreserved registers in interrupt routines cause unpredictable and unrepeatable problems. In
contrast to normal functions, interrupt functions are responsible for saving and restoring all
registers themselves.

* Relocatable code.
Jump relative (JR) instructions allow easier code relocation because the jump is relative to the
current program counter. For example, RAM functions are usually written in assembly and are
relocated to RAM from flash. A jump (JP) instruction would not work in this case because the
jump would be to a flash location and not the intended RAM location. Using JR instead of JP
will jump to the intended RAM location.

192 digi.com Using Assembly Language

www.digi.com

RABBIT = PRODUCT MANUAL

12. KEYWORDS

A keyword is a reserved word in C that represents a basic C construct. It cannot be used for any other pur-
pose.

abandon

Used in single-user cofunctions, abandon { } must be the first statement in the body of the cofunction.
The statements inside the curly braces will be executed only if the cofunction is forcibly abandoned and if
acallto loophead () ismade in main () before calling the single-user cofunction. See
Samples\Cofunc\Cofaband. c for an example of abandonment handling.

abort

Jumps out of a costatement.

for(;;){
costate {

if(condition) abort;

Dynamic C User’s Manual digi.com 193

www.digi.com

align

Used in assembly blocks, the align keyword outputs a padding of nops so that the next instruction to be
compiled is placed at the boundary based on VALUE.

#asm

align

<VALUE>

#endasm

VALUE can have any (positive) integer expression or the special operands even and odd. The operand
even aligns the instruction on an even address, and odd on an odd address. Integer expressions align on
multiples of the value of the expression.

Some examples:

align
align
align
align
align

odd

2

4

100h

sizeof (int) +4

This aligns on the next odd address

Aligns on a 16-bit (2-byte) boundary

Aligns on a 32-bit (4-byte) boundary

Aligns the code to the next address that is evenly divisible by 0x100
Complex expression, involving sizeof and integer constant

Note that integer expressions are treated the same way as operand expressions for other asm operators, so
variable labels are resolved to their addresses, not their values.

always_on

The costatement is always active. Unnamed costatements are always on.

anymem

Allows the compiler to determine in which part of memory a function will be placed.

anymem int func () {

}

#memmap anymem

fasm anymem

#endasm

194

digi.com Keywords

www.digi.com

asm

Use in Dynamic C code to insert one assembly language instruction. If more than one assembly instruction
is desired use the compiler directive #asm instead.

int func() {
int x,vy,2z;

asm 1d hl,0x3333

auto

A functions’s local variable is located on the system stack and exists as long as the function call does.

int func () {
auto float x;

bbram

IMPORTANT: bbram does not provide data integrity; instead, use the keyword protected to ensure integ-
rity of data across power failures.

Identifies a variable to be placed into a second root data area with global extent/scope reserved for battery-
backed RAM on boards with more than one RAM device. Generally, the battery-backed RAM is attached
to CS1 due to the low-power requirements. Other than its assigned root data location, a bbram variable is
identical to a normal root variable. In the case of a reset or power failure, the value of a bbram variable is
preserved, but not atomically like with protected variables. No software check is possible to ensure that the
RAM is battery-backed. This requirement must be enforced by the user. Note that bbram variables must
have either static or global storage.

For boards that utilize fast SRAM in addition to a battery-backed SRAM, like the RCM3200, the size of
the battery-backed root data space is specified by a BIOS macro called BBROOTDATASIZE. In version
Dynamic C 9.50 and earlier, the default value for this is 4K. Note that this macro is defined to zero for
boards with only a single SRAM.

See the Rabbit 2000 Microprocessor Designer’s Handbook or the Rabbit 3000 Microprocessor Designer's
Handbook for information on how the second data area is reserved.

On boards with a single RAM, bbram variables will be treated the same as normal root variables. No warn-
ing will be given; the bbram keyword is simply ignored when compiling to boards with a single RAM with
the assumption that the RAM is battery-backed. Please refer to _xalloc for information on how to access
battery-backed data in xmem.

Dynamic C User’s Manual digi.com 195

www.digi.com

break

Jumps out of a loop, i f, or case statement.

while (expression) {

if(condition) break;
}
switch(expression) {

case 3:

break;

C

Use in assembly block to insert one Dynamic C instruction.

#asm

InitValues::

¢ start time = 0;

c counter = 256;
1d hl, 0xa0;
ret

#endasm

case

Identifies the next case in a switch statement.

switch(expression) {
case constant:

case constant:

case constant:

196 digi.com

Keywords

www.digi.com

char

Declares a variable or array element as an unsigned 8-bit character.

char ¢, x, *string = "hello";

int i;

c = (char)i; // type casting operator
cofunc

Indicates the beginning of a cofunction.

cofunc|scofunc type [name][[dim]] ([type argl, ..., type argN])
{ [statement | yield; | abort; | waitfor(expression);]... }{

cofunc, scofunc

The keywords cofunc or scofunc (a single-user cofunction) identify the statements enclosed in curly
braces that follow as a cofunction.

type
Whichever keyword (cofunc or scofunc) is used is followed by the data type returned (void, int,
etc.).

name

A name can be any valid C name not previously used. This results in the creation of a structure of type
CoData of the same name.

dim

The cofunction name may be followed by a dimension if an indexed cofunction is being defined.

cofunction arguments (argl, . . ., argN)

As with other Dynamic C functions, cofunction arguments are passed by value.

cofunction body

A cofunction can have as many C statements, including abort, yield,waitfor,and waitfordone
statements, as needed. Cofunctions can contain calls to other cofunctions.

Dynamic C User’s Manual digi.com 197

www.digi.com

const

This keyword declares that a value will be stored in flash, thus making it unavailable for modification.
const is a type qualifier and may be used with any static or global type specifier (char, int, struct,
etc.). The const qualifier appears before the type unless it is modifying a pointer. When modifying a
pointer, the const keyword appears after the “*.”

In each of the following examples, if const was missing the compiler would generate a trivial warning.
Warnings for const can be turned off by changing the compiler options to report serious warnings only.
The use of const is not currently permitted with return types, auto variables or parameters in a function
prototype.

Example 1:

// ptr_to_xis a constant pointer to an integer

int x;

int * const cptr to x = &x;

Example 2:

// cptr_to iis a constant pointer to a constant integer
const int i = 3;

const int * const cptr to i = &i;
Example 3:

// axis a constant 2 dimensional integer array
const int ax[2][2] = {{2,3}, {1,2}};

Example 4:

struct rec {
int a;
char b[10];
Ii
// zedis a constant struct
const struct rec zed = {5, “abc”};

Example S:

// cptris a constant pointer to an integer
typedef int * ptr to int;

const ptr to int cptr = &i;

// this declaration is equivalent to the previous one
int * const cptr = &i;

NOTE: The default storage class is auto, so the above code would have to be outside of a
function or would have to be explicitly set to static.

198 digi.com Keywords

www.digi.com

continue

Skip to the next iteration of a loop.

while (expression) {
if(nothing to do) continue;

costate

Indicates the beginning of a costatement.

costate [name [state] 1 {

}

Name can be absent. If name is present, state canbe always onorinit on. If state is absent,
the costatement is initially off.

debug

Indicates a function is to be compiled in debug mode. This is the default case for Dynamic C functions
with the exception of pure assembly language functions.

Library functions compiled in debug mode can be single stepped into, and breakpoints can be set in them.

debug int func () {

}

#asm debug

#endasm
The debug keyword in combination with the nor st keyword will give you run-time checking without
debug. For example,

debug norst foo() {
}

will perform run-time checking if enabled, but will not have rst instructions.

Dynamic C User’s Manual digi.com 199

www.digi.com

default

Identifies the default case in a switch statement. The default case is optional. It executes only when the

switch expression does not match any other case.

switch(expression) {
case constl:

case constZ2:

default:

do

Indicates the beginning of a do loop. A do loops tests at the end and executes at least once.

do

while (expression);

The statement must have a semicolon at the end.

else
The false branch of an 1 f statement.
if(expression)
statement // “statement” executes when “expression” is true
else
statement // “statement” executes when “expression” is false

200 digi.com

Keywords

www.digi.com

enum

Defines a list of named integer constants:

enum foo {

white, // default is O for the first item
black, // will be 1
brown, // will be 2
spotted = -2, // will be -2
striped, // will be -3

}s

An enum can be declared in local or global scope. The tag foo is optional; but it allows further declara-
tions:

enum foo rabbits;

To see a colorful sample of the enum keyword, run /samples/enumn. c.

extern

Indicates that a variable is defined in the BIOS, later in a library file, or in another library file. Its main use
is in module headers.

/*** BeginHeader ..., var */
extern int wvar;
/*** EndHeader */
int var;

Dynamic C User’s Manual digi.com 201

www.digi.com

firsttime

The keyword firsttime in front of a function body declares the function to have an implicit *CoData
parameter as the first parameter. This parameter should not be specified in the call or the prototype, but
only in the function body parameter list. The compiler generates the code to automatically pass the pointer
to the CoData structure associated with the costatement from which the call is made. A firstime
function can only be called from inside of a costatement, cofunction, or slice statement. The DelayTick
function from COSTATE . LIB below is an example of a firsttime function.

firsttime nodebug int DelayTicks (CoData *pfb, unsigned int ticks)
{
if (ticks==0) return 1;
if (pfb->firsttime) {
fb->firsttime=0;
/* save current ticker */
fb->content.ul=(unsigned long)TICK TIMER;

}
else if (TICK TIMER - pfb->content.ul >= ticks)
return 1;

return O;

float

Declares variables, function return values, or arrays, as 32-bit I[EEE floating point.

int func () {
float x, vy, *ps
float PI = 3.14159265;

}

float func(float par) {

202 digi.com Keywords

www.digi.com

for

Indicates the beginning of a for loop. A for loop has an initializing expression, a limiting expression,
and a stepping expression. Each expression can be empty.

for(;;) { // an endless loop
}
for(i = 0; 1 < n; i++) { // counting loop
}

goto

Causes a program to go to a labeled section of code.

if(condition) goto RED;

RED:

Use goto to jump forward or backward in a program. Never use goto to jump into a loop body or a

switch case. The results are unpredictable. However, it is possible to jump out of a loop body or
switch case.

Dynamic C User’s Manual digi.com 203

www.digi.com

if

Indicates the beginning of an i f statement.

if(tank full) shut off water();

if(expression) {
statements

}else if(expression) {
statements

}else if(expression) {
statements

}else if(expression) {
statements

lelse({
statements

}

If one of the expressions is true (they are evaluated in order), the statements controlled by that expression
are executed. An 1 f statement can have zero or more el se 1f parts. The else is optional and executes
only when none of the 1 f or else 1if expressions are true (non-zero).

init on

The costatement is initially on and will automatically execute the first time it is encountered in the execu-
tion thread. The costatement becomes inactive after it completes (or aborts).

204 digi.com Keywords

www.digi.com

int

Declares variables, function return values, or array elements to be 16-bit integers. If nothing else is speci-
fied, int implies a 16-bit signed integer.

int i, j, *k; // 16-bit signed
unsigned int x; // 16-bit unsigned
long int z; // 32-bit signed
unsigned long int w; // 32-bit unsigned
int funct (int arg) {
}

interrupt

Indicates that a function is an interrupt service routine (ISR). All registers, including alternates, are saved
when an interrupt function is called and restored when the interrupt function returns. Writing ISRs in C is
never recommended, especially when timing is critical.

interrupt isr () {

}

An interrupt service routine returns no value and takes no arguments.

Dynamic C User’s Manual digi.com 205

www.digi.com

interrupt vector

This keyword, intended for use with separate 1&D space, sets up an interrupt vector at compile time. This
is its syntax:

interrupt vector <INT VECTOR NAME> <ISR NAME>
Interrupt vector names and ISR names are found in Table 11-5 on page 191. The following code fragment
illustrates how interrupt vector is used.

// Setup an Interrupt Service Routine for Timer B

#asm
timerb isr::
; ISR code
ret

#endasm

main () {

// Variables

// Setup ISR
interrupt vector timerb intvec timerb isr; // Compile time setup

// Code

}

interrupt vector overrides run time setup. For run time setup, you would replace the
interrupt vector statement above with:

#rcodorg <INT VEC NAME> apply

#asm
INTVEC_RELAY_SETUP(timerb_intvec + TIMERB_OFS)

#endasm
#rcodorg rootcode resume

This results in a slower interrupt (80 clock cycles are added), but an interrupt vector that can be modified
at run time. Interrupt vectors that are set up using interrupt vector are fast, but can’t be modified
at run time since they are set at compile time.

If you are using Dynamic C 9.30 or later, the RK FIXED VECTORS macro must be used to condition-
ally compile code containing the interrupt vector keyword. For Rabbit 3000A and later CPUs,
Dynamic C makes use of the new RAMSR capability to make in-RAM interrupt table access fast. The fol-
lowing code demonstrates the correct way touse RK FIXED VECTORS so as to eliminate errors
regarding undefined interrupt vectors.

206 digi.com Keywords

www.digi.com

interrupt vector (cont’d)

As demonstrated in DC 9.52's standard samples that conditionally use the interrupt vector key-
word, the correct usage is as follows:

nodebug root interrupt void pwm isr () {
// example code does not do anything

}

nodebug root interrupt void ic isr() {
// example code does not do anything

}

main () {

#if SEPARATE INST DATA _ && (RK _FIXED VECTORS)
interrupt vector inputcap intvec ic isr;
interrupt vector pwm intvec pwm isr;

#else
SetVectIntern (0x1A, ic isr); // set up ISR
SetVectIntern(0x17, pwm isr); // set up ISR

#endif

printf ("ISR's setup correctly\n");
}

Dynamic C User’s Manual digi.com 207

www.digi.com

__lcall

When used in a function definition, the 1call function prefix forces long call and return (Icall and
Iret) instructions to be generated for that function, even if the function is in root. This allows root functions
to be safely called from xmem. In addition to root functions, this prefix also works with function pointers.
The 1call prefix works safely with xmem functions, but has no effect on code generation. Its use
with cofunctions is prohibited and will generate an error if attempted.

root lcall int foo(void) {

return 10; // Generates an lret instruction, even though we are in root

}

main () {
foo () // This now generates an Icall instruction

long

Declares variables, function return values, or array elements to be 32-bit integers. If nothing else is speci-
fied, 1ong implies a signed integer.

long i, J, *k; // 32-bit signed

unsigned long int w; // 32-bit unsigned

long funct (long arg) {

main

Identifies the main function. All programs start at the beginning of the main function. (main is actu-
ally not a keyword, but is a function name.)

208 digi.com Keywords

www.digi.com

nodebug

Indicates a function is not compiled in debug mode. This is the default for assembly blocks.

nodebug int func () {

}

#asm nodebug
#endasm

See also “debug” and directives “#debug #nodebug”.

norst

Indicates that a function does not use the RST instruction for breakpoints.

norst void func () {

}

The norst keyword in combination with the debug keyword will give you run-time checking without
debug. For example,

debug norst foo() {
}

will perform runtime-checking if enabled, but will not have rst instructions.

nouseix

Indicates a function does not use the IX register as a stack frame reference pointer. This is the default case.

nouseix void func () {

NULL

The null pointer. (This is actually a macro, not a keyword.) Same as (void *) 0.

Dynamic C User’s Manual digi.com 209

www.digi.com

protected

An important feature of Dynamic C is the ability to declare variables as protected. Such a variable is pro-
tected against loss in case of a power failure or other system reset because the compiler generates code that
creates a backup copy of a protected variable before the variable is modified. If the system resets while the
protected variable is being modified, the variable’s value can be restored when the system restarts. This
operation requires battery-backed RAM and the use of the main system clock. If you are using the 32 kHz
clock you must switch back to the main system clock to use protected variables because the atomicity of
the write cannot be ensured when using the 32 kHz clock.

main () {
protected int statel, state2, state3;

_sysIsSoftReset(); // restore any protected variables

}

The callto sysIsSoftReset checks to see if the previous board reset was due to the compiler restart-
ing the program (i.e., a soft reset). If so, then it initializes the protected variable flags and calls
sysResetChain (), a function chain that can be used to initialize any protected variables or do other
initialization. If the reset was due to a power failure or watchdog time-out, then any protected variables
that were being written when the reset occurred are restored.

A system that shares data among different tasks or among interrupt routines can find its shared data cor-
rupted if an interrupt occurs in the middle of a write to a multi-byte variable (such as type int or float).
The variable might be only partially written at its next use. Declaring a multi-byte variable shared means
that changes to the variable are atomic, i.e., interrupts are disabled while the variable is being changed.
You may declare a multi-byte variable as both shared and protected.

register

The register keyword is not currently implemented in Dynamic C, but is reserved for possible future
implementation. It is currently synonymous with the keyword auto.

210 digi.com Keywords

www.digi.com

return

Explicit return from a function. For functions that return values, this will return the function result.

void func () {

if(expression) return;

}

float func (int x){
float temp;

return (temp * 10 + 1);

root

Indicates a function is to be placed in root memory. This keyword is semantically meaningful in function
prototypes and produces more efficient code when used. Its use must be consistent between the prototype

and the function definition.

root int func () {

}

fmemmap root
#asm root

#endasm

scofunc

Indicates the beginning of a single-user cofunction. See cofunc on page 197.

21

Dynamic C User’s Manual digi.com

www.digi.com

segchain

Identifies a function chain segment (within a function).

int func (int arg) {
int vec[10];

segchain GLOBAL INIT({
for(1 = 0; i<10; i++){ wvec[i]

I
o
~
—

}

This example adds a segment to the function chain GLOBAL INIT. Using segchain is equivalent to
using the # GLOBAL INIT directive. When this function chain executes, this and perhaps other segments
elsewhere execute. The effect in this example is to reinitialize vec[].

shared

Indicates that changes to a multi-byte variable (such as a £1oat) are atomic. Interrupts are disabled when
the variable is being changed. Local variables cannot be shared. Note that you must be running off the
main system clock to use shared variables. This is because the atomicity of the write cannot be ensured
when running off the 32 kHz clock.

shared float x, vy, z;
shared int 7J;

main () {

}

If i is a shared variable, expressions of the form i ++ (or i = i+ 1) constitute two atomic references to
variable 1, a read and a write. Be careful because i ++ is not an atomic operation.

212 digi.com Keywords

www.digi.com

short

Declares that a variable or array is short integer (16 bits). If nothing else is specified, short implies a 16-bit
signed integer.

short i, j, *k; // 16-bit, signed

unsigned short int w; // 16-bit, unsigned

short funct (short arg) {

size

Declares a function to be optimized for size (as opposed to speed).

size int func () {

sizeof

A built-in function that returns the size in bytes of a variable, array, structure, union, or of a data type.
sizeof () can be used inside of assembly blocks.

int 1list([] = { 10, 99, 33, 2, -7, 63, 217 };

x = sizeof (list); // x will be assigned 14

speed

Declares a function to be optimized for speed (as opposed to size).

speed int func () {

Dynamic C User’s Manual digi.com 213

www.digi.com

static

Declares a local variable to have a permanent fixed location in memory, as opposed to auto, where the
variable exists on the system stack. Global variables are by definition static. Local variables are auto

by default.
int func () {
int i; // auto by default
static float x; // explicitly static

struct

This keyword introduces a structure declaration, which defines a type.

struct {
int x;
int vy;
int z;
} thingl; // defines the variable thingl to be a struct
struct speed{
int x;
int y;
int z;

i // declares a struct type named speed

struct speed thing2; // defines variable thing? to be of type speed

Structure declarations can be nested.

struct {
struct speed slow;
struct speed slower;
} tortoise; // defines the variable tortoise to be a nested struct
struct rabbit ({
struct speed fast;
struct speed faster;

}i // declares a nested struct type named rabbit

struct rabbit chips; // defines the variable chips to be of type rabbit

214 digi.com

Keywords

www.digi.com

switch

Indicates the start of a switch statement.

switch(expression) {

case constl:
break;

case const2:
break;

case const3:
break

default

}

The switch statement may contain any number of cases. The constants of the case statements are com-
pared with expression. If there is a match, the statements for that case execute. The default case, if
it is present, executes if none of the constants of the case statements match expression.

If the statements for a case do not include a break, return, continue, or some means of exiting
the switch statement, the cases following the selected case will also execute, regardless of whether their
constants match the switch expression.

typedef

This keyword provides a way to create new names for existing data types.

typedef struct {

int x;

int vy;
}oxyz; // defines a struct type...
xyz thing; // ...and a thing of type xyz
typedef uint node; // meaningful type name

node master, slavel, slave2;

Dynamic C User’s Manual digi.com 215

www.digi.com

union

Identifies a variable that can contain objects of different types and sizes at different times. Items in a
union have the same address. The size of a union is that of its largest member.

union {
int x;
float y;
} abc; // overlays a float and an int

unsigned

Declares a variable or array to be unsigned. If nothing else is specified in a declaration, unsigned means
16-bit unsigned integer.

unsigned 1, j, *k; // 16-bit, unsigned
unsigned int x; // 16-bit, unsigned
unsigned long w; // 32-bit, unsigned

unsigned funct (unsigned arg) {

}

Values in a 16-bit unsigned integer range from 0 to 65,535 instead of —32768 to +32767. Values in an
unsigned long integer range from 0 to 232-1.

useix

Indicates that a function uses the IX register as a stack frame pointer.

useix void func () {

}

See also “nouseix” and directives “#useix #nouseix”.

216 digi.com Keywords

www.digi.com

void

This keyword conforms to ANSI C. Thus, it can be used in three different ways.

1. Parameter List - used to identify an empty parameter list (a.k.a., argument list). An empty parameter list
can also be identified by having nothing in it. The following two statements are functionally identical:

int functionName (void) ;
int functionName () ;

2. Pointer to Void - used to declare a pointer that points to something that has no type.

void *ptr to anything;

3. Return Type - used to state that no value is returned.

void functionName (paraml, param?2);

volatile

Reserved for future use.

waitfor

Used in a costatement or cofunction, this keyword identifies a point of suspension pending the outcome of
a condition, completion of an event, or some other delay.

for(;;){
costate {
waitfor (input(l) == HIGH);

Dynamic C User’s Manual digi.com 217

www.digi.com

waitfordone
(wfd)

The waitfordone keyword can be abbreviated as wfd. It is part of Dynamic C’s cooperative multitask-
ing constructs. Used inside a costatement or a cofunction, it executes cofunctions and firsttime func-
tions. When all the cofunctions and firsttime functions in the wfd statement are complete, or one of
them aborts, execution proceeds to the statement following wfd. Otherwise a jump is made to the ending
brace of the costatement or cofunction where the wfd statement appears; when the execution thread comes
around again, control is given back to the wfd statement.

The wfd statements below are from Samples\cofunc\cofterm.c

x = wfd login{(); // wifd with one cofunction

wfd { // wifd with several cofunctions
clrscr();
putat (5,5, "name:") ;
putat (5,6, "password:") ;
echoon () ;

}

wfd may return a value. In the example above, the variable x is setto 1 if 1login () completes execution
normally and set to -1 if it aborts. This scheme is extended when there are multiple cofunctions inside the
wfd: if no abort has taken place in any cofunction, wfd returns 1, 2, ..., n to indicate which cofunction
inside the braces finished executing last. If an abort takes place, wfd returns -1, -2, ..., -n to indicate which
cofunction caused the abort.

while

Identifies the beginning of a while loop. A while loop tests at the beginning and may execute zero
or more times.

while (expression) {

218 digi.com Keywords

www.digi.com

xdata

Declares a block of data in extended flash memory.

xdata name { value 1, ... value n };

The 20-bit physical address of the block is assigned to name by the compiler as an unsigned long variable.
The amount of memory allocated depends on the data type. Each char is allocated one byte, and each
int is allocated two bytes. If an integer fits into one byte, it is still allocated two bytes. Each f1oat and
long cause four bytes to be allocated.

The value list may include constant expressions of type int, flocat, unsigned int, long,
unsigned long, char, and (quoted) strings. For example:

xdata namel {'\x46','\x47"','"\x48"', "\x49"', "\x4A"', "\x20"', "\x20"'};
xdata name2 {'R','a','b','b','i','t"};

xdata name3 {" Rules! "},

xdata named {1.0,2.0, (float)3,40e-01,5e00, .6el};

The data can be viewed directly in the dump window by doing a physical memory dump using the 20-bit
address of the xdata block. See Samples\Xmem\xdata . c for more information.

Dynamic C User’s Manual digi.com 219

www.digi.com

Xmem

Indicates that a function is to be placed in extended memory. This keyword is semantically meaningful in
function prototypes. Good programing style dictates its use be consistent between the prototype and the
function definition. That is, if a function is defined as:

xmem int func() {}

the function prototype should be:

xmem int func () ;

Any of the following will put the function in xmem:

xmem int func () ;
xmem int func () {}

or

xmem int func () ;
int func() {}

or

int func():;
xmem int func () {}

In addition to flagging individual functions, the xmem keyword can be used with the compiler directive
#memmap to send all functions not declared as root to extended memory.

#memmap xmem

This construct is helpful if an application is running out of root code space. Another strategy is to use sepa-
rate [&D space. Using both #memmap xmem and separate I&D space might cause an application to run
out of xmem, depending on the size of the application and the size of the flash. If this occurs, the program-
mer should consider using only one of the #memmap xmem or separate I&D space options. If the applica-
tion is extremely tight for xmem code memory but has root code memory to spare, the programmer may
also consider explicitly tagging some xmem or anymem functions with the root keyword.

xstring

Declares a table of strings in extended memory. The strings are allocated in flash memory at compile time
which means they can not be rewritten directly.

The table entries are 20-bit physical addresses. The name of the table represents the 20-bit physical
address of the table; this address is assigned to name by the compiler.

xstring name { “string 1”7, . . . “string n” };

220 digi.com Keywords

www.digi.com

yield

Used in a costatement, this keyword causes the costatement to pause temporarily, allowing other costate-
ments to execute. The yield statement does not alter program logic, but merely postpones it.

for(;;){
costate {

yield;

Dynamic C User’s Manual digi.com 221

www.digi.com

12.1 Compiler Directives

Compiler directives are special keywords prefixed with the symbol #. They tell the compiler how to pro-
ceed. Only one directive per line is allowed, but a directive may span more than one line if a backslash (\)
is placed at the end of the line(s).

There are some compiler directives used to decide where to place code and data in memory. They are
called origin directives and include #rcodorg, #rvarorg and #xcodorg. A detailed description of
origin directives may be found in the Rabbit 3000 Designer s Handbook (look in the index under “origin
directives™).

#asm

Syntax: #asm options
Begins a block of assembly code. The available options are:

¢ const: When seperate I&D space is enabled, assembly constants should be placed in their own assem-
bly block (or done in C). For more information, see Section 11.2.2, “Defining Constants.”

e debug: Enables debug code during assembly.

* nodebug: Disables debug code during assembly. This is the default condition. It is still possible to
single step through assembly code as long as the assembly window is open.

e xmem: Places a block of code into extended memory, overriding any previous memory directives. The
block is limited to 4KB.

If the #asm block is unmarked, it will be compiled to root.

#fclass

Syntax: #class options
Controls the storage class for local variables. The available options are:

e suto: Place local variables on the stack.

* static: Place local variables in permanent, fixed storage.

The default storage class is auto.

222 digi.com Keywords

www.digi.com

#debug
#nodebug

Enables or disables debug code compilation. #debug is the default condition. A function's local debug
or nodebug keyword overrides the global #debug or #nodebug directive. In other words, if a func-
tion does not have a local debug or nodebug keyword, the #debug or #nodebug directive would
apply.

#nodebug prevents RST 28h instructions from being inserted between C statements and assembly
instructions.

NOTE: These directives do nothing if they are inside of a function. This is by design. They
are meant to be used at the top of an application file.

#define

Syntax: #define name text or #define name (parameters . . .) text

Defines a macro with or without parameters according to ANSI standard. A macro without parameters
may be considered a symbolic constant. Supports the # and # # macro operators. Macros can have up to 32
parameters and can be nested to 126 levels.

#endasm

Ends a block of assembly code.

#fatal

Syntax: #fatal “..”

Instructs the compiler to act as if a fatal error. The string in quotes following the directive is the message to
be printed

Dynamic C User’s Manual digi.com 223

www.digi.com

#GLOBAL INIT

Syntax: #GLOBAL INIT { variables }

#GLOBAL INIT sections are blocks of code that are run once before main () is called. They should
appear in functions after variable declarations and before the first executable code. If a local static variable
must be initialized once only before the program runs, it should be done in a # GLOBAL INIT section,
but other inititialization may also be done. For example:

// This function outputs and returns the number of times it has been called.
int foo () {

char count;

#GLOBAL INIT{

// 1nitialize count
count = 1;

// make port A output
WrPortI (SPCR, SPCRShadow, 0x84) ;

}

// output count

WrPortI (PADR, NULL, count) ;
// increment and return count
return ++count;

#ferror

Al

Syntax: #error "...'
Instructs the compiler to act as if an error was issued. The string in quotes following the directive is the
message to be printed

#funcchain

Syntax: # funcchain chainname name

Adds a function, or another function chain, to a function chain.

224 digi.com Keywords

www.digi.com

#if
#elif
#felse

#endif

Syntax: #1f constant expression
#elif constant expression
#else
#endif

These directives control conditional compilation. Combined, they form a multiple-choice i £. When the
condition of one of the choices is met, the Dynamic C code selected by the choice is compiled. Code
belonging to the other choices is ignored.

main () {
#if BOARD TYPE == 1
#define product "Ferrari"
#elif BOARD TYPE ==
#define product "Maserati"

#elif BOARD TYPE == 3
#define product "Lamborghini"

#else
#define product "Chevy"

#endif

The #elif and #else directives are optional. Any code between an #e1lse and an #endi f is com-
piled if all values for constant expression are false.

#ifdef

Syntax: #1fdef name

This directive enables code compilation if name has been defined with a #de fine directive. This direc-
tive must have a matching #endif.

Dynamic C User’s Manual digi.com 225

www.digi.com

#ifndef

Syntax: #1fndef name

This directive enables code compilation if name has not been defined with a #de fine directive. This
directive must have a matching #endif.

#finterleave
#nointerleave

Controls whether Dynamic C will intersperse library functions with the program’s functions during compi-
lation together, separately from the library functions.

#nointerleave forces the user-written functions to be compiled first.The #nointerleave direc-
tive, when placed at the top of application code, tells Dynamic C to compile all of the application code first
and then to compile library code called by the application code afterward, and then to compile other library
code called by the initial library code following that, and so on until finished.

Note that the #nointerleave directive can be placed anywhere in source code, with the effect of stop-
ping interleaved compilation of functions from that point on. If #nointerleave is placed in library
code, it will effectively cause the user-written functions to be compiled together starting at the statement
following the library call that invoked #nointerleave.

#makechain

Syntax: #makechain chainname

Creates a function chain. When a program executes the function chain named in this directive, all of the
functions or segments belonging to the function chain execute.

226 digi.com Keywords

www.digi.com

#memmap

Syntax: #memmap options
Controls the default memory area for functions. The following options are available.

e anymem NNNN: When code comes within NNNN bytes of the end of root code space, start putting it
in xmem. Default memory usage is #memmap anymem 0x2000.

e root: All functions not declared as xmem go to root memory.

¢ xmem: C functions not declared as root go to extended memory. Assembly blocks not marked as
xmem go to root memory. See the description for xmem for more information on this keyword.

#pragma

Syntax: #pragma nowarn [warnt|warns]

Trivial warnings (warnt) or trivial and serious warnings (warns) for the next physical line of code are
not displayed in the Compiler Messages window. The argument is optional; default behavior is warnt.

Syntax: #pragma nowarn [warnt|warns] start

Trivial warnings (warnt) or trivial and serious warnings (warns) are not displayed in the Compiler Mes-
sages window until the #pragma nowarn end statement is encountered. The argument is optional;
default behavior is warnt. #pragma nowarn cannot be nested.

Dynamic C User’s Manual digi.com 227

www.digi.com

#precompile

Allows library functions in a comma separated list to be compiled immediately after the BIOS.

The #precompile directive is useful for decreasing the download time when developing your program.
Precompiled functions will be compiled and downloaded with the BIOS, instead of each time you compile
and download your program. The following limitations exist:

Precompile functions must be defined nodebug.

Any functions to be precompiled must be in a library, and that library must be included either in the
BIOS using a #use, or recursively included by those libraries.

Internal BIOS functions will precompile, but will not result in any improvement.

Libraries that require the user to define parameters before being used can only be precompiled if those
parameters are defined before the #precompi le statement. An example of this is included in
precompile.lib.

Function chains and functions using segment chains cannot be precompiled.
Precompiled functions will be placed in extended memory, unless specifically marked root.

All dependencies must be resolved (Macros, variables, other functions, etc.) before a function can be
precompiled. This may require precompiling other functions first.

See precompile.lib for more information and examples.

#undef

Syntax: #undef identifier

Removes (undefines) a defined macro.

#use

Syntax: #use pathname

Activates a library named in LIB. DIR so modules in the library can be linked with the application pro-
gram. This directive immediately reads in all the headers in the library unless they have already been read.

228 digi.com Keywords

www.digi.com

#useix
#nouseix

Controls whether functions use the IX register as a stack frame reference pointer or the SP (stack pointer)
register. fnouseix is the default.

Note that when the IX register is used as a stack frame reference pointer, it is corrupted when any stack-
variable using function is called from within a cofunction, or if a stack-variable using function contains a
call to a cofunction.

#warns

Syntax: #warns “..”

Instructs the compiler to act as if a serious warning was issued. The string in quotes following the directive
is the message to be printed.

#warnt

Syntax: #warnt “..”

Instructs the compiler to act as if a trivial warning was issued. The string in quotes following the directive
is the message to be printed.

#ximport

Syntax: #ximport “filename” symbol

This compiler directive places the length of filename (stored as a 1ong) and its binary contents at the next
available place in xmem flash. filename is assumed to be either relative to the Dynamic C installation
directory or a fully qualified path. symbol is a compiler generated macro that gives the physical address
where the length and contents were stored.

The sample program ximport . c illustrates the use of this compiler directive.

Dynamic C User’s Manual digi.com 229

www.digi.com

#zimport

Syntax: #zimport “filename” symbol

This compiler directive extends the functionality of #ximport to include file compression by an external
utility. filename is the input file (and must be relative to the Dynamic C installation directory or be a fully
qualified path) and symbol represents the 20-bit physical address of the downloaded file.

The external utility supplied with Dynamic C is zcompress . exe. It outputs the compressed file to the
same directory as the input file, appending the extension . DCZ. E.g., if the input file is named
test.txt, the output file will be named test . txt.dcz. The first 32 bits of the output file contains
the length (in bytes) of the file, followed by its binary contents. The most significant bit of the length is set
to one to indicate that the file is compressed.

The sample program zimport . c illustrates the use of this compiler directive. Please see Appendix C.2.2
for further information regarding file compression and decompression.

230 digi.com Keywords

www.digi.com

RABBIT o= PRODUCT MANUAL

Semiconductor

13. OPERATORS

An operator is a symbol such as +, —, or & that expresses some kind of operation on data. Most operators

are binary—they have two operands.

a + 10 // two operands with binary operator "add"

Some operators are unary—they have a single operand,

—amount // single operand with unary “minus”

although, like the minus sign, some unary operators can also be used for binary operations.

There are many kinds of operators with operator precedence. Precedence governs which operations
are performed before other operations, when there is a choice.

For example, given the expression

a=Db + c * 10;
will the + or the * be performed first? Since * has higher precedence than +, it will be performed first.
The expression is equivalent to

a=Db+ (c * 10);
Parentheses can be used to force any order of evaluation. The expression

a= (b + c) * 10;

uses parentheses to circumvent the normal order of evaluation.

Associativity governs the execution order of operators of equal precedence. Again, parentheses can cir-
cumvent the normal associativity of operators. For example,

a=Db+ c + d; // (btc) performed first

a=Db+ (c +d); // now c+d is performed first

int *a(); // function returning a pointer to an integer
int (*a) (); // pointer to a function returning an integer

Unary operators and assignment operators associate from right to left. Most other operators associate from
left to right.

Dynamic C User’s Manual digi.com 231

www.digi.com

Certain operators, namely *, &, (), [], —> and . (dot), can be used on the left side of an assign-
ment to construct what is called an /value. For example,

float x;
* (char*) &x = 0x17; // low byte of x gets value

When the data types for an operation are mixed, the resulting type is the more precise.

float x, vy, z;
int i, J, k;

char c;
z =1/ x; // same as (float)i/ x
j =k + c; // same as k + (int)c

By placing a type name in parentheses in front of a variable, the program will perform type casting or type
conversion. In the example above, the term (float) i means the “the value of i converted to floating
point.”

The operators are summarized in the following pages.

13.1 Arithmetic Operators

+

Unary plus, or binary addition. (Standard C does not have unary plus.) Unary plus does not really do any-
thing.

a=>b+ 10.5; // binary addition
z = +y; // just for emphasis!

Unary minus, or binary subtraction.

a=Db - 10.5; // binary subtraction
z = -y; // z gets the negative of y

232 digi.com Operators

www.digi.com

*

Indirection, or multiplication. As a unary operator, it indicates indirection. When used in a declaration, *
indicates that the following item is a pointer. When used as an indirection operator in an expression, * pro-
vides the value at the address specified by a pointer.

int *p; // pis apointer to an integer
const int j = 45;
p = &Jj; // pnow points to j.
k = *p; // k gets the value to which
// p points, namely 45.
*p = 25; // The integer to which p points gets 25.

// Same as j =25, since p points to j.

Beware of using uninitialized pointers. Also, the indirection operator can be used in
complex ways.

int *1ist[10] // array of 10 pointers to integers
int (*list) [10] // pointer to array of 10 integers
float** y; // pointer to a pointer to a float

z = *Fry; // z gets the value of y
typedef char **stp;

stp my stuff; // my stuffis typed char**

As a binary operator, the * indicates multiplication.

a=Db * c; // a gets the product of b and ¢

/

Divide is a binary operator. Integer division truncates; floating-point division does not.

const int i = 18, const j = 7, k; float x;
k =1/ 3; // resultis2;
x = (float)i / 3j; // resultis 2.591...

Dynamic C User’s Manual digi.com 233

www.digi.com

++

Pre- or post-increment is a unary operator designed primarily for convenience. If the ++ precedes an oper-
and, the operand is incremented before use. If the ++ operator follows an operand, the operand is incre-
mented after use.

int i, all2];

i = 0;

q = ali++]; // q gets a[0], then i becomes 1
r = ali++]; // tgetsa[l], then i becomes 2
s = ++i; // 1becomes 3, thens=1
i++; // 1becomes 4

If the ++ operator is used with a pointer, the value of the pointer increments by the size of the object (in
bytes) to which it points. With operands other than pointers, the value increments by 1.

Pre- or post-decrement. If the —— precedes an operand, the operand is decremented before use. If the ——
operator follows an operand, the operand is decremented after use.

int j, all2];

j = 12;
a=al--31; // jbecomes 11, then q gets a[11]
r = al--3J1; // jbecomes 10, then r gets a[10]
s = j-—; // s =10, then j becomes 9
J=—; // jbecomes 8
Ifthe —— operator is used with a pointer, the value of the pointer decrements by the size of the object (in

bytes) to which it points. With operands other than pointers, the value decrements by 1.

%

Modulus. This is a binary operator. The result is the remainder of the left-hand operand divided by the
right-hand operand.

const int 1 = 13;
j=1i% 10; // jgetsimod 10 or 3
const int k = -11;
j =%k % 7; // jgetskmod7or-4

234 digi.com Operators

www.digi.com

13.2 Assignment Operators

Assignment. This binary operator causes the value of the right operand to be assigned to the left operand.
Assignments can be “cascaded” as shown in this example.

a =10 * b + c; // a gets the result of the calculation

o
Il
o
Il

0; // bgets 0 and a gets 0

+=

Addition assignment.

a += 5; // Add5toa. Sameasa=a+5

Subtraction assignment.

a —-= 5; // Subtract 5 from a. Sameasa=a-5

*=

Multiplication assignment.

a *= 5; // Multiply aby 5. Sameasa=a*5

/=

Division assignment.

a /= 5; // Divideaby 5. Sameasa=a/5

$=

Modulo assignment.

o°

a %= 5; // amod5.Sameasa=a %5

<<=

Left shift assignment.

a <<= 5; // Shift a left 5 bits. Sameasa=a<<35

Dynamic C User’s Manual digi.com 235

www.digi.com

>>=

Right shift assignment.
a >>= 5; // Shift a right 5 bits. Same asa=a>>5

&=

Bitwise AND assignment.

a &= b; // AND awithb. Sameasa=a &b

A=

Bitwise XOR assignment.

a = b; // XOR awithb. Sameasa=a”b

Bitwise OR assignment.

a |= b; // ORawithb. Sameasa=a|b

13.3 Bitwise Operators

<<

Shift left. This is a binary operator. The result is the value of the left operand shifted by the number of bits
specified by the right operand.

int 1 = OxFOOF;
j =i << 4; //] gets 0x00F0

The most significant bits of the operand are lost; the vacated bits become zero.

>>

Shift right. This is a binary operator. The result is the value of the left operand shifted by the number of
bits specified by the right operand:

int i = O0xFOOF;
j =1 >> 4; //] gets 0XFF0O

The least significant bits of the operand are lost; the vacated bits become zero for unsigned variables and
are sign-extended for signed variables.

236 digi.com Operators

www.digi.com

&

Address operator, or bitwise AND. As a unary operator, this provides the address of a variable:
int x;
zZ = &x; // z gets the address of x

As a binary operator, this performs the bitwise AND of two integer (char, int, or 1ong) values.

int i = OxFFFO;
int j O0x0FFF;
z =1 & 3; // z gets 0xOFFO

Bitwise exclusive OR. A binary operator, this performs the bitwise XOR of two integer (8-bit, 16-bit or
32-bit) values.

int i = OxXFFFO;
int j = OxOFFF;
IR // z gets OXFOOF

z = 1

Bitwise inclusive OR. A binary operator, this performs the bitwise OR of two integer (8-bit, 16-bit or 32-
bit) values.

int i = 0xFFO0O0;
int j = O0xOFFO;
z =1 1 3; // z gets OXFFFO

~

Bitwise complement. This is a unary operator. Bits in a char, int, or 1ong value are inverted:

int switches;
switches = O0xFFFO;
j = ~switches; // jbecomes 0x000F

Dynamic C User’s Manual digi.com 237

www.digi.com

13.4 Relational Operators

<

Less than. This binary (relational) operator yields a Boolean value. The result is 1 if the left operand is less
than the right operand, and 0 otherwise.

if(1 <3){
body // executes ifi<j

OK = a < b; // true whena<b

Less than or equal. This binary (relational) operator yields a boolean value. The result is 1 if the left oper-
and is less than or equal to the right operand, and 0 otherwise.

if(1 <=3){
body // executes if i <=j

OK = a <= Db; // true whena<=b

Greater than. This binary (relational) operator yields a Boolean value. The result is 1 if the left operand is
greater than the right operand, and 0 otherwise.

if(1 >3){
body // executes ifi>j

OK = a > b; // true whena>b

Greater than or equal. This binary (relational) operator yields a Boolean value. The result is 1 if the left
operand is greater than or equal to the right operand, and 0 otherwise.

if(1 >= 3){
body // executes ifi>=]

OK = a >= b; // true whena>=b

238 digi.com Operators

www.digi.com

13.5 Equality Operators

Equal. This binary (relational) operator yields a Boolean value. The result is 1 if the left operand equals the
right operand, and 0 otherwise.

if(1 == 3){
body // executes ifi=]

OK

a == b; // true whena=D>b

Note that the == operator is not the same as the assignment operator (=). A common mistake is to write
if(1 =73){
body
}

Here, 1 gets the value of j, and the i £ condition is true when 1 is non-zero, not when i equals j.

Not equal. This binary (relational) operator yields a Boolean value. The result is 1 if the left operand is not
equal to the right operand, and 0 otherwise.

if(1 =3){
body // executes if'i =]

OK = a != b; // true whena!=b

13.6 Logical Operators

&&

Logical AND. This is a binary operator that performs the Boolean AND of two values. If either operand is
0, the result is 0 (FALSE). Otherwise, the result is 1 (TRUE).

Logical OR. This is a binary operator that performs the Boolean OR of two values. If either operand is
non-zero, the result is 1 (TRUE). Otherwise, the result is 0 (FALSE).

Dynamic C User’s Manual digi.com 239

www.digi.com

Logical NOT. This is a unary operator. Observe that C does not provide a Boolean data type. In C, logical
false is equivalent to 0. Logical true is equivalent to non-zero. The NOT operator result is 1 if the operand
is 0. The result is 0 otherwise.

test = get input(...);

if('test){

13.7 Postfix Expressions

()

Grouping. Expressions enclosed in parentheses are performed first. Parentheses also enclose function
arguments. In the expression

a= (b +c) * 10;

thetermb + c is evaluated first.

[]
Array subscripts or dimension. All array subscripts count from 0.
int a[l2]; // array dimension is 12
j = alil; // references the ith element
(dot)

The dot operator joins structure (or union) names and subnames in a reference to a structure (or union) ele-
ment.

struct {
int x;
int vy;

} coord;

m = coord.x;

240 digi.com Operators

www.digi.com

->

Right arrow. Used with pointers to structures and unions, instead of the dot operator.

typedef struct{

int x;
int y;
} coord;
coord *p; // pis a pointer to structure
m = p->X; // reference to structure element

13.8 Reference/Dereference Operators

&

Address operator, or bitwise AND. As a unary operator, this provides the address of a variable:
int x;
z = &x; // z gets the address of x
As a binary operator, this performs the bitwise AND of two integer (char, int,or long) values.

int 1 = OxFFFO;
int j 0xQFFF;
z =1 & 3; // z gets 0xOFFO0

*

Indirection, or multiplication. As a unary operator, it indicates indirection. When used in a declaration, *
indicates that the following item is a pointer. When used as an indirection operator in an expression, * pro-
vides the value at the address specified by a pointer.

int *p; // pis apointer to an integer

int j = 45;

p = &J; // p now points to j.

k = *p; // k gets the value to which p points, namely 45.
*p = 25; // The integer to which p points gets 25.

// Same as j =25, since p points to j.

Dynamic C User’s Manual digi.com 241

www.digi.com

Beware of using uninitialized pointers. Also, the indirection operator can be used in
complex ways.

int *1ist[10] // array of 10 ptrs to int
int (*list) [10] // ptr to array of 10 ints
float** y; // ptrto aptrto a float

z = **y; // z gets the value of y
typedef char **stp;

stp my stuff; // my_stuff is typed char**

As a binary operator, the * indicates multiplication.

a=>b * c; // a gets the product of b and ¢

13.9 Conditional Operators

Conditional operators are a three-part operation unique to the C language. The operation has three oper-
ands and the two operator symbols ? and :.

?

If the first operand evaluates true (non-zero), then the result of the operation is the second operand. Other-
wise, the result is the third operand.

int i, j, k;
i =9 <k 2?3 : k;
The 2 : operator is for convenience. The above statement is equivalent to the following.
if(5 < k)
i = 73;
else
i = k;

If the second and third operands are of different type, the result of this operation is returned at the higher
precision.

242 digi.com Operators

www.digi.com

13.10 Other Operators

(type)

The cast operator converts one data type to another. A floating-point value is truncated when converted
to integer. The bit patterns of character and integer data are not changed with the cast operator, although
high-order bits will be lost if the receiving value is not large enough to hold the converted value.

unsigned i; float x = 10.5; char c;

i = (unsigned)x; // 1gets 10;

c = *(char*)&x; // c gets the low byte of x
typedef ... typeA;

typedef ... typeB;

typeA iteml;
typeB item?2;

item2 = (typeB)iteml; // forces item]1 to be treated as a typeB

sizeof

The sizeof operator is a unary operator that returns the size (in bytes) of a variable, structure, array, or
union. It operates at compile time as if it were a built-in function, taking an object or a type as a parameter.

typedef struct{
int x;
char vy;
float z;

} record;

record array[100];

int a, b, ¢, d;

char cc[] = "Fourscore and seven";

char *list[] = { "ABC", "DEFG", "HI" };

#define array size sizeof (record)*100 // number of bytes in array

a = sizeof (record); /7
b = array size; // 700
c = sizeof (cc); // 20
d = sizeof(list); // 6

Why is sizeof (1ist) equal to 6? 1ist is an array of 3 pointers (to char) and pointers have two
bytes.

Why is sizeof (cc) equal to 20 and not 19? C strings have a terminating null byte appended by the
compiler.

Dynamic C User’s Manual digi.com 243

www.digi.com

4

Comma operator. This operator, unique to the C language, is a convenience. It takes two operands: the left
operand—typically an expression—is evaluated, producing some effect, and then discarded. The right-
hand expression is then evaluated and becomes the result of the operation.

This example shows somewhat complex initialization and stepping in a for statement.

i=0,j=strlen(s)-1; i<j; i++,3—){

Because of the comma operator, the initialization has two parts: (1) set 1 to 0 and (2) get the length of
string s. The stepping expression also has two parts: increment i and decrement j.

The comma operator exists to allow multiple expressions in loop or i f conditions.

The table below shows the operator precedence, from highest to lowest. All operators grouped together
have equal precedence.

Table 13-1. Operator Precedence

Operators Associativity Function
O 1 -> left to right member
'(ty;e)++* _; sizeof right to left unary
*x /0% left to right multiplicative
+ - left to right additive
<< > left to right bitwise
< <= > >= left to right relational
= I= left to right equality
& left to right bitwise
~ left to right bitwise
| left to right bitwise
&& left to right logical
I left to right logical
? right to left conditional
:<=*=>>i= &i= A:= | ;= right to left assignment
, (comma) left to right series

244

digi.com

Operators

www.digi.com

RABBIT = PRODUCT MANUAL

14. GRAPHICAL USER INTERFACE

Dynamic C can be used to edit source files, compile and run programs, and choose options for these activi-
ties using pull-down menus or keyboard shortcuts. There are two modes: edit mode and run mode (run
mode is also known as debug mode). Various debugging windows can be viewed in run mode. Programs
can compile directly to a target controller for debugging in RAM or Flash. Programs can also be compiled
to a .bin file, with or without a controller connected to the PC.

To debug a program, a controller must be connected to the PC, either directly via a programming cable or
indirectly via an Ethernet connection while using either a RabbitLink board or a RabbitSys-enabled board.

Multiple instances of Dynamic C can run simultaneously. This means multiple debugging sessions are
possible over different serial ports. This is useful for debugging boards that are communicating among
themselves.

14.1 Editing

A file is displayed in a text window when it is opened or created. More than one text window may be open.
If the same file is in multiple windows, any changes made to the file in one window will be reflected in all
text windows that display that file. Dynamic C supports normal Windows text editing operations.

A mouse (or other pointing device) may be used to position the text cursor, select text, or extend a text
selection. The keyboard may be used to do these same things. Text may be scrolled using the arrow keys,
the PageUp and PageDown keys, and the Home and End keys. The up, down, left and right arrow keys
move the cursor in the corresponding directions.

The Home key may be used alone or with other keys.

Home Move to beginning of line.
Ctrl+Home Move to beginning of file.
Shift+Home Select to beginning of line.
Shift+Ctrl+Home | Select to beginning of file.

The End key may be used alone or with other keys.

End Move to end of line.
Ctrl+End Move to end of file.
Shift+End Select to end of line.

Shift+Ctrl+End Select to end of file.

Dynamic C User’s Manual digi.com 245

www.digi.com

The Ctrl key works in conjunction with the arrow keys:

Ctrl+Left Move cursor to previous word.
Ctrl+Right Move cursor to next word.
Ctri+U Move editor window up, text moves down one line. Cursor is
P not moved.
Move editor window down, text moves up one line. Cursor is
Ctrl+Down

not moved.

The Ctrl key also works in conjunction with “[”” for delimiter matching. Place the cursor before the delim-
iter you are attempting to match and press “Ctrl+[”. The cursor will move to just before the matching
delimiter.

Note that delimiters in comments are also matched. For example, in the following code, <Ctrl+[> counts
commented-out braces in the matching, giving a false indication that the main function has balanced curly
braces when in fact it does not.

main ()
{
{
//}
/*
}
*/

14.2 Menus

Dynamic C’s main menu has eight command menus, as well as the standard Windows system menus.

_ An available command can be executed from a
Sl = = . . N
i Dynamic C Dist. 9.60 menu by either clicking the menu and then
" File Edit ':l:llTII:IllE Fun Inspect Options Wimd o HEII:I Chcklng the Command’ or by pressing the Alt
key to activate the menu bar, using the left and
right arrow keys to select a menu, and then using the up or down arrow keys to select a command before
pressing the Enter key.

14.2.1 Using Keyboard Shortcuts

For some of us it is easier to type keyboard

shortcuts than to use a mouse. A menu can be "% Dynamic C Dist. 9.60

activated by pressing the Alt key while press- |File Edt Compile Run Inspect Options Window Help
ing the underlined letter of the menu name. This

is the de facto standard, as it is used in numerous commercial software products. Pressing the Alt key
allows you to see which character in the menu name is underlined, as shown in this second screenshot of
Dynamic C’s main menu. All the keyboard shortcuts on the main menu use the first letter of the menu
name in the shortcut. Some keyboard shortcuts have this obvious connection while others do not. See the
Editor Tab screenshot in Section 14.2.7 for some examples of not so obvious keyboard shortcuts. A key-
board shortcut that is not menu specific is the Esc key, which will make any visible menu disappear.

246 digi.com Graphical User Interface

www.digi.com

14.2.2 File Menu

To select the File menu: click on its name in Dynamic C’s main menu or press <Alt+F>.

New <Ctrl+N>

Sl

=% Dynamic C Dist. 9.60 Creates a blank, untitled program in a new window,

| File Edit Compie PRun Inspeck Options ‘Window called the text window or the editor window. If you

O Mew Chrl+M oMM ‘ right click anywhere in the text window a popup menu
= open... Chl+0 . will appear. It is available as a convenience for access-
B save CHrl+5 ing some frequently used commands.

Lok S5 650 Open <Ctrl+O>

el save Al shifthCirles Presents a dialog box to specify the name of a file to
B Close Chrl+F4 open. To select a file, type in the file name (pathnames

Fraject M o create, may be entered), or browse and select it. Unless there

Print Setup

Prink Preview ot
O Cave As
& Print el

B0 open,.. is a problem, Dynamic C will present the contents of
B0 Save Crr+alt+s the file in a text window. The program can then be
edited or compiled. Multiple files can be selected by
either holding down <Ctrl> then clicking the left

E Close

WL Exit Alt+F4 _ mouse on each filename you want to open, or by drag-
ging the selection rectangle over multiple filenames.

Save <Ctrl+S>

The Save command updates an open file to reflect changes made since the last time the file was saved.
If the file has not been saved before (i.e., the file is a new untitled file), the Save As dialog will appear
to prompt for a name. Use the Save command often while editing to protect against loss during power
failures or system crashes.

Save As

Presents a dialog box to save the file under a new name. To select a file name, type it in the File name
field. The file will be saved in the folder displayed in the Save in field. You may, of course, browse to
another location. You may also select an existing file. Dynamic C will ask you if you wish to replace
the existing file with the new one.

Save All <Shift+Ctrl+S>

This command saves all modified files that are currently open.

Close <Ctrl+F4>

Closes the active editor window. If there is an attempt to close a modified file, Dynamic C will ask you
if you wish to save the changes. The file is saved when Yes is clicked or “y” is typed. If the file is unti-
tled, there will be a prompt for a file name in the Save As dialog. Any changes to the document will be
discarded if No is clicked or “n” is typed. Choosing Cancel results in a return to Dynamic C with no
action taken.

Project

Allows a project file to be created, opened, saved, saved as a different name and closed. See
Chapter 16, “Project Files.” for all the details on project files.

Dynamic C User’s Manual digi.com 247

www.digi.com

Print Setup
Displays the Page Setup dialog box. Margins, page orientation, page numbers and header and footer

properties are all chosen here.

The “Printer Setup” button is in the bottom left of the dialog box. It brings up the Print Setup dialog
box, which allows a printer to be selected. The “Network’ button allows printers to be added or
removed from the list of printers.

Print Preview
Displays whichever file is in the active editor window in the Preview Form window, showing how the
text will look when it is printed. You can search and navigate through the printable pages and bring up
the Print dialog box.

Print
Brings up the Print dialog box, which allows you to choose a printer. Only text in an editor window can
be printed. To print the contents of debug windows the text must be copied and pasted to an editor win-
dow. (The Stdio window is an exception; its contents may be automatically written to a file, which may
then be printed.) As many copies of the text as needed may be printed. If more than one copy is
requested, the pages may be collated or uncollated.

Exit <Alt+F4>
Close Dynamic C after prompting to save any unsaved changes to open files.

248 digi.com Graphical User Interface

www.digi.com

14.2.3 Edit Menu

Click the menu title or press <Alt+E> to select the EDIT menu.

" Dynamic C Dist. 9.60

File | Edit Compile Run Inspect Options Y

|“ [< Undo Ctrl+Z
74 Redn ShifE+Chr 2
X ocut Chrl+
Copy Chrl+C
& Pasts Chrl+y

Insert Code Template. ..
@ Toogle Bookmark
b Go to Bookmark

&% Find Chrl+F
ﬂ Replace Fa
M Find pet F3
ﬂ Reverse Find Mext Alt+F3
Cy Find in Files (Grep)... ShiFt+CE4+F
¥/=] Go to Line Mumber, .. Chrl4G
"E Prewicus Errar: ZErl -l
il ret Error ChplHAlE+
ab| Edit Mode F4

Undo <Ctrl+Z>

This option undoes recent changes in the active edit win-
dow. The command may be repeated several times to undo
multiple changes. Undo operations have unlimited depth.
Two types of undo are supported—applied to a single oper-
ation and applied to a group of the same operations (2 con-
tinuous deletes are considered a single operation.

Dynamic C only discards undo information if the “Undo
after save” option is unchecked in the Editor dialog under
Environment Options.

Redo <Shift+Ctrl+Z>
Redoes changes recently undone. This command only
works immediately after one or more Undo operations.

Cut <Ctrl+X>
Removes selected text and saves to the clipboard.

Copy <Ctrl+C>
Makes a copy of text selected in a file or in a debug win-
dow. The text is saved on the clipboard.

Paste <Ctrl+V>

Pastes text from the clipboard to the current insertion point.
Nothing can be pasted in a debugging window. The contents
of the clipboard may be pasted virtually anywhere, repeat-

edly (as long as nothing new is cut or copied into the clipboard), in the same or other source files, or
even in word processing or graphics program documents.

Insert Code Template <Ctrl+J>
Opens the code template list at the current cursor location. Clicking on a list entry or pressing <Enter>
inserts the selected template at the cursor location in the active edit window. The arrow keys may be
used to scroll the list. Pressing the first letter of the name of a code template selects the first template
whose name starts with that letter. Pressing the same letter again will go to the next template whose
name starts with that letter. Continuing to press the same letter cycles through all the templates whose

name starts with that letter.

To create, edit or remove templates from the code template list, go to Environment Options and click
on the Code Templates tab.

Toggle Bookmark

Toggle one of ten bookmarks in the active edit window.

Go to Bookmark

Go to one of ten bookmarks in the active edit window. Executing this command again will take you
back to the location you were at before going to the bookmarked location.

Dynamic C User’s Manual

digi.com 249

www.digi.com

Find <Ctrl F>

Finds first occurrence of specified text. Text may be specified by selecting it prior to opening the Find
dialog box if the option “Find text at cursor” is checked in the Editor dialog under Environment
Options. Only one word may be selected; if more than one word is selected, the last word selected
appears as the entry for the search text. More than one word of text may be specified by typing it in or
selecting it from the available history of search text.

There are several ways to narrow or broaden the search criteria using the Find dialog box. For example,
if Case sensitive is unchecked, then “Switch” and “SWITCH” would match the search text “switch.”
If Whole words only is checked, then the search text “switch” would not match “switches.” Selecting
Entire scope will cause the whole document to be searched. If Selected text is chosen and the Persis-
tent blocks option was checked in the Editor tab in Environment Options, the search will take place
only in the selected text.

Replace <F6>

Finds and replaces the specified text. Text may be specified by selecting it prior to opening the Replace
Text dialog box. Only one word may be selected; if more than one word is selected, the last word
selected appears as the entry for the search text. More than one word of text may be specified by typing
it in or selecting it from the available history of search text. The replacement text is typed or selected
from the available history of replacement text.

As with the Find dialog box, there are several ways to narrow or broaden the search criteria. An impor-
tant option is Prompt on replace. If this is unchecked, Dynamic C will not prompt before making the
replacement, which could be dangerous in combination with the choice to Replace All.

Find Next <F3>

Once search text has been specified with the Find or Replace commands, the Find Next command will
find the next occurrence of the same text, searching forward or in reverse, case sensitive or not, as
specified with the previous Find or Replace command. If the previous command was Replace, the
operation will be a replace.

Reverse Find Next <Alt+F3>

Behaves the same as Find Next except in the opposite direction. If Find Next is searching forward in
the file, Reverse Find Next will search backwards, and vice versa.

250

digi.com Graphical User Interface

www.digi.com

Find in Files (Grep)... <Shift+Ctrl+F>
This option searches for text in the
currently open file(s) or in any direc-
tory (optionally including subdirecto-
ries) specified. Standard Unix-style
regular expressions are used.

A window with the search results is
displayed with an entry for each match
found. Double-clicking on an entry
will open the corresponding file and
place the cursor on the search string in
that file. Multiple file types can be
separated by semicolons. For example,
entering the following search criteria:
C:\mydirectory*.lib;*.c
will search all . 1ib and . ¢ files in
mydirectory.

Find Text

— Find in Files
Text ta Find:

Ifn:nr

[T Caze zenshive
[T whole words only

" Search in open files

{* Search in directories

Directary Searching Options
File M azk:

|I::HDE_EIEEIH*.|:

v Include subdirectories

=1 L

ok Cancel |

Help

Starting with Dynamic C 9.60, the “Search Results” window has a right-click menu that allows you to
view source files, as well as copy or delete selected entries.

Go to Line Number

Positions the insertion point at the beginning of the specified line.

Previous Error <Ctrl+Alt+P>

Locates the previous compilation error in the source code. Any error messages will be displayed in a
list in the Compiler Messages window after a program is compiled. Dynamic C selects the previous
error in the list and displays the offending line of code in the text window.

Next Error <Ctrl+Alt+N>

Locates the next compilation error in the source code. Any error messages will be displayed in a list in
the Compiler Messages window after a program is compiled. Dynamic C selects the next error in the
list and displays the offending line of code in the text window.

Edit Mode <F4>

Switches to edit mode from run, also known as debug, mode. After successful compilation or execu-
tion, no changes to the file are allowed unless in edit mode. If the compilation fails or a runtime error
occurs, Dynamic C comes back already in edit mode.

Dynamic C User’s Manual

digi.com

251

www.digi.com

Editor Window Popup Menu
Right click anywhere in the editor window and a popup menu will appear. All of the menu options, with

the exception of Open File at Cursor, are available from the main menu, e.g., New is an option in the File
menu and was described earlier with the other options for that menu.

* Dynamic C Dist. 9.60

File Edit

Compile Run Inspect

Cipkions

Window Help

=10] x|

D=m||a

| % Bomn gy M M

R

|« & BIE]A SR

mainil)]

int i, j:

i = 0;
while (1] {
it++:
for (j=0; j<2000

printf(”i = zdin

4

a0
Fi

o:

rr
f

L

i+

il

.‘.I
CErl4+M

Mew

Cpen File ak Cursar Ckrl+Enter
Close Ckrl+F4
Insert Code Template. ..

Toggle Bookmark »
G0 ko Bookmark, r
Zuk (i s

oy CEr| 1T

Paste ZEE Y

Find Ckrl+F

Edit Made F4

Add Wakch,. L

Read Cnly

Ise Synkax Highlighting

Opkions. ..

|DreF it Lime: 7

|Col: 33

&\|_|“_|

Inserk |

Open File at Cursor <Ctrl+Enter>

Attempts to open the file whose name is under the cursor. The file will be opened in a new editor win-
dow, if the file name is listed in the “lib.dir” file as either an absolute path or a path relative to the

Dynamic C root directory or if the file is in Dynamic C’s root directory. As a last resort, an Open dialog
box will appear so that the file may be manually chosen.

252

digi.com

Graphical User Interface

www.digi.com

14.2.4 Compile Menu

Click the menu title or press <Alt+C> to select the Compile menu.

ynamic C Diskt. 9.60
File Edit | Compile Run Inspect Options ‘Window Help

=

E Zompile ko Target 1; Compile ko Flash
wE?]' Compile to ,bin File g } Compile ko RAM
|'E Compile ka Flash, Run in RAM

Reload RabhitSys binaty
g Reset Target | Compile BIOS Chrl+Y _
Compile <F5>

Compiles a program and loads it to the target or to a .bin file. When you press <F5> or select Compile
from the Compile menu, the active file will be compiled according to the current compiler options.
Compiler options are set in the Compiler tab of the Project Options dialog. When compiling directly to
the target, Dynamic C queries the attached target for board information and creates macros to automat-
ically configure the BIOS and libraries.

Any compilation errors are listed in the automatically activated Compiler Messages window. Press
<F1> to obtain more information for any error message that is highlighted in this window.

Compile to Target
Expands to one of three choices. They override any BIOS Memory Setting choice made in the Com-

piler tab of the Project Options dialog.

e Compile to Flash
e Compile to RAM
e Compile to Flash, Run in RAM

Starting with Dynamic C9,

the compiler will show _) =
board type and other board E 4D CinProgtbioshA abbithioz. o

. . . . Board: 0x1200 - 22MHz RCM3E00, 512K SHAM, B12E Flazh
specific information while 1570 lines compiled
doing a compile to target.
The information shown S
will be identical to what
the compiler already shows
when compiling to a .bin file.

Dynamic C User’s Manual digi.com 253

www.digi.com

Compile to .bin File
Compiles a program and writes the image to a . bin file. There are two choices available with this

option, “Compile to Flash” and “Compile to Flash, Run in Ram.”

The target configuration used in the compile is determined in the Compiler tab of the Project Options
dialog. From there, under “Default Compile Mode” you can choose to use the attached target or a
defined target configuration. The defined target configuration is accessed by clicking on the Targetless
tab which will reveal three additional tabs: RTI File, Specify Parameters and Board Selection. To learn
more about these tabs see “Targetless Tab” on page 290.

The .bin file may be used with a device programmer to program multiple targets; or the Rabbit Field
Utility (RFU) can be used to load the .bin file to the target.

If you are creating special a program such as a cold loader that starts at address 0x0000 you can
exclude the BIOS from being compiled into the . bin file by unchecking the option to include it. This
is done by choosing Options | Project Options | Compiler and clicking on the “Advanced...” button.

In addition to the .bin file, several other files are generated with this compile option. For example, if
you compile demol.c toa .bin file, the following files will be in the same folder as demol. c:

e DEMO1 .bak - backup of the application source file (made at compile time, when this option is
enabled).

* demol.bdl - binary image download file (used when loading the application to a connected
target).

e DEMO1.brk - debugger breakpoint information.
e demol.hdl -no longer used.

e demol.hex - simple Intel HEX format output image file; the serial DLM samples download
a DLP's HEX file and load the image to Flash.

* DEMO1 .map - the application's code/data map file (RabbitBios.map is also generated,
separately). For more information on the map file, see Appendix B, "Map File Generation."

* DEMO1.rom-ROM "output" file, containing redundant addresses (due to fixups); it's used to
generate the BDL, BIN, HEX, and HDL files.

Reload RabbitSys binary
This option executes the command line RFU to reload the RabbitSys binary. You must have a target
board with preloaded drivers to run RabbitSys.

Reset Target/Compile BIOS <Ctrl+Y>
This option reloads the BIOS to RAM or Flash, depending on the choice made under BIOS Memory
Setting in the Compiler dialog (viewable from Options | Project Options).

The following message will appear upon successful compilation and loading of BIOS code.

BIOS Successfully Compiled
Heady to Compile User Programs

254 digi.com Graphical User Interface

www.digi.com

14.2.5 Run Menu

Click the menu title or press <Alt+R> to select the RUN menu.

Run Inspect Options Window Help

B R F3 Run <F9>
Hn Starts program execution from the current breakpoint. Registers are
W stop (ZErlH-G) . .) . .
~ _ restored, including interrupt status, before execution begins. If in
& Run w/Na Paling Alt+F9 Edit mode, the program is compiled and downloaded.
¢ Step Into F7
” o i o - Stop <Ctrl+Q>
.E) =R E The “Stop” command stops the program at the current point of exe-
) Source Trace Into alk+F7 . e
I cution. Usually, the debugger cannot stop within nodebug code. On
() Source Step Over Alt+Fs the other hand, the target can be stopped at an RST 028h instruction
%5 Toagle Breakpaint Fz if an RST 028h assembly code is inserted as inline assembly code
75 Togdle Hard Breakpoint Alb+F2 in nodebug code. However, the debugger will never be able to
i Clear All Breakpoints Chrl+4 find and place the execution cursor in nodebug code.
|; Pall Target Chrl+L Run w/ No Polling <Alt+F9>
= This command is identical to the “Run” command, with one excep-
Reset Program Ckrl+F2 .
_ tion. The PC polls the target every three seconds by default to
@ Debug Made =
@ Close C . determine if the target has crashed. When debugging via Rabbit-
05 Lonnection . . . O . .
Link, polling is used to make the RabbitLink keep its connection to

the PC open. Polling does have some overhead, but it is very mini-
mal. If debugging ISRs, it may be helpful to disable polling.

Step Into <F7>
Executes one C statement (or one assembly language instruction if the assembly window is displayed)

with descent into functions. If nodebug is in effect and the Assembly window is closed, execution
continues until code compiled without the nodebug keyword is encountered.

Step Over <F8>
Executes one C statement (or one assembly language instruction if the assembly window is displayed)

without descending into functions.

Source Step Into <Alt+F7>
Executes one C statement with descent into functions when the assembly window is open. If

nodebug is in effect, execution continues until code compiled without the nodebug keyword is
encountered.

Source Step Over <Alt+F8>
Executes one C statement without descending into functions when the assembly window is open.

Toggle Breakpoint <F2>
Toggles a soft breakpoint at the current cursor location. Soft breakpoints do not affect the interrupt

state at the time the breakpoint is encountered, whereas hard breakpoints and hardware breakpoints do.

Starting with Dynamic C 9, breakpoints can be toggled in edit mode as well as in debug mode. Break-
point information is not only retained when going back and forth from edit mode to debug mode, it is
stored when a file is closed and restored when the file is reopened.

Dynamic C User’s Manual digi.com 255

www.digi.com

Toggle Hard Breakpoint <Alt+F2>

Toggles a hard breakpoint at the current cursor location. A hard breakpoint differs from a soft break-
point in that interrupts are disabled when the hard breakpoint is reached.

Starting with Dynamic C 9, breakpoints can be toggled in edit mode as well as in debug mode. Break-
point information is not only retained when going back and forth from edit mode to debug mode, it is
stored when a file is closed and restored when the file is reopened.

Clear All Breakpoints <Ctrl+A>

Clears all software breakpoints.

Poll Target <Ctrl+L>

A check mark means that Dynamic C will poll the target. The absence of a check mark means that
Dynamic C will not poll the target. Prior to Dynamic C 7.30, this option was named “Toggle Polling;”
however, now Dynamic C will not restart polling without the user explicitly requesting it.

If “Poll Target” is selected, Dynamic C sends a message to the target every three seconds and expects a
response. If no response is received, Dynamic C ends the debugging session. Several things can be
responsible for the target not replying to a polling message, such as loss of power, running in a loop
with interrupts disabled, leaving interrupts disabled long enough to disrupt the serial port A ISR, or
overwriting serial port A configuration, among other things. Polling does introduce overhead, but it is
minimal since it only occurs every three seconds. Without polling turned on, Dynamic C will only
notice an unresponsive target when the user attempts to do some other sort of debugging such as stop-
ping the target, setting a breakpoint, single stepping, setting or evaluating a watch, etc.

Reset Program <Ctrl+F2>

Resets program to its initial state. The execution cursor is positioned at the start of the main function,
prior to any global initialization and variable initialization. (Memory locations not covered by normal
program initialization may not be reset.)

The initial state includes only the execution point (program counter), memory map registers, and the
stack pointer. The “Reset Program” command will not reload the program if the previous execution
overwrites the code segment. That is, if your code is corrupted, the reset will not be enough; you will
have to reload the program to the target.

Debug Mode <Shift+F5>

Dynamic C 9 introduces the ability

to switch back to debug mode from =
edit mode without having to
recompile the program. If the
source file has been modified while Yes | | Mo I
in edit mode, a popup dialog lets
you choose whether to run the non-
modified code or to go ahead and recompile and download again.

Source code has been modified - continue with switch to debug mode?

Close Connection

If using a serial connection, disconnects the programming serial port between PC and target so that the
target serial port and the PC serial port are both accessible to other applications.

If using a TCP/IP connection, closes the socket between the PC and the RabbitLink or between the PC
and the RabbitSys-enabled board.

256

digi.com Graphical User Interface

www.digi.com

14.2.6 Inspect Menu

Click the menu title or press <Alt+|> to open the Inspect menu.

The Inspect menu provides commands to manipulate watch

| Inspect Options Window Help expressions, view disassembled code, and produce hexadeci-
a* add watch, .. iZhrl+ mal memory dumps. The Inspect menu commands and their
i@ Delete Wakch functions are described here.

i Delete All Watches

Add Watch <Ctrl+W>

L1 .
Update Wakch Window CErl+L . . ey g

q\, Ep ke B _ CHlsEy This command displays the “Add Watch Expression” dialog.

Q Evaluate Expression ' Enter watch expressions with this dialog box.

I n

:’E Disassemble at Cursar Cirk+F10 A watch expression may be any valid C expression, including

y[i] Disassemble at Address. .. alk+F10 . .
y assignments, function calls, and preprocessor macros. (Do not
i I Dump At Address. .. Chrl+D

include a semicolon at the end of the expression.) If the watch
| 5top Execution Tracing ChrH-AIET expression is successfully compiled, it and its outcome will
. U] start Execution Tracing Shift-+CEr+T appear in the Watches window.

(30 ko execution poink Ckrl+E
x
If the cursor in the active window is o
“Watch Espression |I++ LI

positioned over a variable or function
name, that name will appear in the Add | | 0K I | LCancel I Help |
Watch Expression text box when the
Add Watch Expression dialog box
appears. Clicking the Add button will add the given watch expression to the watch list, and will leave
the Add Watch Expression dialog open so that more watches can be added. Clicking the “OK” button
will add the given watch expression to the watch list, and close the Add Watch Expression dialog.

To add a local variable to the Watch window, the target controller’s program counter (PC) must point to
the function where the local variable is defined. If the PC points outside the function, an error message
will display when “Add” or “OK” is pressed, stating that the variable is out of scope or not declared.

An example of the results displayed in the Watches window appears below.

*%wWatches M=l E3
E' int 47 (0x00ZFy

i
) int 136 (0x0088)

If the evaluation of a watch expression causes a run-time exception, the exception will be ignored and
the value displayed in the Watches window for the watch expression will be undefined.

Starting with Dynamic C 9, structure members are displayed whenever a watch expression is set on a
struct. Prior to Dynamic C 9, separate watch expressions had to be added for each member. Introduced
in Dynamic C 8.01, the Debug Windows tab of the Environment Options menu lets you set flyover hint
evaluation of any expression that can be watched without having to explicitly set the watch expression.
See “Watch” on page 293 and “Watch Window” on page 275 for more details.

Dynamic C User’s Manual digi.com 257

www.digi.com

Delete Watch

Removes highlighted entry from the Watches window.

Delete All Watches

Removes all entries from the Watches window.

Update Watch Window <Ctrl+U>

Forces expressions in the Watches window to be evaluated. If the target is running nodebug code, the
Watches window will not be updated, and the PC will lose communication with the target. Inserting an
RST 028h instruction into frequently executed nodebug code will allow the Watches window to be
updated while running in nodebug code. Normally the Watches window is updated every time the exe-
cution cursor is changed, that is, when a single step, a breakpoint, or a stop occurs in the program.

Evaluate Expression

Brings up the Evaluate Expression dialog where you can enter a single expression in the Expression
dialog. The result is displayed in the Result text box when Evaluate is clicked. Multiple Evaluate
Expression dialogs can be active at the same time.

Disassemble at Cursor <Ctrl+F10>

Loads, disassembles and displays the code at the current editor cursor location. This command does not
work in user application code declared as nodebug. Also, this command does not stop the execution
on the target.

Disassemble at Address <Alt+F10>

Brings up the Disassemble at Address dialog where you can enter an address at which to begin disas-
sembly. The format of the address is either the logical address specified as a hex number (Oxnnnn or
just nnnn) or as an xpc:offset pair separated by a colon (nn:mmmm).

The Disassembled Code window displays the result. See “Assembly (F10)” on page 294 for details
about this window.

Dump at Address <Ctrl+D>

Allows blocks of raw values in any memory location to be displayed. Values are displayed on the
screen or written to a file. If separate I&D space is enabled, you can choose which logical space to
examine: instruction space or data space.

Dynamic C 9 introduced differences highlighting when displaying to the screen: each time you single
step in C or assembly changed data is highlighted in reverse video in the Memory Dump window. (This
is also true for the Stack and Register windows.)

When writing to a file, the option Save to file
requires a file pathname and the number of bytes
to dump. The option Save entire flash to file — temory Dump
requires a file pathname. If you are running in Dump Address ||:|;.;|:||:||:||:| j
RAM, then it will be RAM that is saved to a file,
not Flash, because this option simply starts
dumping physical memory at address zero.

Memory Dump Setup

Mumber of bytes I

When displaying on a screen, a Memory Dump File name I _I
window is opened. A typical screen display
appears below. Although the cursor is not visible oK | Cancel Help |

in this screen capture, it is hovering over logical

258

digi.com Graphical User Interface

www.digi.com

memory location 0x0022, which has a value of OxFF. This information is given in the fly-over text and
also in the titlebar. Either or both of these options may be disabled by right clicking in the Memory
Dump window or in the Options | Environment Options, Debug Windows tab, under Specific Prefer-
ences for the Memory Dump window.

EMemnw Dump - 00022 : FF

TUpdate button ||IJ:420 IE?&

0oo hd
oooooo C3 72 oo 77 1D 00 00 12 FF FF FF FF FF FF FF FF i w ﬂ
oooolo FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

aoooozo FF FF FF FF FF FF FF FF C7 00 E1 F2 CF 4% E4 F& E
ooooz0 Cr 1F 1D CF E1 EE F2 C3 ZC 00 EIr 5E CF EBA EZ F&2 P
oooo040 EDR 46 3E 20 3F 44 Ce CF F& E1 F2 C3 77 1D FD £1 F= 27 L
000050 11 c2 100022 FF|oo CE 7F 22 05 CI» BES 11 18 12 CE H

ooooe0 &F 22 05 CDr 74 14 12 OF 34 3B C2 BY 22 08 CD 74 {1 ¢ - [S
oooo70 14 12 04 D3 3F C3 00 C9 ED 76 FE 02 F5 ED 77 FE z w o
oooos0 C5 DE ES DD ES FDr ES D3 CH DE ES CDr 4E 00 E1 Dl N
oooo20 C1 09 F©r E1 DI E1 E1 D1 C1 F1 EDI &7 F1 02 F1 ED o
0000a0 7E ED ED» C2 D3 3234 C3 00 CE 7F C2 D3 24 CO 00 C9 ~ H H
oooob0 2E O7 D2 32 C2 00 C2 D3 34 C3 00 CE EF CO 79 D3 = 2 H _ 7
oo00e0 3E CO OO0 C2 44 79 6E &1 6D &% 43 55 BE 69 76 65 2 Dynami Clinive
oooodo 7E 73 61 6C Z0 B2 Bl &E 6Z &5 74 20 42 49 4F &3 rsal Babbhit BIOS
0000e0 Z0 L& &5 72 73 69 &F &E 20 37 ZE 323 32 3B ED &4 WVersion 7.32; T
oooof0 &F 7C ED &7 YD ED E4 33 33 C9 F& 2E EA D3 3Z 08 ol o} T332 =2 E
ooolo0 00 F1 C2 CF &2 EA F2 C9 FL 32 E4 CE CE E7 CE EF h H

0oollo 3 E4 CL 32 ES CE CE 27 CEB EF CE C7 32 EE CE 3E & - z >LI

Memory Dump windows may be scrolled. Scrolling causes the contents of other memory addresses to
appear in the window. Hotkeys ArrowUp, ArrowDown, PageUp, PageDown are active in the Memory
Dump window. The window always displays as many lines of 16 bytes and their ASCII equivalent as

will fit in the window.

Values in the Dump window are updated automatically when Dynamic C stops or comes to a break-
point. Updates only occur if the window is updateable. This can be set either by right clicking in the
Memory Dump window and toggling the updateable menu item, or by clicking on the Debug Windows
tab in Options | Environment Options. Select Memory Dump under Specific Preferences, then check
the option “Allow automatic updates.” The Memory Dump window can be updated at any time by
clicking the Update button on the tool bar or by right clicking and choosing Update from the popup
menu.

The Memory Dump window is capable of displaying three different types of dumps. A dump of a logi-
cal address ([0x]mmmm) will result in a 64k scrollable region (0x0000 - 0xffff). A dump of a physical
address ([0x]mmmmm) will result in a dump of a 1M region (0x00000 - 0xfftff). A dump of an
xpc:offset address (nn:mmmm) will result in either a 4k, 64k, or 1M dump range depending on the
option set on the Debug Windows tab under Options | Environment Options.

Note that adding a leading zero to a logical address makes it a physical address.

Any number of dump windows may be open at the same time. The type of dump or dump region for a
dump window can be changed by entering a new address in the toolbar’s text entry area. To the right of
the this area is a button that, when clicked, will cause the address in the text entry area to be the first
address in the Dump window. The toolbar for a dump window may be hidden or visible.

Dynamic C User’s Manual digi.com 259

www.digi.com

Stop Execution Tracing <Ctrl+Alt+T>
This command causes the target to stop sending trace information to Dynamic C. You can also do this
from within your program with the TRACEOFF macro. The sample program Samples/Demo4.c
describes and uses this trace macro.

Start Execution Tracing <Shift+Ctrl+T>
This command causes the target to send execution tracing information to Dynamic C based on the trace
options you choose in the Debugger tab of the Project Options dialog. You can also do this from within
your program with the TRACE and TRACEON macros. The sample program Samples/Demo4.c
describes and uses these trace macros.

Trace entries received are displayed in the Trace window (see Stack Trace (Ctrl+T)). This menu com-
mand is only available if tracing is enabled in Project Options and Dynamic C is in run mode.

Note that turning on tracing causes a performance hit to your program because of the extra communi-
cation required between Dynamic C and the target. If your program requires precise timing, tracing
may interfere.

Goto execution point <Ctrl+E>
When stopped in debug mode, this option places the cursor at the statement or instruction that will exe-
cute next.

260 digi.com Graphical User Interface

www.digi.com

14.2.7 Options Menu

Click the Options menu title or press <Alt+O> to select the Options menu.

Environment Options

Dynamic C comes with a built-in, full-featured text editor. It may be
customized to suit your style using the Environment Options dialog
box. The dialog box has tabs for various aspects of the editor. Note
that keyboard shortcuts for some of the options have no character to
underline, so the character is shown between brackets, thus, when
the Editor menu options are visible, Alt+Q is the keyboard shortcut
for toggling the option “Cursor through tabs”.

Editor Tab

Inspeck | Options Window Help

4 lﬂ Ervironment Opkions

] Project Cptions
. Toolbars

Click on the Editor tab to display the following dialog. Installation defaults are shown.

Environment Options il

E ditar I Gutter & bargin I Dizplay I Syntax Colors I Code Templates I Debug Windows | Pnnt / Alerts

— Editar aptions
Wi _
[~ Use previous indention
[~ Cursor through tabs (3]
[+ Backspace unindents

¥ Show line numbers

[~ Show line numbers an quiter
[~ Motepad style cursar [1]

|+ Curzor beyond EOF

[+ Cursor beyond EOL

|+ Selection beyond EOL

[~ Eeep hrailing blanks
[~ Persistent blocks

¥ Owenarite blocks

[~ Double click line

¥ Find text at cursar (2)
v Select found text

v Uz syntax highlight
[~ Block owensrite cursor
[~ Undo after save [£]
v Group undo

[~ Dizable dragaing
[~ Center Bookmarks (3]

Block. indent; Tab ztops: Keymapping: Syntax extenzions:
E E | Defaul x| [efibhhh
1 Hdefine N 1000 =
Z const fleat 3CRT PI = 1.77245385;)/ the sguare
3 char *const lakel = "The sguare root of pi is: ":
4q
S maini)
6 {
7 int i:
=] for (i = 0; i < MN; ++1)
9 { o
10 printf ("ss TfYvn", label, SQRT PI):
11 Y B _ILI
<| | 3
ok LCancel | Help |

The Editor options are detailed here. All actions taken are immediately reflected in the text area at
the bottom of the dialog, and in any open editor windows.

Auto indent mode

Checking this causes a new line to match the indentation of the previous line.

Dynamic C User’s Manual

digi.com

261

www.digi.com

Use previous indention
Uses the same characters for indentation that were used for the last indentation. If the last
indentations was 2 tabs and 4 spaces, the next indentation will use the same combination of
whitespace characters.

Cursor through tabs
With this option checked, the right and left arrow keys will move the cursor through the logi-
cal spaces of a tab character. If this is unchecked the cursor will move the entire length of the
tab character.

Backspace unindents
Check this to backspace through indentation levels. If this is unchecked, the backspace will
move one character at a time.

Show line numbers
Check this to display line numbers in the text window. This must be checked to activate the
option Show line numbers on gutter.

Show line numbers on gutter
If gutters are visible, check this to display line numbers in the gutter.

Notepad style cursor
Checking this causes the cursor to behave similar to Notepad.

Cursor beyond EOF
Check this option to move the cursor past the end of the file.

Cursor beyond EOL
Check this option to move the cursor past the end of the line.

Selection beyond EOL
Check this option to select text beyond the end of the line.

Keep trailing blanks
Check this option to keep extra spaces and tabs at the end of a line when a new line is started.

Persistent blocks
Check this option to keep selected text selected when you move the cursor using the arrow
keys. Using the mouse to move the cursor will deselect the block of text. Using menu
commands or keyboard shortcuts will affect the entire block of selected text. For example,
pressing <Ctrl+X> will cut the selected block. But pressing the delete key will only delete one
character to the right of the cursor. If this option was unchecked, pressing the delete key would
delete all the selected text.

If this option is checked and the Find or Replace dialog is opened with a piece of text selected
in the active edit window, the search scope will default to that bit of selected text only.

Overwrite blocks
Check this option to enable overwriting a selected block of text by pressing a key on the key-
board. The block of text may be overwritten with any character, including whitespaces or by
pressing delete or backspace.

262

digi.com Graphical User Interface

www.digi.com

Double click line
Check this option to allow an entire line to be selected when you double click at any position
in the line. When this option is unchecked, double clicking will select the closest word to the
left of the cursor.

Find text at cursor
When either the Search or Replace dialogs are opened, if this option is checked the word at the
cursor location in the active editor window will be placed into the “Text to Find” edit box. If
this option is unchecked, the edit box will contain the last search string.

Select found text
The color of found text can be set in Options | Environment Options, on the Syntax Colors
page. Select “Search Match” from the Element list box, then set the foreground and back-
ground colors.

If this box is unchecked the Search Match color scheme will be used when a match is found,
but the text will not be selected for copy or delete operations. If this option is checked, the
matched text will automatically be selected so that it may be copied or deleted.

Use syntax highlight
Check this option to enable the Display and Syntax Color choices to be active. When this
option is checked, the “Use Syntax Highlighting” in the edit window’s right-click menu
allows you to toggle the syntax highlighting in the active file.

Block overwrite cursor
Check this option to show the cursor as a block when an editor is placed in overwrite mode.

Undo after save
Check this option to enable undo operations after a file has been saved. With this option
unchecked, the undo list for a file is erased each time the file is saved.

Group undo
Check this option to undo changes one group at a time. With this option unchecked, each oper-
ation is undone individually.

Disable dragging
Checking this option disables drag and drop operations: i.c., the ability to move selected text
by pressing down the left mouse button and dragging the text to a new location.

Center Bookmarks
Check this option so that when you jump to a bookmark it is centered in the editor window.

Block indent
The number of spaces used when a selected block is indented using <Ctrl+k+i> or unindented
using <Ctrl+k+u>.

Tab stops
This is a comma separated list of numbers which indicate the number of spaces per tab stop. If
only one number is entered, say “3,” then the first tab stop is 3 spaces, as is each additional tab
stop. Every additional number in the list indicates the number of spaces for all subsequent

Dynamic C User’s Manual digi.com 263

www.digi.com

tabs. E.g., if the list consists of “3,6,12” the first tab stop is 3 spaces, the second tab stop is 3
more spaces and all subsequent tab stops are 6 spaces.

Keymapping
The keyboard has five different default key mappings: Default, Classic, Brief, Epsilon and
Visual Studio. Change the keymapping with this pulldown menu.

Syntax extensions
Dynamic C will automatically syntax highlight the text in all files with the extensions listed
here. Syntax highlighting can also be enabled by right-clicking on an open file and selecting
the “Use Syntax Highlighting” menu item.

Gutter & Margin Tab
Click on the Gutter & Margin tab to display the following dialog.

Environment Options E3

Editar | Displa_l,ll Syritan Eulorsl Code Templatesl Debug Winduwsl F'rinta".ﬁ.lertsl
— Editor gutter — Editar margin

¥ Visible width: [32 2] % Visble widh [T 3]

: BtrFace -

Color: Il:' J @l Coler: I- GrayT ext j @I

7 Line Mumbers Calors | J
Syl -
Foregraund: I- Black j @l =¥
Background: || White =] @ Posiior: 30 %

#idefine N 1000 =~
const fleoat S0ORT PI = 1.77245355; 7 the sguare root
const char label = "The sguare root of pi is: ":
main ()
{
int i:
for (i = 0; 1 < N: ++1i)
{
printf ("%= :fin", label, SQRT PI):
H
'
-
RN — LI_I
ok LCancel | Help |

264

digi.com

Graphical User Interface

www.digi.com

Editor gutter
Check the Visible box to create a gutter in the far left side of the text window. Use the Width
scroll bar to set the width of the gutter in pixels. The button to the right updates the width
parameter. Changing the width and clicking on OK at the bottom of the dialog does not update
the gutter width; you must click on the button. Use the Color pulldown menu to set the color.
The button to the right brings up more color choices.

Editor margin
Check the Visible box to create a right-hand margin in the text window. Use the Width scroll
bar and the Color pulldown menu to set the like-named attributes of the margin line. The Style
pulldown menu displays the line choices available: a solid line and various dashed lines. The
Position scroll box is used to place the margin at the desire location in the text window.

Line Number Colors
If line numbers are set to visible and are not placed on the gutter, the Foreground color will set
the color of the line numbers and the Background color will set the color on which the line
numbers appear.

Dynamic C User’s Manual digi.com 265

www.digi.com

Display Tab
Click on the Display tab to display the following dialog.

il Environment Options

pd

— Editor Font — Background Caolors
Mame: W Usemonofont Size: Editor [E dit Mode]:
IEDurier Mew j I'ID j ||:| Winday j @I
Editor [Debug Mode]:
' Special Symbols ||:| dindon j @I
[Usze Wiorkepace:

I- Gray

-l &l

— Fareground Calar [non-syntas)

EOE: I— Tat: I I- Fuchsia j @I

#oefine M 1000

Sini)
i
int i:
for (i = 0; i < N; ++i)
{
printf ("%$s $fYn", lakbel, SQRT_PI);

const £loat SQRT_PI = 1.77245385; A7 the sguare root
char *consgt label = "The =dquare root of pi i=: ™)

v

F

(1] Cancel |

Editor Font

This area of the dialog box is for choosing the font style and size. Check Use mono font for
fixed spacing with each character; note that this option limits the available font styles.

Special Symbols

Check the box labeled “Use” to view end of line, end of file, space and/or tab symbols in the

editor window.

Background Colors

This area of the dialog box is for choosing background colors for editor windows and the main
Dynamic C workspace. The editor window can have a different background color in edit mode
than it does in run mode. Each pulldown menu has an icon to the right that brings up addi-

tional color choices.

266

digi.com

Graphical User Interface

www.digi.com

Foreground Color (non-syntax)

If syntax highlighting is not used, the color selected here will be the foreground color used in

the editor file.

Syntax Colors Tab

Click on the Syntax Colors tab to display the following dialog.

Environment Options

72

Element Earearaund|eolon
| I Black

String

::Tmment EBackaraund coler
nkeger -

Float ||:| Windiow
Reserved waords

Defines Use defaults for
|dertifier ¥ Foreground
Defimiters

Agzembler j v Background

H 2

Text attibutes

I~ EBold
™ Italic

™ Underline

| Code Templates I Debug windows I Fririt # Alerts I

Open

#define N 1000

{
printf (":3 £f\n",
}

const fleoat SQRT PI = 1.77245385;

const char label = "The square root of pi i=s:
rain ()
{

int i:

for (i = 0; i « MN: ++1)

label, SQRT PI):

S the sguare root
Ira

_ e |
Save |

LCancel |

Element

In this text box are the different elements that may be in a file (strings, comments, integers,
etc.). For each one you may choose a foreground and a background color. You may also opt to
use the default colors: black for foreground and white for background. In the Text attribues
area of the dialog box, you may set Bold, Italic and/or Underline for the any of the elements.

Open / Save Buttons

These buttons load and save color styles into files with a .rgb extension. Clicking the Open

button will bring up an Open File dialog box, where you choose a .rgb file that will set all of
the syntax colors. There is a subdirectory titled Schemes under the root Dynamic C directory
that has some predefined color schemes that can be used. Opening a .rgb file makes its colors
immediately active in all open editor windows. If you close the Environment Options window

Dynamic C User’s Manual

digi.com

267

www.digi.com

without saving the changes, the colors will go back to whatever they were before you opened
the .rgb file.

Code Templates Tab
Click the Code Template tab to display the following dialog.

Environment Options]
Editar | Gutter & Marginl Displayl Syntax Colors Code Templates | Debug Windu:uwsl Print f';‘-‘n.lertsl
Templates
Mame IDescriptiun | Edit |
forb for staternent
function function declaration Delete |
ffb ff ztatement Add..
ifeb if elze
shruct structure declaration
whileb while ztatement
libheader Library Header
libdescription Libramy Description
funcdescription Function Dezcription
h ain Main program
Code
switch (| |-
{
case : ;
break:;
case : ;
break:
default: :
H
|
ak. Cancel Help |

As you can see, there are several predefined templates. The Edit and Delete buttons allow the like-
named operations on existing templates. The Add button gives the ability to create custom tem-
plates.

To bring up the list of defined templates, Dynamic C must be in edit mode. Then you must do one
of the following: press <Ctrl+j> or right click in the editor window and choose “Insert Code Tem-
plate” from the popup menu or choose the Edit command menu and select “Insert Code Tem-
plate.” Clicking on the desired template name inserts that template at the cursor location.

268

digi.com Graphical User Interface

www.digi.com

Debug Windows Tab

Click on the Debug Windows tab to display the following dialog. Here is where you change the

behavior and appearance of Dynamic C debug windows.

— General Preferences

Environment Options

Editar I [utter & Marginl Displa_l,ll Syntax Eu:ulu:ursl Code Templates Debug *#indows | Print a’.ﬁ.lertsl

" Do not autarmatically open
% Open last uzed windows
= Dpen all debug windows

" Open zelected

W Zzsembly [| Stdio
[T Begisters [wiatch
B! Stack [T | Stack Trace

[T Execution Trace

Azzembly
Stack
Registers

b emory D ump
Wwhatch

Stack Trace

M (Sl m ok

— Specific Preferences
Debug Windows

Execution Trace

— Fonts and Colaors

Foreground Color
[N lck - @]
Background Color
[T whi = @]

Font [~ Use fized pitch

ITerminaI j _l

_| &pply settings b all debug windows

— Optionz

[T Logto File

[Automatic open
v Automatic Yertical Scroll
[T Autornatic Horzontal 5ol

[T Append

Idn:. falll

]

Fiow: |1 Q0o

Colurnns:

1l

Spaces ln Tab: |2

ak |

Help |

Under General Preferences is where you decide which debug windows will be opened after a suc-
cessful compile. You may choose one of the radio buttons in this category. Selecting “Open last
used windows” makes Dynamic C 8 act like Dynamic C 7.x.

Under Specific Preferences is where you customize each window. Colors and fonts are chosen

here, as well as other options.

Stdio Window

The previous screen shows the options available for the Stdio window'. They are described

here. You may modify or check as many as you would like.

Dynamic C User’s Manual

digi.com

269

www.digi.com

Automatic open
Check this to open the Stdio window the first time printf () is encountered.

Automatic Vertical Scroll
Check this to force vertical scroll when text is displayed outside the view of the win-
dow. If this option is unchecked, the text display doesn’t change when the bottom of
the window is passed; you have to use the scroll bar to see text beyond the bottom of
the window.

Automatic Horizontal Scroll
Check this to force horizontal scroll when text is displayed outside the view of the
window.

Log to File
Check this to direct output to a file. If the file does not exist it will be created. If it
does exist it will be overwritten unless you also check the option to append the file.

Rows
Specifies the maximum number of rows that can hold Stdio data.

Columns
Specifies the maximum number of columns that can hold Stdio data. When the maxi-
mum column is reached, output automatically wraps to the next row.

Spaces In Tab
Tab stops display as the number of spaces specified here.

Starting with Dynamic C 9, the various Find commands available on the Edit menu can be
used directly in the Stdio window.

i. The macro STDIO DEBUG SERIAL may be defined to redirect Stdio output to a designated

serial port—A, B, C or D. For more information, please see the sample program
Samples/STDIO SERIAL.C.

270

digi.com Graphical User Interface

www.digi.com

Assembly Window
The Assembly window displays the disassembled code from the program just compiled. All
but the opcode information may be toggled off and on using the checkboxes shown below. For
more information about this window see Section 11.4.3.

— Specific Preferences
D ebug ‘Windows

— Fants and Calars
Earearound Eolar
| I Black =l |
Backgraund Calar
| white = @|
Watch
E:-:lzgutinn Trace Fiont [T e figed pitch
Stack T i - |
Mfimzce IEDurler = J

_| Apply zettings to all debug windows

Stack,
Registers
kdemornye Dump

— Optiohz
[v Show Addresses [¥ Usze Sprtax Highlighting
v Show OpCodes v Show Source
v Show Clock Cocles ¥ Show File Mame in Source Line

¥ Sum Clack Cycles

Show Addresses
Check this to show the logical address of the instruction in the far left column.

Show OpCodes
Check this to show the hexidecimal number corresponding to the opcode of the
instruction.

Show Clock Cycles
Check this to show the number of clock cycles needed to execute the instruction in the
far right column. Zero wait states is assumed. Two numbers are shown for conditional
return instructions. The first is the number of cycles if the return is executed, the sec-
ond is the number of cycles if the return is not executed.

Sum Clock Cycles
Check this to total the clock cycles for a block of instructions. The block of instruc-
tions must be selected and highlighted using the mouse. The total is displayed to the
right of the number of clock cycles of the last instruction in the block. This value
assumes one execution per instruction, so looping and branching must be considered
separately.

Use Syntax Highlighting
Toggle syntax highlighting. Click on the Syntax tab to set the different colors.

Show Source
Check this to display the Dynamic C statement corresponding to the assembly code.

Dynamic C User’s Manual digi.com 271

www.digi.com

Show File Name in Source Line

Check this to prepend the file name to the Dynamic C statements corresponding to the

assembly code.

Register Window

For this window you must choose one of the following conditions: “Show register history” or
“Show registers as editable.” When the Register Contents window opens it will be in editable
mode by default. Selecting “Show Register history” will override the default setting.

Show register history

In this mode, a snapshot of the register values is displayed every time program execu-
tion stops. The line (L:) and column (C:) of the cursor is noted, followed by the regis-
ter and flag values. The window is scrollable and sections may be selected with the

mouse, then copied and pasted.

Starting with Dynamic C 9, each time you single step in C or assembly changed data
is highlighted in the Register window. (This is also true for the Stack and Memory

Dump windows.)

Register Conke

PCElbzd

Cx xxxd HPC E8
A an AF' 004 Change Register Maluels), ., Ckri+alk+R
EC 141C EC' 000R Copy

IE T8BC DE' EFCh
HL 0000 HL' DFF?
I¥ Ce20 IY 1B20
PC 1B24 ZP DFE®?

Switch to Editable Yiew

A click of the right mouse button brings up the menu pictured above. Choosing
Change Register Value(s)... brings up a dialog where you can enter new values for any

of the registers, except SP, PC and XPC.

272

digi.com

Graphical User Interface

www.digi.com

Show registers as editable
In this mode, you can increment or decrement most of the registers, all but the SP, PC
and XPC registers.

This screen shows the Register Contents window in editable mode. It is divided into
registers on the left and flags on the right.

7% Dynamic C Dist. 8.00

File Edit Comple Bun [nspect Options: Window Help

([e A [|

£ -
== Register Contents

A - 0OxF7 c: 1
BC : 0=x0o0z? x: 0O
DE : 0OxCEZzZ0 0o: o
HL : 0=xz7CC x: 0O
AF': 0=x5040 L
BC': 0=xooQo= x: 0O
LE': 0x0000 Z: 0
HL': 0x0000 51
I¥ : OxCEED

- 0OxCslo

&P : 0xDFFD

PC - 0wlEaZ Decrement Register Chrl+Alt+D

wEC- 00000 Increment R egister Chrlult+
Hew Register Walue... Chil+alt+H

Switch to History Wiew Chrl+alt+H

A click of the right mouse button on the register side will bring up the menu pictured
here. You can switch to history view or change register values for all but the SP, PC

and XPC registers.
The option New Register Value will
Enter new value for IY B3 bring up a dialog to enter the new reg-
New Fegister Value | ister value. Hex values must have “0x”
prepended to the value. Values without
K Lancel | a leading “0x” are treated as decimal.

A click of the right mouse button on the flags side of the window will bring up a menu
that lets you toggle the selected flag (Ctrl+Alt+T) or switch to history view
(Ctrl+Alt+H).

Dynamic C User’s Manual digi.com 273

www.digi.com

Memory Dump Window
For more information on using the Memory Dump window go to the section titled, Dump at
Address <Ctrl+D>.

i Specific Preferences

— Fonts and Colors

Debug Windows
o Farearound Calor
[[u] .
Azzembly |- Black j @!
Eit:CiI::ters Background Color
[]'white ~| &
Wwhatch | - J _I
Erecution Trace Faont I™ Use figed pitch
Stack Trace i = |
St :I IEnurler MHew _I
_| Apply Settings to &l
— Options
v &pply changes to al W Show address while scralling S(Eumented Dump Fange : |
W Allow autornatic updates W Show current Bute in bint Bl
v Show taal bar v Show curent byte intitle bar | ¢ Full Range
[Enable difference highlighting: [Use reversed font colors
Cusztomized Colors
v Bold foregraund Fareground; I- Elack. j @l
¥ Use window background Backgroumd; ||:| White ;I)

The following are the options relevant to the Memory Dump window.

Apply changes to all
Changes made in this dialog will be applied to all memory dump windows.

Allow automatic updates
The memory dump window will be updated every time program execution stops
(breakpoint, single step, etc.). Starting with Dynamic C 9, each time you single step
changed data in the memory dump window is highlighted in reverse video.

Show tool bar
Each dump window has the option of a tool bar that has a button for updating the
dumped region and a text entry box to enter a new starting dump address.

Show address while scrolling
While using the scroll bar, a small popup box appears to the right of the scroll bar and
displays the address of the first byte in the window. This allows you to know exactly
where you are as you scroll.

Show current byte in hint
The address and value of the byte that is under the cursor is displayed in a small
popup box.

Show current byte in title bar
The address and value of the byte that is under the cursor is displayed in the title bar.

274

digi.com Graphical User Interface

www.digi.com

Segmented Dump Range
The memory dump window can display 3 different types of dumps. A dump of a logi-
cal address will result in a 64k scrollable region (0x0000 - 0xffff). A dump of a physi-
cal address will result in a dump of a 1M region (0x00000 - 0xfffff). A dump of an
xpc:offset address will result in either a 4k, 64k or IM dump range, depending on how
this option is set.

If a 4k or 64k range is selected, the dump window will dump a 4k or 64k chunk of
memory using the given xpc. If “Full Range” is selected, the window will dump
00:0000 - ff:ffff. To increment or decrement the xpc, use the “+’ and “-” buttons
located below and above the scroll bar. These buttons are visible only for an xpc:off-
set dump where the range is either 4k or 64k.

Watch Window
The Watches window configuration options, Enable watch expression evalution in flyover hint
and Show watch expression evaluation errors in flyover hint, do not actually affect the
Watches window. When checked, they allow you to use flyover hints in the source code win-
dow to see the value of watchable expressions.

Move the cursor over a variable to see its current value and over a function to see its logical
address or its return value. If you highlight the name of a function (e.g., my function)you
will see the location of the code in memory. If you highlight the function call (e.g.,

my function (my_parm)) the function will be called and you will see its return value. If
the cursor is over a structure member, the flyover hint will only contain information about the
structure, not the individual member.

Stack Trace Window
There are no configuration options for the Stack Trace window.

Dynamic C User’s Manual digi.com 275

www.digi.com

Print/Alerts Tab

Click on the Print/Alerts tab to display the following dialog. You may access both the Page Setup
dialog and Print Preview from here.

Environment Options El

— Print Optionz

v Use Header [+ Usze Left Margin |1
I Use Eooter [+ Usze Right Margin |1—
v Mumber Pages

v Suntax Print ¥ Use Top Margin |1
[T whap Lines [+ Usze Battam Margin |1

—Print Fant

IEDurier Mew _l

Setup | Prewview

— Alerts
[Flash icon in tazkbar after cormpile and download when Dynaric C i in background

[T Beep after compile and download when Dynamic G is in background

v Detect changes made to open file outside of IDE and prompt far reload

v Confirm compilation of brary files

ak. LCancel Help

The Page Setup dialog works in conjunction with the Print/Alerts dialog. The Page Setup dialog is
where you define the attributes of headers, footers, page numbering and margins for the printed
page. The Print/Alerts dialog is where you enable and disable these settings. You may also change
the font family and font size that will be used by the printer. This does not apply to the fonts used
for headers and footers, those are defined in the Page Setup dialog.

There are four checkboxes in the Alerts area of this dialog. The first two signal a successful com-
pile and download, one with a visual signal, the other auditory. The third checkbox detects if a file
that is currently open in Dynamic C has been modified by an external source, i.e., a third-party

editor; and if checked, will bring up a dialog box asking if you want to reload the modified file so

276

digi.com Graphical User Interface

www.digi.com

that Dynamic C is working with the most current version. The last checkbox, if checked, causes
Dynamic C to query when an attempt is made to compile a library file to make sure that is what is
desired.

You may choose zero or more of these alerts.
Project Options
Settings used by Dynamic C to communicate with a target, and to compile and run programs are acces-

sible by using the Project Options dialog box. The dialog box has tabs for various aspects of communi-
cating with the target, the BIOS and the compiler.

Communications Tab

projectopions 5
Communications | Compiler I Debugger I Defines I T argetless I
— Connection Type—————— 1 Sernial Optionz
" Use Senal Connection Baud Rates
Debug Baud Rate [115200 =
Wew Dovirload Baud Hate 460800 = |
[~ Dizable Baud i egotistion

Serial Part ICUME 'I Stop Bits |2 'I

[¥ Eriable Processor verfication Yenfuthe processar,
[Ty dizabling if pou zan't get

the PL toifind the target
¥ Uze [USE to Serial Converter ¥ Sl

& Use TCPAR Connection - TCRAR Options

{+ FabhitSyz Habbitlink

Metwork, Address ||

Control Port |32D23

User Mame I

Password I

ak I LCancel Help

Connection Type

Choose either a serial connection or a TCP/IP connection.

Dynamic C User’s Manual digi.com 277

www.digi.com

Serial Options
This is where you setup for serial communication. The following options are available when
the Use Serial Connection radio button is selected.

Debug Baud Rate

This defaults to 115200 bps. It is the baud rate used for target communications after
the program has been downloaded.

Max Download Baud Rate

When baud negotiation is enabled, Dynamic C will start out at the selected baud rate
and work downwards until it reaches one both it and the target can handle.

Disable Baud Negotiation

Dynamic C negotiates a baud rate for program download. (This helps with USB or
anyone who happens to have a high-speed serial port.) This default behavior may be
disabled by checking the Disable Baud Negotiation checkbox. When baud negotiation
is disabled, the program will download at 115k baud or 56k baud only. When enabled,
it will download at speeds up to 460k baud, as specified by Max Download Baud
Rate.

Serial Port

This drop-down menu lists PC COM ports that may be connected to the Rabbit-based
target. The default is COM1. Starting with version 9.60, Dynamic C identifies which
ones are USB ports.

Stop Bits
The number of stop bits used by the serial drivers. Defaults to 2.

Enable Processor Verification

Processor detection is enabled by default. The connection is normally checked with a
test using the Data Set Ready (DSR) line of the PC serial connection. If the DSR line
is not used as expected, a false error message will be generated in response to the con-
nection check.

To bypass the connection check, uncheck the “Enable Processor Verification” check-
box. This allows custom designed systems to not connect the STATUS pin to the pro-
gramming port. Also, disabling the connection check allows non-standard PC ports or
USB converters that might not implement the DSR line to work.

Use USB to Serial Converter

Check this checkbox if a USB to serial converter cable is being used. Dynamic C will
then attempt to compensate for abnormalities in USB converter drivers. This mode
makes the communications more USB/RS232 converter friendly by allowing higher
download baud rates and introducing short delays at key points in the loading process.
Checking this box may also help non-standard PC ports to work properly with
Dynamic C.

278

digi.com Graphical User Interface

www.digi.com

TCPI/IP Options

To program and debug a controller across a TCP/IP connection, the Network Address field
must have the IP address of either the RabbitLink board that is attached to the controller, or
the IP address of a RabbitSys-enabled controller.

To accept control commands from Dynamic C, the Control Port field must be set to the port
used by the Ethernet-enabled controller. The Controller Name is for informational purposes

only. The Discovery button makes Dynamic C broadcast a query to any RabbitLinks or Rab-
bitSys-enabled controllers attached to the network. Any such boards that respond to the broad-
cast can be selected and their information will be placed in the appropriate fields.

Compiler Tab

Click on the Compiler tab to display the following dialog.

Project Options

I Del:uuggerl Definesl Targetlessl

Communications

— Wwarming Reports

— Bun-Time Checking — Twpe Checking — Optimize For
v dray Indices v Protatype " Size
v Painters v Dematian {* Speed
[+ Painter
— BIOS kemary Setting — kax Shown

[T Generate assembly list file for each compile

Al (= Code and BIOS inFlash Enos: |10 3]

£ Serouz Only {~ Code and BIOS in RAM _

£ Nore ¢ Code and BIOS in Flash, Funinfand | | Wamings: [10 2]
— List Files Separate Inztruction & Data Space

[T Enable separate instruction and data spaces

— Default Compile Mode

% Compile ko attached target
" Compile defined target configuration to . bin file
" Compile ta . bin file uzing attached target

— Ireline 1/0

[¥ Inline builtin 1D functions

— RabbitSps

[T Campile pragram in BabkitSys user mode

RabbitSys [0 Mode
= Protected
+ [rpratected

Advanced...

Help

LCancel

Dynamic C User’s Manual

digi.com

279

www.digi.com

Run-Time Checking
These options, if checked, can allow a fatal error at run time. They also increase the amount of
code and cause slower execution, but they can be valuable debugging tools.

e Array Indices: Check array bounds. This feature adds code for every array reference.

¢ Pointers: Check for invalid pointer assignments. A pointer assignment is invalid if the
code attempts to write to a location marked as not writable. Locations marked not writ-
able include the entire root code segment. This feature adds code for every pointer ref-
erence.

Functions marked as nodebug disable the run-time checking options selected in the GUI.

Type Checking

This menu item allows the following choices:

* Prototypes—Performs strict type checking of arguments of function calls against the
function prototype. The number of arguments passed must match the number of param-
eters in the prototype. In addition, the types of arguments must match those defined in
the prototype. Rabbit recommends prototype checking because it identifies likely run-
time problems. To use this feature fully, all functions should have prototypes (including
functions implemented in assembly).

¢ Demotion—Detects demotion. A demotion automatically converts the value of a larger

or more complex type to the value of a smaller or less complex type. The increasing
order of complexity of scalar types is:

char

unsigned int

int

unsigned long

long

float

A demotion deserves a warning because information may be lost in the conversion. For
example, when a 1 ong variable whose value is 0x10000 is converted to an int value,
the resulting value is 0. The high-order 16 bits are lost. An explicit type casting can
eliminate demotion warnings. All demotion warnings are considered non-serious as far
as warning reports are concerned.

¢ Pointer—Generates warnings if pointers to different types are intermixed without type
casting. While type casting has no effect in straightforward pointer assignments of dif-
ferent types, type casting does affect pointer arithmetic and pointer dereferences. All
pointer warnings are considered non-serious as far as warning reports are concerned.

Warning Reports
This tells the compiler whether to report all warnings, no warnings or serious warnings only. It
is advisable to let the compiler report all warnings because each warning is a potential run-
time bug. Demotions (such as converting a 1 ong to an int) are considered non-serious with
regard to warning reports.

280

digi.com Graphical User Interface

www.digi.com

Optimize For
Allows for optimization of the program for size or speed. When the compiler knows more than
one sequence of instructions that perform the same action, it selects either the smallest or the
fastest sequence, depending on the programmer’s choice for optimization.

The difference made by this option is less obvious in the user application (where most code is
not marked nodebug). The speed gain by optimizing for speed is most obvious for functions
that are marked nodebug and have no auto local (stack-based) variables.

BIOS Memory Setting
A single, default BIOS source file that is defined in the system registry when installing
Dynamic C is used for both compiling to RAM and compiling to Flash. Dynamic C defines a
preprocessor macro, FLASH , RAM or FAST RAM depending on which of the fol-
lowing options is selected. This macro is used to determine the relevant sections of code to
compile for the corresponding memory type.

* Code and BIOS in Flash - If you select this option, the compiler will load the BIOS to
Flash when cold-booting, and will compile the user program to Flash where it will nor-
mally reside. Note that this option cannot work for boards with serial boot flashes.
These boards should use Code and BIOS in Flash, Run in RAM.

e Code and BIOS in RAM - If you select this option, the compiler will load the BIOS to
RAM on cold-booting and compile the user program to RAM. This option is useful if
you want to use breakpoints while you are debugging your application, but you don’t
want interrupts disabled while the debugger writes a breakpoint to Flash (this can take
10 ms to 20 ms or more, depending on the Flash type used). It is also possible to have
a target that only has RAM for use as a slave processor, but this requires more than
checking this option because hardware changes are necessary that in turn require a spe-
cial BIOS and coldloader.

* Code and BIOS in Flash, Run in RAM - If you select this option, the compiler will load
the BIOS to Flash when cold-booting, compile the user program to Flash, and then the
BIOS will copy the flash image to the fast RAM attached to CS2. This option supports
a CPU running at a high clock speed (anything above 29 MHz) and should be used for
Rabbit core modules with serial boot flash.

This is the same as the command line compiler -mf r option.

Max Shown
This limits the number of error and warning messages displayed after compilation.

List Files

Checking this option generates an assembly list file for each compile. A list file contains the
assembly code generated from the source file.

The list file is placed in the same directory as your program, with the name

<Program Name>.LST. The list file has the same format as the Disassembled Code win-
dow. Each C statement is followed by the generated assembly code. Each line of assembly
code is broken down into memory address, opcode, instruction and number of clock cycles.
See page 294 for a screen shot of the Disassembled Code window.

Dynamic C User’s Manual digi.com 281

www.digi.com

Separate Instruction and Data Space

When checked, this option enables separate 1&D space, doubling the amount of root code and
root data space available.

Please note that if you are compiling to a 128K RAM, there is only about 12K available for
user code when separate 1&D space is enabled.

Default Compile Mode

One of the following options will be used when Compile | Compile is selected from the main
menu of Dynamic C or when the keyboard shortcut <F5> is used. The setting shown here may
be overridden by choosing a different option in the Compile menu. The setup for targetless
compile may differ for some board series. Please check your user manual for differences in
setup.

e Compile to attached target - a program is compiled and loaded to the attached target.

e Compile defined target configuration to .bin file - a program is compiled and the image
written to a .bin file. The target configuration used in the compile is taken from the
parameters specified in Options | Project Options. The Targetless tab allows you to
choose an already defined board type or you may define one of your own.

¢ Compile to .bin file using attached target - a program is compiled and the image written
to a .bin file using the parameters of the attached controller.

In-line 110

If checked, the built-in I/O functions (WrPortI (), RdPortI (), BitWrPortI () and
BitRdPortI ()) will have efficient inline code generated instead of function calls if all
arguments are constants, with the exception of the 3rd parameter of Bi tWrPortI () and
WrPortI (), which may be any valid expression.

If this box is checked, but a call to one of the aforementioned functions is made with non-
constant arguments, (with the exception of the 3rd parameter for the 2 write functions) then a
normal function call is generated.

RabbitSys

This option was added in Dynamic C 9.30. Checking it allows you to compile a program to
run on top of RabbitSys. The target board must be RabbitSys-enabled, which means that it has
the necessary preloaded drivers and the RabbitSys firmware.

For more information about RabbitSys, see the RabbitSys User’s Manual.

RabbitSys I/0 Mode

The radio buttons labeled “Protected” and “Unprotected” choose between the available Rab-
bitSys I/O protection modes.

Advanced... Button

Click on this button to reveal the Advanced Compiler Options dialog. The options are:

Default Project Source File

Use this option to set a default source file for your project. If this box is checked, then
when you compile, the source file named here will be used and not the file that is in
the active editor window. If the file named here is not open, it will be opened into a
new editor window, which will be the new active editor window.

282

digi.com Graphical User Interface

www.digi.com

User Defined BIOS File

Use this option to change from the default BIOS to a user-specified file. Enter or
select the file using the browse button/text box underneath this option. The check box
labeled use must be selected or else the default file BIOS defined in the system regis-
try will be used. Note that a single BIOS file can be made for compiling both to RAM
and Flash by using the preprocessor macros FLASH or RAM . These two macros
are defined by the compiler based on the currently selected radio button in the BIOS
Memory Setting group box.

User Defined Lib Directory File (same as the command line compiler option “-1f”)
The Library Lookup information retrieved with <Ctrl+H> is parsed from the libraries
found in the “lib.dir” file, which is part of the Dynamic C installation. Checking the
Use box for User Defined Libraries File, allows the parsing of a user-defined replace-
ment for the “lib.dir” file. Library files must be listed in the “lib.dir” file (or its
replacement) to be available to a program.

If the function description headers are formatted correctly (See “Function Description
Headers” on page 52.), the functions in the libraries listed in the user-defined replace-
ment for the “lib.dir” file will be available with <Ctrl+H> just like the user-callable
functions that come with Dynamic C.

Watch Code

Allow any expressions in watch expressions

This option causes any compilation of a user program to pull in all the utility func-
tions used for expression evaluation.

Restricting watch expressions (May save root code space)

Choosing this option means only utility code already used in the application program
will be compiled.

Dynamic C User’s Manual digi.com 283

www.digi.com

Debug Instructions and BIOS Inclusion

Include RST 28 instructions

If this is checked, the debug and nodebug keywords and compiler directives work as
normal. Debug code consists mainly of RST 28h instructions inserted after every C
statement. This option also controls the definition of a compiler-defined macro sym-
bol, DEBUG_RST. If the menu item is checked, then DEBUG RST is set to one, other-
wise it is zero.

If the option is not checked, the compiler marks all code as nodebug and debugging is
not possible.

The only reason to check this option if debugging is finished and the program is ready
to be deployed, is to allow some current (or planned) diagnostic capability of the Rab-
bit Field Utility (RFU) to work in a deployed system. This option affects both code
compiled to .bin files and code compiled to the target. To run the program after com-
piling to the target with this option, disconnect the target from the programming port
and reset the target CPU.

Include BIOS

If this is checked, the BIOS, as well as the user program, will be included in the .bin
file. If you are creating a special program such as a cold loader that starts at address
0x0000, then this option should be unchecked.

When you are compiling a program to the attached target controller, the BIOS is
always included.

284

digi.com Graphical User Interface

www.digi.com

Debugger Tab
Click on the Debugger tab to display the following dialog. This is where you enable/disable
debugging tools. Disabling parts of the debug kernel saves room to fit tight code space require-
ments.

Project Options 5'

— Debugger Optionz
[+ Enable debug kemel

¥ | Enable instruction levelsingle stepping

¥ Enatile breakpaints tan breakpoints: I32 |vl

[¥ Enable watch expression: bax expressions; |9 = Shuct watch memony: |5'I2 |vl

[¥ Enatle stack tracing Stack trace Ql,ltes:l‘maﬁl vl

aFk. LCancel Help

Enable debug kernel
This option was added in Dynamic C 9.30. Leaving it unchecked allows you to compile your
application without the debug kernel. You must check this option to set any of the other debug

options.

Enable instruction level single stepping
If this is checked when the assembly window is open, single stepping will be by instruction
rather than by C statement. Unchecking this box will disable instruction level single stepping
on the target and, if the assembly window is open, the debug kernel will step by C statement.

Dynamic C User’s Manual digi.com 285

www.digi.com

Enable breakpoints

If this box is checked, the debug kernel will be able to toggle breakpoints on and off and will
be able to stop at set breakpoints. This is where you set the maximum number of breakpoints
the debug kernel will support. The debug kernel uses a small amount of root RAM for each
breakpoint, so reducing the number of breakpoints will slightly reduce the amount of root
RAM used.

If this box is unchecked, the debug kernel will be compiled without breakpoint support and the
user will receive an error message if they attempt to add a breakpoint.

Enable watch expressions

If this box is checked, watch expressions will be enabled. This is where you set the maximum
number of watch expressions the debug kernel will support. The debug kernel uses a small
amount of root RAM for evaluating each watch expression, so reducing the number of
watches will slightly reduce the amount of root RAM used.

With the watch expression box unchecked, the debug kernel will be compiled without watch
expressions support and the user will receive an error message if they attempt to add a watch
expression.

With Dynamic C 9, watch expressions are enhanced to automatically include the addition of
structure members when a watch expression is set on a struct. Some extended memory is
reserved for handling watch expressions on structs. As shown in the above screen shot, 512
bytes of xmem is reserved by default. This can be changed to anything in the range 32 to 4096.
Be aware that this watch memory is a tradeoff: not only does it dictate the number and com-
plexity of watched structs, but also impacts the amount of memory available for xalloc ()
calls.

Enable stack tracing

Dynamic C 9 introduces stack tracing. If this box is checked the Stack Trace window is avail-
able to show the function call sequence leading to any point at which the program is stopped.
The Stack Trace window shows a concise history of the execution path and values of local
variables and function arguments that led to the current breakpoint, all for a very small cost in
execution time and BIOS memory.

To the right of the checkbox is a spin/edit box for entering the maximum number of bytes of
the current stack to transfer from the target at each breakpoint. The allowable range is 32 bytes
to 4096 bytes inclusive. The default is 4096 bytes. If the stack depth is smaller than the num-
ber in this spin/edit box, only the depth number of bytes is transferred.

With the “Enable stack tracing” box unchecked, the debug kernel and the user program will be
compiled without stack tracing support. Changing the status of the checkbox or the number of
stack trace bytes forces a recompilation of the BIOS the next time the user program is com-
piled.

See “Stack Trace (Ctrl+T)” on page 297 for details on using this debug window.

286

digi.com Graphical User Interface

www.digi.com

Enable execution tracing
If this is checked, the target will send trace information back to Dynamic C when you turn on
tracing by choosing Inspect | Start Execution Tracing or when your program does so by exe-
cutinga TRACE or TRACEON macro. Unchecking this box will disable the menu command
and macros.

Note that enabling tracing here will cause more code to be compiled into the BIOS, meaning
there is less memory available on the target for your program, so if you get insufficient mem-
ory errors with your program, disabling tracing might help. Also, when you turn on tracing
from the menu or a macro, your program will suffer a performance hit because of the extra
communication required between Dynamic C and the target.

Trace Buffer (PC)

The trace buffer allows you to specify how much memory is allocated on your computer (the
default is 64 megabytes) to hold trace entries received from the target. If you check the
"Wrap" box, new trace entries overwrite existing ones when the buffer fills up, starting with
the oldest. When "Wrap" is unchecked, any entries received after the buffer fills up are dis-
carded.

The number of entries displayed is the maximum number of trace entries the buffer will hold
given the size of the trace buffer you specify and the Trace window information fields you
select.

Trace Level

Choose which events will be captured by the trace. Full tracing captures all debuggable state-
ments plus function entries and exits. If you don't want to include all statements, you can
choose to capture each function entry and exit only.

Dynamic C statements are debuggable by default, while assembly code is not. You can toggle
this with the debug and nodebug keywords for Dynamic C functions, and with the debug and
nodebug options of the #asm compiler directive for blocks of assembly code.

Trace Window Fields to Trace

You can select the trace information captured from the target and displayed in the Trace win-
dow. You can include the function name, file name, and line and column where each trace
entry originated; the type of action being performed; the time stamp when the action was per-
formed; and the contents of the registers. The more fields you select to be displayed in the
Trace window, the larger each entry, and so the fewer entries the trace buffer can hold.

Saving Trace Window to a File

Checking the "Save on program termination" box will cause Dynamic C to write the contents
of the trace buffer to a file when your program terminates. When this box is checked, you
must specify the filename and location where you want to save.

Note that this feature saves the contents of the trace buffer at the time your program termi-
nates, so if the buffer fills up while your program is running not all trace entries received will
be written to the file. If you want to save trace entries before they are lost, you can do so at any
time from the Trace window. See Execution Trace (Alt+ F12) for details.

Dynamic C User’s Manual digi.com 287

www.digi.com

Defines Tab
The Defines tab brings up a dialog box with a window for entering (or modifying) a list of defines
that are global to any source file programs that are compiled and run. The macros that are defined
here are seen by the BIOS during its compilation.

Syntax:

DEFINITION[DELIMETER DEFINITION[DELIMETER DEFINITION]J...]]]
DEFINITION: MACRONAME[[WS]=[WS]VALUE]

DELIMETER: ;' or 'newline'

MACRONAME: the same as for a macro name in a source file

WS: [SPACE[SPACE]...]]]

VALUE: CHR[CHR]...]]

CHR: any character except the delimeter character '; ', which is entered as the character pair

n\,u
’

Notes:

Do not continue a definition in this window with '\', simply continue typing as a long line will
wrap.

In this window hitting the Tab key will not enter a tab character (\ t), but will tab to the OK
button.

The command line compiler honors all macros defined in the project file that it is directed to
use with the project file switch, -pf, or default.dcp if -pf is not used. See command line
compiler documentation.

A macro redefined on the command line will supersede the definition read from the project file.

288

digi.com Graphical User Interface

www.digi.com

Examples and File Equivalents:

Example:

DEF1;MAXN=10;DEF2

Equivalent:

#define DEF1
#define MAXN
#define DEF2

Example:

DEF1
MAXN = 10
DEF2

Equivalent:

#define DEF1
#define MAXN
#define DEF2

Example:

10

10

STATEMENT = + = C\;;DEF1=10

Equivalent:
#define STATEMENT A 4+ B = C;
#define DEF1 10

Example:
STATEMENT = A + B = C\;
FORMATSTR = "name = %s\n"
DEF1=10

Equivalent:
#define STATEMENT A + B = C;
#define FORMATSTR "name = %s\n"
#define DEF1 10

Dynamic C User’s Manual digi.com 289

www.digi.com

Targetless Tab

Click on the Targetless tab to reveal three additional tabs: RTI File, Specify Parameters and Board
Selection. The setup for targetless compile may differ for some board series. Please check your

user manual for differences in setup.

RTI File

Click on this tab to open a Rabbit Target Information (RTI) file for viewing. The file is read-
only. You may not edit RTI files, but you may create one by selecting an entry in the Board
Selection list and clicking on the button Save as RTI. Or you may define a board configuration
in the Specify Parameters dialog and then save the information in an RTI file. Details follow.

Specify Parameters

This is where you may define the parameters of a controller for later use in targetless compila-

tions.

Project Options E |

En:nmmunin::atin:nnsl En:nmpilerl Del:nuggerl Defines Targetless |

RTIFile Specify Parameters | Board Selection |

Board Configuration

|0 Code [0«FFO0 - 0=FFFF]:
=F

Description:

CEU [revizion shown on chip);

|Hal:u|:uit 2000 revisian 134T

B aze Frequency [MHz]:

L

[11.0532 =]
BAK [EBytes]:
512 =]

Primary Flazh [KEyptes]:

|255

Kl

Update Board Selection |

Sawve az RTI

ak

Cancel

Help

290

digi.com

Graphical User Interface

www.digi.com

The term “Primary Flash” refers to the Flash device connected to /CS0, not the total amount of
Flash available on the board.

The result may be saved to a RTI file for later use, or the result may be saved to the list of
board configurations.

Board Selection
The list of board configurations is viewable from the Board Selection tab. The highlighted
entry in the list of board configurations is the one that will be used when the compilation uses
a defined target configuration, that is, when the Default Compile Mode on the Compiler tab is
set to “Compile defined target configuration to .bin file” and Compile or Compile to .bin file is
chosen from the Compile menu.

If you save to the list of board configurations by clicking on the button Update Board Selec-
tion, then you must fill in all fields of the dialog. The baud rate, calculated from the value in
the Base Frequency (MHz) field, only applies to debugging. The fastest baud rate for down-
loading is negotiated between the PC and the target.

To save to an RTI file only requires an entry in the CPU field. Please see Technical Note 231
for information on the specifics of the Rabbit CPU revisions.

The correct choice for the CPU field is found on the chip itself. The information is printed on
the third line from the top on the Rabbit 2000 and the second line from the top on the Rabbit
3000. The table below lists the possible values.

Rabbit Microprocessor non-RoHS RoHS
Rabbit 2000 IQ#T UQ#T
Rabbit 3000 IL#T or IZ#T |UL#T

Where “#” is the revision number and the letters are associated information.

i ™

RABBIT 3000™
ATS6CSS-LIT
DOE4946AA

=y

RABBIT 3000™

ATS6CSS-ZIT
2G4993A
0230

Dynamic C User’s Manual digi.com 291

www.digi.com

Toolbars
Selecting this menu item reveals a list of
all menu button groups, i.e., the groups
of icons that appear in toolbars beneath
the title bar and the main menu items
(File, Edit, ...). This area is called the
control bar. Uncheck View Menu But-
tons to remove the control bar from the
Dynamic C window. Any undocked
toolbars (i.e., toolbars floating off the
control bar) will still be visible. You
undock a toolbar by placing the cursor
on the 2 vertical lines on the left side of
the toolbar and dragging it off the con-
trol bar.

Each menu button group (File, Edit,
Compile, Run, Options, Watch, Debug
Window, WindowView and Help) has a
checkbox for choosing whether to make
its toolbar visible on the control bar.

Options s e F=]

| & Environment Options
i FProject Options

.PIHASR

4 ’7 Wiew Menu Buttons

v File
|7 Frrint
\v Edt
|7 LCompile
’T Bun

Inzpect

Optionz

’7 Debug Windows
Window Vigws
Help
[Enrsalidated

Default Toolbars
Show All Buttons

Caonsolidate vizible buttons to one toolbar

Cuztomize Button Groups...

To quickly return to showing only the icons visible by default, select Default Toolbars.

Select the option, Consolidate visible buttons to one toolbar to do exactly that—create one toolbar con-
taining all visible icons. Doing that, enables the option Consolidated, which toggles the visibility of the
consolidated toolbar, even when it is undocked from the control bar.

Customize Menu Buttons

[1 Create a new file
Edit . = Open afilz
Coarmnpile
Run [H Save cumentfie
| t
Onlions B Save Al Edited Files
Debug ‘windows B
Window Wiew T
Help [0 Open Project...
E—E Save Project
.;E: Save Project Az...
1]

Create a new project with factary sett

" ull

Help | Close |

Select “Customize Button Groups” to bring
up the Customize Menu Buttons window.
This window allows you to change which
buttons are associated with which button
group on the toolbar. Choose a button group
on the left side of the window; this causes
the icons for the buttons in that group to dis-
play on the right side of the window. Click
and drag an icon from the right side of the
window to the desired button group on the
toolbar.

To remove an icon from its button group,
click and drag the icon off the toolbar or to
another button group on the toolbar. The

Customize Menu Buttons window must be open to change the position of an icon on the toolbar.

292

digi.com

Graphical User Interface

www.digi.com

14.2.8 Window Menu
Click the menu title or press <Alt+W> to display the Window menu.

You can choose to minimize, restore or close all

| Window Help _ open windows or just the open debug window or
£ Minimize v “ ot o- o F |E “ A just the open editor windows. The second group
Restare of items is a set of standard Windows com-
Close mands that allow the application windows to be
arranged in an orderly way.
B Cascade & yway

The Compiler Messages option is a toggle for
displaying that window. This is only available if
an error or warning occurred during compila-
tion.

= Tile Horizonkally
M Tile Wertically
B arrange Icons

Compiler Messages

q 3, watch Al The Debug Windows option opens a secondary

§ Information = ctdin menu, whose items are toggles for displaying
A assembly F10 the like-named debug windows. You can scroll

1 DEMOL & R Redgister F11 these windows to view larger portions of data,

S Stack Fi7 or copy information from these windows and
L Execution Trace alt+F12 paste the information as text anywhere. More

a0 information is given below for each window.

[¥c; Stack Trace Chrl4+T

At the bottom of the Window menu is a list of
current windows, including source code windows. Click on one of these items to bring its window to the
front, i.e., make it the active window.

Watch
Select Watch to activate or deactivate the Watches window. The Add Watch command on the Inspect
menu will do this too. The Watches window displays watch expressions whenever Dynamic C evalu-
ates watch expressions. Starting with Dynamic C 9, a watch expression for a structure will automati-
cally include all members of the structure. Previous versions of Dynamic C required each struct
member to be added as a separate watch expression.

% Walches

cdtm rd int (%10} OxEF31 :

E| reo struct tm 7 bytes
E----t,m_sec char VE (0x0C) (off=zet 0O)
tm_min char 1o ioxE: (offser 1)
tm_hour char "int (0x0A) (off=zet Z)
g----t,m_mday char "WxlF' (0x1F) (off=zet 3)
g----t,m_mon char hr0lt f0x0L1) (off=zet 4)
LL_year char 'RPYOo0xs0) (off=zet &)
E----‘:,m_\to'n:].aa'_‘,r char haldt (0x04) (offzet &)

Keep in mind that when single stepping in assembly, the value of the watch expression may not be
valid for variables located on the stack (all auto variables). This is because the debug kernel does not
keep track of the pushes and pops that occur on the stack, and since watches of stack variables only
make sense in the context of the pushes and pops that have happened, they will not always be accurate
when assembly code is being single stepped.

Dynamic C User’s Manual digi.com 293

www.digi.com

Stdio
Select this option to activate or deactivate the Stdio window. The Stdio window displays output from
callstoprintf (). Ifthe program calls printf (), Dynamic C will activate the Stdio window auto-
matically if it is not already open, unless “Automatic open” is unchecked in the Debug Windows dialog
in Options | Environment Options.

Starting with Dynamic C 9, the various Find commands available on the Edit menu can be used
directly in the Stdio window.

Assembly (F10)
Select this option to activate or deactivate to activate or deactivate the Disassembled Code window.
The Disassembled Code window (aka., the Assembly window) displays machine code generated by the
compiler in assembly language format.

The Disassemble at Cursor or Disassemble at Address commands from the Inspect menu also acti-
vate the Disassembled Code window.

% Disassembled Code

Address | Opcode Instruction
LASM1.C(8)]1: ch = Ux11;

-, ad sSp
1f76 3611 1d (h1),ox11
1f78 EF rst xZ28
[ASM1.C(1@)1]: = Bx2233;

1f79 213322 1d hl,@x2233

1f7c D4@4 1d (sp+4),h 1

1f7e EF rst x 28
[LASM1.C(12)]: lg = Bx44556677L;

1f7f 210000 1d hl, Bx@08

1f82 39 add hl,sp

1f83 117766 1d de, @x6677

1f86 15544 1d bc, @x4455
1f89 (CD5320 call slong_

S

8

()

1

8

6

2

)

6

1

c EF rs Bx 28 8

[ASM1.C(14)1]: Func(ch,i,l%);

210 hl, @x@oa 6

1f9@ 39 add hl,s 2

1§91 o id es (R 5

1f92 23 inc hi 2

1f93 56 1d d, (hl) 5

1f94 23 inc 2

1f95 4E 1d c,(hl) 5

1f96 23 inc h 2

1f97 46 1d b, (hl) 5
1f98 C(C5 push be 10
1f99 DS ush 10

1f9a (C408 ?d hl, (sp+8) 9
1f9¢ ES ?ush hl 10

1f9d 21aCan d hl, @x@Rac 6

1fa@d 39 add hl,sE 2
1fal DDE4o@ 1d hl,Chl+2) 11

1faq4 2600 1d h, Ox22 4
1faé ES push hl 10
1fa7 CDB&1F call func 12

1faa @@ nop 2

1fab 2708 add sp, dx@8 4

EF rst Bx28 8

1fad
[ASM1.C(15)1: 1}

The Disassembled Code window displays Dynamic C statements followed by the assembly instruc-
tions for that statement. Each instruction is represented by the memory address on the far left, followed
by the opcode bytes, followed by the mnemonics for the instruction. The last column shows the num-
ber of cycles for the instruction, assuming no wait states. The total cycle time for a block of instruc-
tions will be shown at the lowest row in the block in the cycle-time column, if that block is selected and

294 digi.com Graphical User Interface

www.digi.com

highlighted with the mouse. The total assumes one execution per instruction, so the user must take
looping and branching into consideration when evaluating execution times.

Use the mouse to select several lines in the Assembly window, and the total cycle time for the instruc-
tions that were selected will be displayed to the lower right of the selection. If the total includes an
asterisk, that means an instruction with an indeterminate cycle time was selected, such as 1dir or

ret nz.
Right click anywhere in the Disassembled Code window to |
display the following popup menu: | o CtrhC
Save to File CErl+5
Copy . Move to Address CErl+ra
Copies selected text in the Disassembled | VIR i [EEEEdE EI: CrHE
Code window to the clipboard. " coleck Al Chrled
I
Save to File ! v Show Source
Opens the Save As dialog to save text | v Show File Mame in Source Line
selected in the Disassembled Code win- - v Show Addresses
dow to a file. If you do not specify an ! v Show OpCodes
extension, . dasm will be appended to the ¥ Show Clack Cycles
file name. v Sum Clock Cwcles
Move to Address i v Use Svnkax Highlighting

Opens the Disassemble at Address dialog
so you can enter a new address.

Move to Execution Point

Highlights the assembly instruction that will execute next and displays it in the Disas-
sembled Code window.

Select ALL
Selects all text in the Disassembled Code window.

All but the last menu option of the remaining items in the popup menu toggle what is displayed in the
Disassembled Code window. The last menu option, Use Syntax Highlighting, displays the colors that
were set for the editor window in the Disassembled Code window.

To resize a column in the assembly window, move the mouse pointer to one of the vertical bars that is
between each of the column headers. For instance, if you move the mouse pointer between “Address”
and “Opcode” the pointer will change from an arrow to a vertical bar with arrows pointing to the right
and left. Hold the left mouse button down and drag to the right or left to grow or shrink the column.

Register (F11)
Select this option to activate or deactivate the Register window. This window displays the processor
register set, including the status register. Letter codes indicate the bits of the status register (also known
as the flags register). The window also shows the source-code line and column at which the snapshot of
the register was taken.

It is possible to scroll back to see the progression of successive register snapshots. Register values may
be changed when program execution is stopped Registers PC, XPC, and SP may not be edited as this
can adversely affect program flow and debugging.

See “Register Window” on page 272 for more details on this window.

Dynamic C User’s Manual digi.com 295

www.digi.com

Stack (F12)
Select this option to activate or deactivate the Stack window. The Stack window
displays the top 32 bytes of the run-time stack. It also shows the line and column |L: 13 c:2

. . . DFE9: 3146
at which the stack “snapshot” was taken. It is possible to scroll back to see the |,rpr: 1pes
progression of successive stack snapshots. DFFD: 45E7

LFFF: OOBE

Dynamic C 9 introduced differences highlighting: each time you single step in C EEE;: 3'&'&:
or assembly, changed data can be highlighted in the Stack window. (This is also |ggos:. F200
true for the Memory Dump and Register windows.) kil
E00S: FEO3

. EOOE: 864

Execution Tracg (Alt+ F12) _ . _ LR Soda

Select Execution Trace to activate or deactivate the Execution Trace window. EOOF: FEGE
: . : : : : : E011: TED4
The ﬁelds dlspla}fed in thls.wmdow were spegﬁed in the Debugger dlalog.box Seel it
that is accessed via the Options | Project Options menu (see Enable execution E015: OOFF
traCing). E017: TEFEF
% C:\DC_960%,5AMPLES' DEMD4.C Trace -0 x|
Action | Function | File M ame | Line/Cal Ex - 00 c: 1
Execute main C:WDC_9604SAMPLESDEMO4.C 71,4 EC : 141C [x: O
Enter foa C:3DC_S604SAMPLESYDEMO4.C EL1,1 DE : AEl3 |V: O
Executs foa C:3DC_9604ySAMPLESVDEMO4.C EE,2 HL : 0000 [x: O
Executs foo C:\DC_SE04SAMPLESYDEMO4.C E7,4 AF': 00&d |x: O
Execute foo C:WDC_9604SAMPLESYDEMO4.C 55,4 EC': 000& [x: 1
Executs foa C:3DC_S604SAMPLESVDEMO4.C E9 4 DE': EAPE [2: 1
Executs foa C:3DC_S604ySAMPLESVDEMO4. C E1,2 HL': DFFE [2: O
Executs foo C:\DC_SE04SAMPLES\DEMO4.C EZ,Z IX : CEZD
Execute foo C:\DC_960%4SAMPLES\DEMO4.C 63,1 IT : 1BE76
Exit foa C:3DC_S604SAMPLESVDEMO4. C 63,1 8P : DFFE
Executs main C:3DC_S604ySAMPLESVDEMO4. C 72,4 PC : 1E7D
¥PC: OOFE

The Trace window has a right-click pop-up menu. An option on this menu controls the display of an
additional column in the Trace window. If Group repeated statements is selected, the Show Repeat
Count may also be selected and will display in the rightmost column of the Trace window that comes
before the register contents column. A value displayed under Show Repeat Count is the number of
times the corresponding statement has been executed and, therefore, traced. The Timestamp column is
not updated for subsequent traces of a repeated statement.

The Group repeated statements option is useful when tracing statements inside a loop.

The rest of the pop-up menu options are more or less self-explanatory. You can choose to open the
source code for any function in the Trace window by selecting the function and choosing Open Source.
In the above screenshots, note that a trace statement for kbhit () is selected in the Trace window.
Choosing Open Source in this situation would open a window for STDIO . LIB, the library file that
contains the function kbhit ().

You can also toggle auto scroll, as well as decide whether to display the complete path in the File Name
column. The last three menu options are for saving Trace window contents to another file. You can
select trace statements in the window and then using Copy selected traces or Copy with header you can
paste the selected traces anywhere you can perform a paste operation. You can also choose to copy the
entire contents of the current Trace window to a named file. This is similar to the option in the

296 digi.com Graphical User Interface

www.digi.com

Debugger tab of the Project Options dialog, which allows saving the Trace window to a file upon

program termination.

Stack Trace (Ctrl+T)

The Stack Trace window displays the call sequence and the values of function arguments and local
variables of the currently running program. The screenshot shown here is the Stack Trace window
when Samples/Demo3. c is running. The window contents tell us that the function main () has
been called and that it has one local variable named secs, which currently has a value of 0.

H Stack Trace

The Depth value along the bottom of the
Stack Trace window is the current number of

fuain() secs=0x0 bytes on the stack. The Max Depth value is

the maximum number of bytes pushed on the
stack at any one time for the current run of
the program or since the Max Depth value

\Depth: 4 ax Depth: 4 2

was reset. The Max Depth value can be reset

by a right click in the Stack Trace window to

bring up some menu options. Along with resetting the Max Depth value back to zero (think of it like a
car trip odometer) you can use the right click menu to copy text from the Stack Trace window or to
cause the source code file to become the active window. The source code file could be a library file if a
library function is executing at the time the menu option is requested.

Information

Select this option to activate the Information window, which displays how the memory is partitioned
and how well the compilation went.

x

| Baz Top Size
|Roct code: 0000 4CES 4CEE |Totalcode size: 29519 bytes
|><MEM code; 0E000 O3S 026RS |T|:uta| data zize: 2341 butes
[wiatch code: CCO0 CDFE OIFF |Lines compiled: 7747
|Stack: OO0 DFFF 1000 |Compile time: 0 seconds
|F||:u:|t data: CBFF C2DB 0325 |E|:um|:|i|e zpeed: FE2000 hnesminute
|F||:u:|t constants. Only in Separate [&D |E|:uar-:| 10 00700

Table 14-1. Information Window

Name of Field

Description of Field

Root code

The begin (base), end (top) and size of the root code area,
expressed in logical address format (16-bit).

Dynamic C User’s Manual

digi.com 297

www.digi.com

Table 14-1. Information Window

Name of Field

Description of Field

The begin, end and size of the XMEM code area, expressed in

XMEM code physical address format (20-bit).
The begin, end and size of the watch code area, expressed in
Watch code logical address format (16-bit).
Stack The begin, end and size of the run-time stack, expressed in logical
address format (16-bit).
Root data The begin, end and size of the root data area, expressed in logical

address format (16-bit).

Root constants

The begin, end and size of the root constant area, expressed in
physical address format (20-bit).

Total code size

The number of code bytes (including both root and XMEM code
areas.

Total data size

The number of data bytes (including both root and XMEM data
areas

Lines compiled

The number of lines compiled, including lines from library files.

Compile time

The number of seconds taken to compile the program.

Compile speed

Average speed of compilation measured in lines compiled per
minute.

Board ID

A number identifying the board type. A list of board types is at
\Lib\default.h.

Note that some of the memory areas described here may be non-contiguous (e.g., 2 Flash compiles and the
XMEM code area with separate 1&D). If an application is large enough to span into the non-contiguous
part of an area, the values presented in the Information window for that area are not accurate.

298 digi.com Graphical User Interface

www.digi.com

14.2.9 Help Menu

Click the menu title or press <Alt+H> to select the HELP menu. The choices are given below:

Online Documentation
Opens a browser page and displays a file with links to other manuals. When installing Dynamic C from

CD, this menu item points to the hard disk; after a Web upgrade of Dynamic C, this menu item option-
ally points to the Web.

Keywords
Opens a browser page and displays an HTML file of Dynamic C keywords, with links to their descrip-

tions in this manual.

Operators
Opens a browser page and displays an HTML file of Dynamic C operators, with links to their descrip-

tions in this manual.

HTML Function Reference
Opens a browser page and displays an HTML file that has two links, one to Dynamic C functions listed

alphabetically, the other to the functions listed by functional group. Each function listed is linked to its
description in the Dynamic C Function Reference Manual.

Function Lookup <Ctrl+H>
Displays descriptions for library functions. The keyboard shortcut is <Ctrl+H>.

ELihrauﬂ Function Lookup
Function Search:
[d
_glkenulnit in E:ADC BMLIBNDISPLAY S WGRAPHICWG LMEML.LIB ﬂ +- GPS.LIB ﬂ
_aMenukeppad in E:\DC 8YLIBADISPLAYSWGRAPHICAGLMENU.LIB | 4. GRaPHIC.LIE
gkenuShadow in EADC S8ALIBMDISPLAYSYGRAPHICAWGLMENL.LIE __ HDLC PACKET.LIE
ing in EADC SNLIBATCRIPSICHP.LIE : — : =
_prot_init in EADC SALIBASYS LIB - HTTP.LIE
_prot_recover in E:ADC 8sLIBNSYS.LIB - 12C.LIEB
_zend_ping in E:ADC BALIBATCRIPWCKP.LIB - 120 DEVICES.LIE
_spzleSoftReset in EXADC BMLIBNSYS.LIE El IEM_P' LIE
abz in E:ADC 8ALIBMMATH.LIB T .
acosin EADC BALIBSMATH.LIE - _chk_ping
acat in E:A\DC BALIBVMATH.LIE . e _ping
aczc in EADC 8ALIEMMATH.LIE e send_ping
ADSTEZ0Imt in E:ADC BMSAMPLESASPINVADSFE70LIB sl R b
AD5YEV0Read in EADC 8\SAMPLES SPINADS FEFOLIE j 1] | _h|J
Help | ok Cancel |

Choosing a function is done in one of several ways. You may type the function name in the Function
Search entry box. Notice how both scroll areas underneath the entry box display the first function that
matches what you type. The functions to the left are listed alphabetically, while those on the right are
arranged in a tree format, displaying the libraries alphabetically with their functions collapsed under-
neath. You may scroll either of these two areas and have whatever you select in one area reflected in
the other area and in the text entry box. Click OK or press <Enter> to bring up the Function Descrip-
tion window.

Dynamic C User’s Manual digi.com 299

www.digi.com

If the cursor is on a function when Help | Function Lookup is selected (or when <Ctrl+H> is pressed)
then the Library Function Lookup dialog is skipped and the Function Description window appears

directly.

ping in E:ADC 85LIBATCPIPAMCHP.LIB

Function Description:

| ping

RETUEN WALUE: 0O successful

Exit

| STNTAZ: int ping(longword host,

JEETWORDS: topip, icmp, ping

PARAMETERL: ip address to send ping
PALARAMETERZ : user defined sequence number

Browsze

<ICHMF.LIE>

longword sequence nuwber |

DESCRIPTICON: generate an ICHMP request for host. NOTE:
which calls send ping

1 failed when sending packet
-1 failed because could not resolve host hardware address.

SEE AL3O: _chk ping, sSend ping, ping.e

thisz is a macro

Help LClose

If you click the Edit button, the Function Description window will close and the library that contains
the function that was in the window will open in an editor window. The cursor will be placed at the

function description of interest.

Clicking on the Browse button will open the Library Function Lookup window to allow you to search
for a new function description. Multiple Function Description windows may be open at the same time.

300

digi.com

Graphical User Interface

www.digi.com

Instruction Set Reference <Alt+F1>
Invokes an on-line help system and displays the alphabetical list of instructions for the Rabbit family of

Microprocessors.

/0 Registers
Invokes an on-line help system that provides the bit values for all of the Rabbit I/O registers.

Keystrokes
Invokes an on-line help system and displays the keystrokes page. Although a mouse or other pointing
device may be convenient, Dynamic C also supports operation entirely from the keyboard.

Contents
Invokes an on-line help system and displays the contents page. From here view explanations of various

features of Dynamic C.

Tech Support
Opens a browser window to the Rabbit Technical Support Center web page, which contains links to
user forums, downloads for Dynamic C and information about 3rd party software vendors and devel-
opers.

Register Dynamic C
Allows you to register your copy of Dynamic C. A dialog is opened for entering your Dynamic C serial

number. From there you will be guided through the very quick registration process.

Tip of the Day
Brings up a window displaying some useful information about Dynamic C. There is an option to scroll

to another screen of Dynamic C information and an option to disable the feature. This is the same win-
dow that is displayed when Dynamic C initializes.

About
The About command displays the Dynamic C version number and the registered serial number.

Dynamic C User’s Manual digi.com 301

www.digi.com

302 digi.com Graphical User Interface

www.digi.com

RABBIT = PRODUCT MANUAL

15. COMMAND LINE INTERFACE

The Dynamic C command line compiler (dccl cmp.exe) performs the same compilation and program
execution as its GUI counterpart (dcrabxx . exe), but is invoked as a console application from a DOS
window. It is called with a single source file program pathname as the first parameter, followed by optional
case-insensitive switches that alter the default conditions under which the program is run. The results of
the compilation and execution, all errors, warnings and program output, are directed to the console win-
dow and are optionally written or appended to a text file.

Note that the command line compiler resides in the directory where you installed Dynamic C. In the con-
sole window, you need to "cd" into the directory where the command line compiler resides. From
there you must type in the relative path of the sample you want to compile. Quotes are need if
there are spaces in the path. For example,

> c¢d c:\DCRabbit 9.24
> dccl_cmp samples\memory usage.c
> dccl cmp "c:\My Documents\my program.c"

15.1 Default States

The command line compiler uses the values of the environment variables that are in the project file indi-
cated by the -pf switch, or if the -pf switch is not used, the values are taken from default.dcp. For
more information, please see Chapter 16, “Project Files” on page 325.

The command line compiler will compile and run the specified source file. The exception to this is when
the project file “Default Compile Mode” is one of the options which compiles to a .bin file, in which case
the command line compiler will not run the program but will only compile the source to a .bin file. Com-
mand line help displayed to the console with

dccl cmp
gives a summary of switches with defaults from the default project file, default.dcp, and
dccl cmp -pf specified project name.dcp

gives a summary of switches with defaults from the specified project file. All project options including the
default compile mode can be overridden with the switches described in Section 15.4.

15.2 User Input

Applications requiring user input must be called with the -i option:

dccl cmp myProgram.c -i myProgramInputs.txt

where myProgramInputs. txt is a text file containing the inputs as separate lines, in the order in
which myProgram. c expects them.

Dynamic C User’s Manual digi.com 303

www.digi.com

15.3 Saving Output to a File

The output consists of all program printf’s as well as all error and warning messages.
Output to a file can be accomplished with the -0 option

dccl cmp myProgram.c -i myProgramInputs.txt -o myOutputs.txt
where myOutputs. txt is overwritten if it exists or is created if it does not exist.

If the -0a option is used, myOutputs. txt is appended if it exists or is created if it does not.

15.4 Command Line Switches

Each switch must be separated from the others on the command line with at least one space or tab. Extra
spaces or tabs are ignored. The parameter(s) required by some switches must be added as separate text
immediately following the switch. Any of the parameters requiring a pathname, including the source file
pathname, can have imbedded spaces by enclosing the pathname in quotes.

15.4.1 Switches Without Parameters

-b

Description: Use compile mode: Compile to .bin file using attached target.
Factory Default: Compile mode: Compile to attached target.

GUI Equivalent: Compile program (F5) with Default Compile Mode set to "Compile to .bin file
using attached target" in Compiler tab of Project Options dialog.

-bf-

Description: Undo user-defined BIOS file specification.
Factory Default: None.

GUI Equivalent: This is an advanced setting, viewable by clicking on the “Advanced” radio button at
the bottom of the Compiler tab of Project Options dialog. Uncheck the “User
Defined BIOS File” checkbox.

-br

Description: Use compile mode: Compile defined target configuration to .bin file
Factory Default: Compile mode: Compile to attached target.

GUI Equivalent: Compile program (F5) with Default Compile Mode set to "Compile defined target
configuration to .bin file" in Compiler tab of Project Options dialog.

304 digi.com Command Line Interface

www.digi.com

-h+

Description:

Factory Default:
GUI Equivalent:

Example:

-h-

Description:

Factory Default:
GUI Equivalent:

-id+

Description:

Factory Default:
GUI Equivalent:

-id-

Description:

Factory Default:
GUI Equivalent:

-ini

Print program header information.
No header information will be printed.
None.

dccl cmp samples\demol.c -h -o myoutputs.txt
Header text preceding output of program:
st s s s s s s s s s s sk s s sk s ol etttk ottt st s sk sk sk sk sk sk s sk s kR R Rk R R R R Rk

4/5/01 2:47:16 PM

dccl cmp.exe, Version 7.10P - English
samples\demol.c

Options: -h+ -0 myoutputs.txt
Program outputs:

Note: Version information refers to dcwd . exe with the same compiler core.

Disable printing of program header information.
No header information will be printed.

None.

Enable separate instruction and data space.
Separate 1&D space is disabled.

Check “Separate Instruction & Data Space” in Project Options | Compiler.

Disable separate instruction and data space.
Separate 1&D space is disabled.

Uncheck “Separate Instruction & Data Space” in the Project Options | Compiler dia-
log box.

Dynamic C User’s Manual

digi.com 305

www.digi.com

Description: Generates inline code for WrPortI (), RdPortI (),BitWrPortI () and
BitRdPortI () if all arguments are constants.
Factory Default: No inline code is generated for these functions.
GUI Equivalent: Check “Inline builtin I/O functions” in the Project Options | Compiler dialog box.
-If-
Description: Undo Library Directory file specification.
Factory Default: No Library Directory file is specified.
GUI Equivalent: This is an advanced setting, viewable by clicking on the “Advanced” radio button at
the bottom of the Project Options | Compiler dialog box. Uncheck “User Defined
Lib Directory File.”
-mf
Description: Memory BIOS setting: Flash.
Factory Default: Memory BIOS setting: Flash.
GUI Equivalent: Select “Code and BIOS in Flash” in the Project Options | Compiler dialog box.
-mfr
Description: The BIOS and code are compiled to flash, and then the BIOS copies the flash image
to RAM to run the code.
Factory Default: Memory BIOS setting: Flash
GUI Equivalent: Select “Code and BIOS in Flash, Run in RAM” in the Project Options | Compiler
dialog box.
-mr
Description: Memory BIOS setting: RAM.
Factory Default: Memory BIOS setting: Flash.
GUI Equivalent: Select “Code and BIOS in RAM” in the Project Options | Compiler dialog box.
306 digi.com Command Line Interface

www.digi.com

Description:

Factory Default:
GUI Equivalent:

Description:

Factory Default:
GUI Equivalent:

-rb+

Description:

Factory Default:
GUI Equivalent:

-rb-

Description:

Factory Default:
GUI Equivalent:

-rd+

Description:

Factory Default:
GUI Equivalent:

Null compile for errors and warnings without running the program. The program
will be downloaded to the target.

Program is run.

Select Compile | Compile or use the keyboard shortcut <F5>.

Use compile mode: Compile to attached target.
Compile mode: Compile to attached target.

Run program (F9)

Include BIOS when compiling to a file.
BIOS is included if compiling to a file.

This is an advanced setting, viewable by clicking on the “Advanced” radio button at
the bottom of the Project Options | Compiler dialog box. Check “Include BIOS.”

Do not include BIOS when compiling to a file.
BIOS is included if compiling to a file.

This is an advanced setting, viewable by clicking on the “Advanced” radio button at
the bottom of the Project Options | Compiler dialog box. Uncheck “Include BIOS.”

Include debug code when compiling to a file.
RST 28 instructions are included

This is an advanced setting, viewable by clicking on the “Advanced” radio button at
the bottom of the Project Options | Compiler dialog box. Check “Include RST 28
instructions.”

Dynamic C User’s Manual

digi.com 307

www.digi.com

-rd-

Description: Do not include debug code when compiling to a file. This option is ignored if not
compiling to a file.

Factory Default: RST 28 instructions are included.

GUI Equivalent: This is an advanced setting, viewable by clicking on the “Advanced” radio button at
the bottom of the Project Options | Compiler dialog box. Uncheck “Include RST 28
instructions.”

-ri+

Description: Enable runtime checking of array indices.

Factory Default: Runtime checking of array indices is performed.

GUI Equivalent: Check “Array Indices” in the Project Options | Compiler dialog box.

-ri-

Description: Disable runtime checking of array indices.

Factory Default: Runtime checking of array indices is performed.

GUI Equivalent: Uncheck “Array Indices” in the Project Options | Compiler dialog box.

-rp+

Description: Enable runtime checking of pointers.

Factory Default: Runtime checking of pointers is performed.

GUI Equivalent: Check “Pointers” in the Project Options | Compiler dialog box.

-rp-

Description: Disable runtime checking of pointers.

Factory Default: Runtime checking of pointers is performed.

GUI Equivalent: Uncheck “Pointers” in the Project Options | Compiler dialog box.

308 digi.com Command Line Interface

www.digi.com

-rw+

Description:

Factory Default:
GUI Equivalent:

-rw-

Description:

Factory Default:
GUI Equivalent:

-sp

Description:

Factory Default:
GUI Equivalent:

-SZ

Description:

Factory Default:
GUI Equivalent:

-td+

Description:

Factory Default:
GUI Equivalent:

Restrict watch expressions—may save root code space.
Allow any expressions in watch expressions.

This is an advanced setting, viewable by clicking on the “Advanced” radio button at
the bottom of the Project Options | Compiler dialog box. Check “Restrict watch
expressions . ..”

Don’t restrict watch expressions.
Allow any expressions in watch expressions.

This is an advanced setting, viewable by clicking on the “Advanced” radio button at
the bottom of the Project Options | Compiler dialog box. Check “Allow any expres-
sions in watch expressions”

Optimize code generation for speed.
Optimize for speed.

Choose “Speed” in the Project Options | Compiler dialog box.

Optimize code generation for size.
Optimize for speed.

Choose “Size” in the Project Options | Compiler dialog box.

Enable type demotion checking.
Type demotion checking is performed.

Check “Demotion” in the Project Options | Compiler dialog box.

Dynamic C User’s Manual

digi.com 309

www.digi.com

-td-

Description: Disable type demotion checking.

Factory Default: Type demotion checking is performed.

GUI Equivalent: Uncheck “Demotion” in the Project Options | Compiler dialog box.
-tp+

Description: Enable type checking of pointers.

Factory Default: Type checking of pointers is performed.

GUI Equivalent: Check “Pointer” in the Project Options | Compiler dialog box.
-tp-

Description: Disable type checking of pointers.

Factory Default: Type checking of pointers is performed.

GUI Equivalent: Uncheck “Pointer” in the Project Options | Compiler dialog box.
-tt+

Description: Enable type checking of prototypes.

Factory Default: Type checking of prototypes is performed.

GUI Equivalent: Check “Prototype” in the Project Options | Compiler dialog box.
-tt-

Description: Disable type checking of prototypes.

Factory Default: Type checking of prototypes is performed.

GUI Equivalent: Uncheck “Prototype” in the Project Options | Compiler dialog box.
310 digi.com Command Line Interface

www.digi.com

-vp+

Description:

Factory Default:
GUI Equivalent:

-Vp-

Description:

Factory Default:
GUI Equivalent:

-wa

Description:

Factory Default:
GUI Equivalent:

=wn

Description:

Factory Default:
GUI Equivalent:

-wWs

Description:

Factory Default:
GUI Equivalent:

Verity the processor by enabling a DSR check. This should be disabled if a check of
the DSR line is incompatible on your system for any reason.

Processor verification is enabled.

Check “Enable Processor verification” in the Project Options | Communications
dialog box.

Assume a valid processor is connected.
Processor verification is enabled.

Uncheck “Enable Processor verification” in the Project Options | Communications
dialog box.

Report all warnings.
All warnings reported.

Select “All” under “Warning Reports” in the Project Options | Compiler dialog box.

Report no warnings.
All warnings reported.

Select “None” under “Warning Reports” in the Project Options | Compiler dialog
box.

Report only serious warnings.
All warnings reported.

Select “Serious Only” under “Warning Reports” in the Project Options | Compiler
dialog box.

Dynamic C User’s Manual

digi.com 311

www.digi.com

15.4.2 Switches Requiring a Parameter
The following switches require one or more parameters.

-bf BIOSFilePathname

Description: Compile using a BIOS file found in BIOSFilePathname.
Factory Default: \Bios\RabbitBios.c

GUI Equivalent: This is an advanced setting, viewable by clicking on the “Advanced” radio button at
the bottom of the Project Options | Compiler dialog box. Check the box under “User
Defined BIOS File” and then fill in the pathname for the new BIOS file.

Example: dccl cmp myProgram.c -bf MyPath\MyBIOS.lib

-clf ColdLoaderFilePathname

Description: Compile using cold loader file found in ColdLoaderFilePathname.
Factory Default: \Bios\ColdLoad.bin
GUI Equivalent: None.

Example: dccl cmp myProgram.c -clf MyPath\MyColdloader.bin

312 digi.com Command Line Interface

www.digi.com

-d MacroDefinition

Description: Define macros and optionally equate to values. The following rules apply
and are shown here with examples and equivalent #de fine form:

Separate macros with semicolons.

dccl cmp myProgram.c -d DEF1;DEF2
#define DEF1
#define DEF2

A defined macro may be equated to text by separating the defined macro
from the text with an equal sign (=).

dccl cmp myProgram.c -d DEF1=20;DEF2
#define DEF1 20
#define DEF2

Macro definitions enclosed in quotation marks will be interpreted as a sin-
gle command line parameter.
dccl cmp myProgram.c -d “DEFl=text with spaces;DEF2”

#define DEF1 text with spaces
#define DEF2

A backslash preceding a character will be kept except for semicolon, quote
and backslash, which keep only the character following the backslash. An
escaped semicolon will not be interpreted as a macro separator and an
escaped quote will not be interpreted as the quote defining the end of a
command line parameter of text.

dccl cmp myProgram.c -d DEFl=statement\;; ESCQUOTE=\\\"

#define DEF1 statement;

#define ESCQUOTE \”

dccl _cmp myProg.c -d “FSTR = \”Temp = %$6.2F DEGREES C\n\””
#define FSTR “Temp = %6.2f degrees C\n”

Factory Default: None.

GUI Equivalent: Select the Defines tab from Project Options.

Dynamic C User’s Manual digi.com 313

www.digi.com

-d- MacroToUndefine

Description: Undefines a macro that might have been defined in the project file. If a
macro is defined in the project file read by the command line compiler and
the same macro name is redefined on the command line, the command line
definition will generate a warning. A macro previously defined must be
undefined with the -d- switch before redefining it. Undefining a macro that
has not been defined has no consequence and so is always safe although
possibly unnecessary. In the example, all compilation settings are taken
from the project file specified except that now the macro MAXCHARS was
first undefined before being redefined.

Factory Default: None.
GUI Equivalent: None.

Example: dccl cmp myProgram.c -pf myproject -d- MAXCHARS -d MAX-
CHARS=512

-eto EthernetResponseTimeout
Description: Time in milliseconds Dynamic C waits for a response from the target on
any retry while trying to establish Ethernet communication.
Factory Default: 8000 milliseconds.
GUI Equivalent: None.

Example: dccl cmp myProgram.c -eto 6000

-i InputsFilePathname

Description: Execute a program that requires user input by supplying the input in a text
file. Each input required should be entered into the text file exactly as it
would be when entered into the Stdio Window in dcwd . exe. Extra input
is ignored and missing input causes dccl cmp to wait for keyboard input
at the command line.

Factory Default: None.
GUI Equivalent: Using -1 is like entering inputs into the Stdio Window.

Example dccl cmp myProgram.c -i MyInputs.txt

314 digi.com Command Line Interface

www.digi.com

-If LibrariesFilePathname

Description: Compile using a file found in LibrariesFilePathname which lists all libraries
to be made available to your programs.

Factory Default: Lib.dir.

GUI Equivalent: This is an advanced setting, viewable by clicking on the “Advanced” radio
button at the bottom of the Project Options | Compiler dialog box. Check
the box under “User Defined Lib Directory File” and then fill in the path-
name for the new Lib.dir.

Example dccl cmp myProgram.c -1f MyPath\MyLibs.txt

-ne maxNumberOfErrors

Description: Change the maximum number of errors reported.
Factory Default: A maximum of 10 errors are reported.

GUI Equivalent: Enter the maximum number of errors to report under “Max Shown” in the
Project Options | Compiler dialog box.

Example: Allows up to 25 errors to be reported:
dccl cmp myProgram.c -ne 25

-nw maxNumberOfWarnings

Description: Change the maximum number of warnings reported.
Factory Default: A maximum of 10 warnings are reported.

GUI Equivalent: Enter the maximum number of warnings to report under “Max Shown” in
the Project Options | Compiler dialog box.

Example: Allows up to 50 warnings to be reported:

dccl cmp myProgram.c -nw 50

Dynamic C User’s Manual digi.com 315

www.digi.com

-0 OutputFilePathname

Description: Write header information (if specified with —h) and all program errors,
warnings and outputs to a text file. If the text file does not exist it will be
created, otherwise it will be overwritten.

Factory Default: None.

GUI Equivalent: Go to Option | Environment Options and select the Debug Windows tab.
Under “Specific Preferences” select “Stdio” and check “Log to File” under
“Options.”

Example dccl cmp myProgram.c -o MyOutput.txt
dccl cmp myProgram.c -o MyOutput.txt -h
dccl cmp myProgram.c -h -o MyOutput.txt

-oa OutputFilePathname

Description: Append header information (if specified with —-h) and all program errors,
warnings and outputs to a text file. If the text file does not exist it will be
created, otherwise it will be appended.

Factory Default: None.

GUI Equivalent: Go to Option | Environment Options and select the Debug Windows tab.
Under “Specific Preferences” select “Stdio” and check “Log to File” under
“Options,” then check “Append” and specify the filename.

Example dccl cmp myProgram.c -oa MyOutput.txt

-pbf PilotBIOSFilePathname

Description: Compile using a pilot BIOS found in P1 1o0tBIOSFilePathname.
Factory Default: \Bios\Pilot.bin
GUI Equivalent: None.

Example: dccl cmp myProgram.c -pbf MyPath\MyPilot.bin

316 digi.com Command Line Interface

www.digi.com

-pf projectFilePathname

Description: Specify a project file to read before the command line switches are read.
The environment settings are taken from the project file specified with -pf,
or default.dcp if no other project file is specified. Any switches on the
command line, regardless of their position relative to the -pf switch, will
override the settings from the project file.

Factory Default: The project file default.dcp.

GUI Equivalent: Select File | Project | Open...

Example dccl cmp myProgram.c -ne 25 -pf myProject.dcp
dccl cmp myProgram.c -ne 25 -pf myProject
Note: The project file extension, . dcp, may be omitted.

-pw TCPPassPhrase

Description: Enter the passphrase required for your TCP/IP connection. If no passphrase
is required this option need not be used.

Factory Default: No passphrase.

GUI Equivalent: Enter the passphrase required at the dialog prompt when compiling over a
TCP/IP connection

Example: dccl cmp myProgram.c -pw “My passphrase”

-ret Retries

Description:

Factory Default:
GUI Equivalent:

Example:

The number of times Dynamic C attempts to establish communication if the
given timeout period expires.

3
None.

dccl cmp myProgram.c -ret 5

Dynamic C User’s Manual digi.com

317

www.digi.com

-rf RTIFilePathname

Description: Compile to a .bin file using targetless compilation parameters found in RTIFilePath-
name. The resulting compiled file will have the same pathname as the source (. ¢)
file being compiled, but with a . bin extension.

Factory Default: None.
GUI Equivalent:

Example: dccl cmp myProgram.c -rf MyTCparameters.rti
dccl cmp myProgram.c -—-rf “My Long Pathname\MyTCparameters.rti”

ters.rti”

-rti BoardID:CpulD:CrystalSpeed:RAMSize:FlashSize

Description: Compile to a . bin file using parameters defined in a colon separated for-
mat of BoardID:CpulD:CrystalSpeed:RAMSize:FlashSize. The resulting
compiled file will have the same pathname as the source (. ¢) file being
compiled, but with a . bin extension.

BoardID - Hex integer

CpulD - 2000r# or 3000r# where # is the revision number of the CPU.

2000r0: corresponds to IQ2T?
2000r1: corresponds to IQ3T
2000r2: corresponds to 1Q4T
2000r3: corresponds to IQ5T
3000r0: corresponds to IL1T or IZ1T
3000r1: corresponds to IL2T

For backward compatibility, we also support:
2000: corresponds to IQ2T

3000: corresponds to IL1T or IZIT
CrystalSpeed - Base frequency, decimal floating point, in MHz
RAMSize - Decimal, in KBytes
FlashSize - Primary flash, decimal, in KBytes.
Factory Default: None.

GUI Equivalent: Select Options | Project Options | Targetless | Board Selection and choose a
board from the list; then select Compile | Compile to .bin File | Compile to
Flash

Example: dccl cmp myProgram.c -rti 0x0700:2000r3:11.0592:512:256

a. 1Q*, IL* and IZ* are explained on page 291.

318 digi.com Command Line Interface

www.digi.com

-s Port:Baud:Stopbits
Description: Use serial transmission with parameters defined in a colon separated format
of Port:Baud:Stopbits:Background Tx.
Port: 1,2,3,4,5,6,7,8

Baud: 110, 150, 300, 600, 1200, 2400, 4800, 9600, 12800, 14400,
19200, 28800, 38400, 57600, 115200, 128000, 230400, 256000

Stopbits: 1, 2
Include all serial parameters in the prescribed format even if only one is
being changed.

Factory Default: 1:115200:1:0

GUI Equivalent: Select the Communications tab of Project Options. Select the “Use Serial
Connection” radio button.

Example: Changing port from default of 1 to 2:

dccl cmp myProgram.c -s 2:115200:1:0

-sto SerialResponseTimeout

Description: Time in milliseconds Dynamic C waits for a response from the target on
any retry while trying to establish serial communication.

Factory Default: 300 ms.

GUI Equivalent: None.

Example: dccl cmp myProgram.c -sto 400

Dynamic C User’s Manual digi.com

319

www.digi.com

-t NetAddress:TcpName:TcpPort

Description: Use TCP with parameters defined in a contiguous colon separated format of
NetAddress:TcpName:TcpPort. Include all parameters even if only one is
being changed.

netAddress: n.n.n.n
tcpName: Text name of TCP port
tcpPort: decimal number of TCP port

Factory Default: None.

GUI Equivalent: Select the Communications tab of Project Options. Select the “Use TCP/IP
Connection” radio button.

Example: dccl cmp myProgram.c -t 10.10.6.138:TCPName:4244

15.5 Examples

The following examples illustrate using multiple command line switches at the same time. If the switches
on the command line are contradictory, such as -mr and -m£, the last switch (read left to right) will be
used.

Example 1
In this example, all current settings of default.dcp are used for the compile.

dccl cmp samples\timerb\timerb.c

Example 2
In this example, all settings of myproject.dcp are used, except timer b.c is compiled to
timer b.bin instead of to the target and warnings or errors are written to myouputs. txt.

dccl cmp samples\timerb\timer b.c -o myoutputs.txt -b -pf myproject

320 digi.com Command Line Interface

www.digi.com

Example 3

These examples will compile and run myProgram. c with the current settings in default.dcp but
using different defines, displaying up to 50 warnings and capture all output to one file with a header for
each run.

dccl cmp myProgram.c -d MAXCOUNT=99 -nw 50 -h -o myOutput.txt
dccl cmp myProgram.c -d MAXCOUNT=15 -nw 50 -h -oa myOutput.txt
dccl cmp myProgram.c -d MAXCOUNT=15 -d DEFl1 -nw 50 -h -oa myOut-

put.txt

The first run could have used the —oa option if myOutput . txt were known to not initially exist.
myProgram. c presumably uses a constant MAXCOUNT and contains one or more compiler directives
that react to whether or not DEF1 is defined.

15.6 Command Line RFU

There is also a command line version of the RFU. On the command line specify:
clRFU SourceFilePathName [options]

where SourceFilePathName is the path name of the .bin file to load to the connected target. The
options are as follows:

-cl ColdLoaderPathName

Description: Select a new initial loader.
Default: \bios\coldload.bin

RFU GUI From the Setup | Boot Strap Loaders dialog box, type in a pathname or click
Equivalent: on the ellipses radio button to browse for a file.

Example: clRFU myProgram.bin -cl myInitialLoader.bin

Dynamic C User’s Manual digi.com

321

www.digi.com

Description: Run Ethernet discovery to find RabbitLink or RabbitSys-enabled boards on
a local area network (LAN). Don’t load the .bin file. This option is for
information gathering and must appear by itself with no other options and
no binary image file name.

RFU GUI From the Setup | Communications dialog box, click on the “Use TCP/IP
Equivalent: Connection” radio button, then on the “Discover” button.

Example: clRFU -d

-fi Flash.ini PathName

Description: Select a new file that Dynamic C will use to externally define flash.
Default: flash.ini

RFU GUI From the “Choose File Locations...” dialog box, visible by selecting Setup |
Equivalent: File Locations, type in a pathname or click on the ellipses radio button to
browse for a file.

Example: clRFU myProgram.bin -fi myflash.ini

-pb PilotBiosPathName

Description: Select a new secondary loader.
Default: \bios\pilot.bin

RFU GUI From the Setup | Boot Strap Loaders dialog box, type in a pathname or click
Equivalent: on the ellipses radio button to browse for a file.

Example: clRFU myProgram.bin -pb mySecondarylLoader.bin

-pw

Description: Passphrase for TCP/IP loader when using a RabbitLink.

Default: RabbitLink always prompts for a passphrase. Press “Enter” if no passphrase
has been set.

RFU GUI None.
Equivalent:

Example: clRFU -pw mypassphrase

322 digi.com Command Line Interface

www.digi.com

Description:
Default:

RFU GUI
Equivalent:

Example:

Description:
Default:

RFU GUI
Equivalent:

Example:

Description:

Default:

RFU GUI
Equivalent:

Example:

-vp+

Description:

Default:

RFU GUI
Equivalent:

Example:

-s port:baudrate

Select the comm port and baud rate for the serial connection.
COM1 and 115,200 bps

From the Setup | Communications dialog box, choose values from the Baud
Rate and Comm Port drop-down menus.

clRFU myProgram.bin -s 2:115200

-t ipAddress:tcpPort

Select the IP address and port.
Serial Connection

From the Setup | Communications dialog box, click on “Use TCP/IP Con-
nection,” then type in the IP address and port for the controller that is
receiving the .bin file.

clRFU myProgram.bin -t 10.10.1.100:4244

Causes the RFU version number and additional status information to be dis-
played.

Only error messages are displayed.

Status information is displayed by default and there is no option to turn it
off.

clRFU myProgram.bin -v

Verify the presence of the processor by using the DSR line of the PC serial
connection.

The processor is verified.

From the “Communications Options” dialog box, visible by selecting Setup
| Communications, check the “Enable Processor Detection” option.

clRFU myProgram.bin -vp+

Dynamic C User’s Manual

digi.com

323

www.digi.com

-Vp-

Description: Do not verify the presence of the processor.
Default: The processor is verified.
RFU GUI From the “Communications Options” dialog box, visible by selecting
Equivalent: Setup | Communications, uncheck the “Enable Processor Detection” option.
Example: clRFU myProgram.bin -vp-

-usb+
Description: Enable use of USB to serial converter.
Default: The use of the USB to serial converter is disabled.
RFU GUI From the “Communications Options” dialog box, visible by selecting
Equivalent: Setup | Communications, check the “Use USB to Serial Converter” option.
Example: clRFU myProgram.bin -usb+

-usb-
Description: Disable use of USB to serial converter.
Default: The use of the USB to serial converter is disabled.
RFU GUI From the “Communications Options” dialog box, visible by selecting
Equivalent: Setup | Communications, uncheck the “Use USB to Serial Converter”

option.

Example: clRFU myProgram.bin -usb-

324 digi.com Command Line Interface

www.digi.com

RABBIT = PRODUCT MANUAL

16. PROJECT FILES

In Dynamic C, a project is an environment that consists of opened source files, a BIOS file, available
libraries, and the conditions under which the source files will be compiled. Starting with Dynamic C 9.30,

the File Open directory last used will be stored in the project file!. Projects allow different compilation
environments to be separately maintained.

16.1 Project File Names

A project maintains a compilation environment in a file with the extension . dcp.

16.1.1 Factory.dcp

The environment originally shipped from the factory is kept in a project file named factory.dcp. If
Dynamic C cannot find this file, it will be recreated automatically in the Dynamic C exe path. The factory
project can be opened at any time and the environment changed and saved to another project name, but
factory.dcp will not be changed by Dynamic C.

16.1.2 Default.dcp

This default project file is originally a copy of factory.dcp and will be automatically recreated as such
in the exe path if it cannot be found when Dynamic C opens. The default project will automatically
become the active project with File | Project... | Close.

The default project is special in that the command line compiler will use it for default values unless
another project file is specified with the -pf switch, in which case the settings from the indicated project
will be used.

Please see Chapter 15 for more details on using the command line compiler.

16.1.3 Active Project

Whenever a project is selected, the current project related data is saved to the closing project file, the new
project settings become active, and the (possibly new) BIOS will automatically be recompiled prior to
compiling a source file in the new environment.

The active project can be factory.dcp, default.dcp or any project you create with
File | Project... | Save As... When Dynamic C opens, it retrieves the last used project, or the default project
if being opened for the first time or if the last used project cannot be found.

If a project is closed with the File | Projects... | Close menu option, the default project, default.dcp,
becomes the active project.

i. If DC is started with a cwd (current working directory) other than the exe directory, the cwd will be used
instead of the one saved in the project file. This can happen if Dynamic C is started from a Windows
shortcut with a specified “starts in” directory.

Dynamic C User’s Manual digi.com 325

www.digi.com

The active project file name, without path or extension, is always shown in the leftmost panel of the status
bar at the bottom of the Dynamic C main window and is prepended to the Dynamic C version in the title
bar except when the active project is the default project.

Changes made to the compilation environment of Dynamic C are automatically updated to the active proj-
ect, unless the active projectis factory.dcp.

16.2 Updating a Project File

Unless the active project is factory.dcp, changes made in the Project Options dialog will cause the
active project file to be updated immediately:

Opening or closing files will not immediately update the active project file. The project file state of the
recently used files appearing at the bottom of the File menu selection and any opened files in edit windows
will only by updated when the project closes or when File | Projects... | Save is selected. The Message,
Assembly, Memory Dump, Registers and Stack debug windows are not edit windows and will not be
saved in the project file if you exit Dynamic C while debugging.

16.3 Menu Selections

The menu selections for project files are available in the File menu. The choices are the familiar ones: Cre-
ate..., Open..., Save, Save As... and Close.

Choosing File | Project | Open... will bring up a dialog box to select an existing project filename to
become the active project. The environment of the previous project is saved to its project file before it is
replaced (unless the previous project is factory.dcp). The BIOS will automatically be recompiled
prior to the compilation of a source file within the new environment, which may have a different library
directory file and/or a different BIOS file.

Choosing File | Project... | Save will save the state of the environment to the active project file, including
the state of the recently used filelist and any files open in edit windows. This selection is greyed out if the
active project is factory.dcp. This option is of limited use since any project changes will be updated
immediately to the file and the state of the recently used filelist and open edit windows will be updated
when the project is closed for any reason.

Choosing File | Project... | Save as... will bring up a dialog box to select a project file name. The file will
be created or, if it exists, it will be overwritten with the current environment settings. This environment
will also be saved to the active project file before it is closed and its copy (the newly created or overwritten
project file) will become active.

Choosing File | Project... | Close first saves the environment to the active project file (unless the active
projectis factory.dcp) and then loads the Dynamic C default project, default.dcp, as the active
project. As with Open..., the BIOS will automatically be recompiled prior to the compilation of a source
file within the new environment. The new environment may have a different library directory file and/or a
different BIOS file.

326 digi.com Project Files

www.digi.com

16.4 Command Line Usage

When using the command line compiler, dccl cmp. exe, a project file is always read. The default proj-
ect, default.dcp, is used automatically unless the project file switch, -pf, specifies another project file
to use. The project settings are read by the command line compiler first even if a -pf switch comes after the
use of other switches, and then all other switches used in the command line are read, which may modify
any of the settings specified by the project file.

The default behavior given for each switch in the command line documentation is with reference to the
factory.dcp settings, so the user must be aware of the default state the command line compiler will
actually use. The settings of default .dcp can be shown by entering dccl cmp alone on the com-
mand line. The defaults for any other project file can be shown by following dccl cmp by a the project
file switch without a source file. The command:

dccl cmp
shows the current state of all default.dcp settings. The command:
dccl cmp -pf myProject
shows the current state of all myProject . dcp settings. And the command:
dccl cmp myProgram.c -ne 25 -pf myProject
reads myProject .dcp, then compiles and runs myProgram. ¢, showing a maximum of 25 errors.

The command line compiler, unlike Dynamic C, never updates the project file it uses. Any changes desired
to a project file to be used by the command line compiler can be made within Dynamic C or changed by
hand with an editor.

Making changes by hand should be done with caution. Use an editor that does not introduce carriage
returns or line feeds with wordwrap, which may be a problem if the global defines or any file pathnames
are lengthy strings. Be careful to not change any of the section names in brackets or any of the key phrases
up to and including the “=.”

If a macro is defined on the command line with the -d switch, any value that may have been defined within
the project file used will be overwritten without warning or error. Undefining a macro with the -d- switch
has no consequence if it was not previously defined.

Dynamic C User’s Manual digi.com 327

www.digi.com

328 digi.com Project Files

www.digi.com

RABBIT = PRODUCT MANUAL

17. HINTS AND TIPS

This chapter offers hints on how to speed up an application and how to store persistent data at run time.

17.1 A User-Defined BIOS

Before discussing a user-defined BIOS, we will review the history of the Rabbit BIOS. Dynamic C 9.30
introduced a reorganization of the BIOS. Prior to 9.30, RabbitBIOS. c contained all the BIOS code and
a variety of configuration macros. Now, RabbitBIOS. c is a wrapper that permits a choice of which
BIOS to compile. In addition, a more modular design has been implemented by moving many of the con-
figuration macros to separate configuration libraries. The new BIOS file and configuration libraries are
located in LIB\BIOSLIB. Table 17-1 lists the new files and gives a brief description of their content.

Table 17-1. BIOS File and Configuration Libraries

File Name Description

STDBIOS.C Most of the code from RabbitBIOS. c was
moved here.

CLONECONFIG.LIB Macros for configuring cloning.

DKCONFIG.LIB Macros for configuring the debug kernel

ERRLOGCONFIG.LIB Macros for configuring non-RabbitSys error
logging. RabbitSys has its own error logging
method.

MEMCONFIG.LIB Macros for configuring memory organization.

SYSCONFIG.LIB Macros for other system-level configuration
options, such as the clock doubler and the
specturm spreader.

TWOPROGRAMCONFIG.LIB |Macros for configuring split memory for the old-
style DLM/DLP.

FATCONFIG.LIB Macros for configuring the FAT file system.

To create a user-defined BIOS prior to Dynamic C 9.30, begin with a copy of RABBITBIOS . C. Starting
with Dynamic C 9.30, begin with a copy of STDBIOS . C. Modify the BIOS file. It is prudent to save
RABBITBIOS.C or STDBIOS.C as is and rename the modified file.

The Dynamic C GUI offers an option for hooking a user-defined BIOS into the system. See the description
of the “Advanced... Button” in Section 14.2.7 for details on using this GUI option. Prior to Dynamic C
9.30, this GUI option was the easiest way to accomplish the goal. If you are using Dynamic C 9.30 or later
and if you use the GUI option to hook in your BIOS, you will need to consider the configuration files and
associated macros described in Table 17-1.

Dynamic C User’s Manual digi.com 329

www.digi.com

The suggested method to use with Dynamic C 9.30 or later involves editing the file RABRITBIOS.C to
include the user-defined BIOS file. To do so, find the “#if RABBITSYS == 0” statement and modify the
code as follows:

#if MYBIOS ==
#use “mybios.c”
#elif _ RABBITSYS == 0
#use “STDBIOS.C”
#elif RABBITSYS == 1
#use “sysBIOS.C”
felse
#use”rkBIOS.c”
#endif

To select the customized BIOS, define “MYBIOS = 1” in the Defines tab of the Options | Project Options
dialog box.

17.2 Efficiency

There are a number of methods that can be used to reduce the size of a program, or to increase its speed.
Let’s look at the events that occur when a program enters a function.

e The function saves IX on the stack and makes IX the stack frame reference pointer (if the program is in
the useix mode).

e The function creates stack space for auto variables.
e The function sets up stack corruption checks if stack checking is enabled (on).

¢ The program notifies Dynamic C of the entry to the function so that single stepping modes can be
resolved (if in debug mode).

The last two consume significant execution time and are eliminated when stack checking is disabled or if
the debug mode is off.

17.2.1 Nodebug Keyword

When the PC is connected to a target controller with Dynamic C running, the normal code and debugging
features are enabled. Dynamic C places an RST 28H instruction at the beginning of each C statement to
provide locations for breakpoints. This allows the programmer to single step through the program or to set
breakpoints. (It is possible to single step through assembly code at any time.) During debugging there is
additional overhead for entry and exit bookkeeping, and for checking array bounds, stack corruption, and
pointer stores. These “jumps” to the debugger consume one byte of code space and also require execution
time for each statement.

At some point, the Dynamic C program will be debugged and can run on the target controller without the
Dynamic C debugger. This saves on overhead when the program is executing. The nodebug keyword is
used in the function declaration to remove the extra debugging instructions and checks.

nodebug int myfunc(int x, int z) {

330 digi.com Hints and Tips

www.digi.com

If programs are executing on the target controller with the debugging instructions present, but without
Dynamic C attached, the call to the function that handles RST 28H instructions in the vector table will be
replaced by a simple ret instruction for Rabbit 2000 based targets. For Rabbit 3000 based targets, the RST
28H instruction is treated as a NOP by the processor when in debug mode. The target controller will work,
but its performance will not be as good as when the nodebug keyword is used.

If the nodebug option is used for the main () function, the program will begin to execute as soon as it fin-
ishes compiling (as long as the program is not compiling to a file).

Use the directive #nodebug anywhere within the program to enable nodebug for all statements follow-
ing the directive. The #debug directive has the opposite effect.

Assembly code blocks are nodebug by default, even when they occur inside C functions that are marked
debug, therefore using the nodebug keyword with the #asm directive is usually unnecessary.

17.2.2 In-line I/O

The built-in I/O functions (WrPortI (), RdPortI (),BitWrPortI () and BitRdPortI ())canbe
generated as efficient in-line code instead of function calls. All arguments must be constant. A normal
function call is generated if the I/O function is called with any non-constant arguments. To enable in-line
code generation for the built-in I/O functions check the option “Inline builtin I/O functions” in the Com-
piler dialog, which is accessible by clicking the Compiler tab in the Project Options dialog.

17.3 Run-time Storage of Data

Data that will never change in a program can be put in flash by initializing it in the declarations. The com-
piler will put this data in flash. See the description of the const, xdata, and xstring keywords for
more information.

If data must be stored at run-time and persist between power cycles, there are several ways to do this using
Dynamic C functions:

e User Block - Recommended method for storing non-file data. Factory-stored calibration constants live
in the User block for boards with analog I/O. Space here is limited to as small as (8K~
sizeof (SysIDBlock)) bytes, or less if there are calibration constants. For specific information
about the User block on your board, open the sample programs userblock info.c and/or
idblock report.c. The latter program will print, among other things, the location of the
User block.

¢ Flash File System - The file system is best for storing data that must be organized into files, or data
that won’t fit in the User block. It is best used on a second flash chip. It is not possible to use a second
flash for both extra program code that doesn’t fit into the first flash, and the file system. The macro
USE_2NDFLASH_ CODE must be uncommented in the BIOS to allow programs to grow into the sec-
ond flash; this precludes the use of the file system.

e WriteFlash2 - This function is provided for writing arbitrary amounts of data directly to arbitrary
addresses in the second flash.

Dynamic C User’s Manual digi.com 331

www.digi.com

e Battery-Backed RAM - Storing data here is as easy as assigning values to global variables or local
static variables. The file system can also be configured to use RAM.

The life of a battery on a Rabbit board is specified in the user’s manual for that board; some boards have
batteries that last several years, most board have batteries that come close to or surpass the shelf-life of
the battery. If it is important that battery-backed data not be lost during a battery failure, know how long
your battery will last and plan accordingly.

17.3.1 User Block

The User block is an area near the top of flash reserved for run-time storage of persistent data and calibra-
tion constants. The size of the User block can be read in the global structure member
SysIDBlock.userBlockSize. The functions readUserBlock () and writeUserBlock ()
are used to access the User block. These function take an offset into the block as a parameter. The highest
offset available to the user in the User block will be

SysIDBlock.userBlockSize-1

if there are no calibration constants, or

DAC_CALIB_ADDR-1

if there are.

See the Rabbit designer’s handbook for more details about the User block.

17.3.2 Flash File System

For a complete discussion of the file system, please see Chapter 10, “File Systems.”

17.3.3 WriteFlash2

See the Dynamic C Function Reference Manual for a complete description.

NOTE: ThereisaWriteFlash () function available for writing to the first flash,
but its use is highly discouraged for reasons of forward source and binary compatibil-
ity should flash sector configuration change drastically in a product. For more infor-
mation on flash compatibility issues, see technical notes TN216 “Is your Application
Ready for Large Sector Flash?” and TN217 “Binary and Source Compatibility Issues
for 4K Flash Sector Sizes™ at Digi’s website: www.digi.com/support/.

17.3.4 Battery-Backed RAM

Static variables and global variables will always be located at the same addresses between power cycles
and can only change locations via recompilation. The file system can be configured to use RAM also.
While there may be applications where storing persistent data in RAM is acceptable, for example a data
logger where the data gets retrieved and the battery checked periodically, keep in mind that a programming
error such as an uninitialized pointer could cause RAM data to be corrupted.

xalloc () will allocate blocks of RAM in extended memory. It will allocate the blocks consistently from
the same physical address if done at the beginning of the program and the program is not recompiled.

332 digi.com Hints and Tips

www.digi.com
http://www.digi.com/support/

17.4 Root Memory Reduction Tips

Customers with programs that are near the limits of root code and/or root data space usage will be inter-
ested in these tips for saving root space. For more help, see Technical Note TN238 “Rabbit Memory Usage
Tips.” This document is available at: digi.com, or by choosing Online Documentation from within the
Help menu of Dynamic C.

17.4.1 Increasing Root Code Space

Increasing the available amount of root code space may be done in the following ways:

e Enable Separate Instruction and Data Space

A hardware memory management scheme that uses address line inversion to double the amount of logi-
cal address space in the base and data segments is enabled on the Compiler tab of the Options | Project

Options dialog. Enabling separate 1&D space doubles the amount of root cod and root data available for
an application program.

e Use #memmap xmem

This will cause C functions that are not explicitly declared as “root” to be placed in xmem. Note that the
only reason to locate a C function in root is because it modifies the XPC register (in embedded assembly
code), or it is an ISR. The only performance difference in running code in xmem is in getting there and
returning. It takes a total of 12 additional machine cycles because of the differences between
call/lcall,and ret/lret.

e Increase DATAORG
The macro DATAORG is the beginning logical address for the data segment.
Root code space can be increased by increasing DATAORG in the BIOS (in RabbitBios. ¢ prior to
Dynamic C version 9.30 or in StdBIOS. c thereafter) in increments of 0x1000. The default is 0x3000
when separate 1&D space is on, and 0x6000 otherwise. It can be as high as 0xB000.
When separate [&D space is on, DATAORG defines the boundary between root variable data and root
constant data. In this case, increasing DATAORG increases root constant space and decreases root vari-
able space.
When separate I&D space is off, DATAORG defines the boundary between root variable data and the
combination of root code and root constant data. Note that root constants are in the base segment with
root code. In this case, increasing DATAORG increases root code and root constant space and decreases
root data space.

e Compile out floating point support

Floating point support can be conditionally compiled out of stdio.lib by adding #define
STDIO DISABLE FLOATS to either a user program or the Defines tab page in the Project Options
dialog. This can save several thousand bytes of code space.

Dynamic C User’s Manual digi.com 333

www.digi.com/support/
www.digi.com

e Reduce usage of root constants and string literals
Shortening literal strings and reusing them will save root space. The compiler automatically reuses iden-
tical string literals.
These two statements :

printf (“"This is a literal string”);
sprintf (buf, “This is a literal string”);

will share the same literal string space whereas:
sprintf (buf, “this is a literal string”);

will use its own space since the string is different.

e Use xdata to declare large tables of initialized data
If you have large tables of initialized data, consider using the keyword xdata to declare them. The disad-
vantage is that data cannot be accessed directly with pointers. The function xmem2root () allows
xdata to be copied to a root buffer when needed.

// This uses root code space
const int root tb1([8]={300,301,302,103,304,305,306,307};

// This does not
xdata xdata table {300,301,302,103,304,305,306,307};

main () {

// this only uses temporary stack space
auto int table[8];
xmem2root (table, xdata table, 16);
// now the xmem data can be accessed via a 16 bit pointer into the table
}
Both methods, const and xdata, create initialized data in flash at compile time, so the data cannot be
rewritten directly.

e Use xstring to declare a table of strings

The keyword xstring declares a table of strings in extended flash memory. The disadvantage is that
the strings cannot be accessed directly with pointers, since the table entries are 20-bit physical
addresses. As illustrated above, the function xmem2root () may be used to store the table in tempo-
rary stack space.

// This uses root code space

const char * name[] = {“string 1”, . . . “string n”};

// This does not
xstring name {“string 1”, . . . “string n”};

Both methods, const and xstring, create initialized data in flash at compile time, so the data cannot
be rewritten directly.

e Turn off selected debugging features

Watch expressions, breakpoints, and single stepping can be selectively disabled on the Debugger tab of
Project Options to save some root code space.

334 digi.com Hints and Tips

www.digi.com

e Place assembly language code into xmem

Pure assembly language code functions can go into xmem.
#asm
foo root::
[some instructions]
ret
#endasm

The same function in xmem:
#asm xmem

foo xmem: :

[some instructions]

lret ; use lret instead of ret
#endasm

The correct calls are call foo rootand lcall foo xmem. Ifthe assembly function modifies
the XPC register with
LD XPC, A

it should not be placed in xmem. If it accesses data on the stack directly, the data will be one byte away
from where it would be with a root function because 1call pushes the value of XPC onto the stack.

17.4.2 Increasing Root Data Space

Increasing the available amount of root data space may be done in the following ways:

e Enable Separate Instruction and Data Space

A hardware memory management scheme that uses address line inversion to double the amount of logi-
cal address space in the base and data segments is enabled on the Compiler tab of the Options | Project
Options dialog. Enabling separate 1&D space doubles the amount of root code and root data available
for an application program.

¢ Decrease DATAORG

The macro DATAORG is the beginning logical address for the data segment.

Root data space can be increased by decreasing DATAORG in the BIOS (in RabbitBios. ¢ prior to
Dynamic C version 9.30 or in StdBIOS . c thereafter) in increments of 0x1000. At the time of this
writing, RAM compiles should be done with no less than the default value (0x6000) of DATAORG when
separate 1&D space is off. This restriction is to ensure that the pilot BIOS does not overwrite itself.

When separate [&D space is on, DATAORG defines the boundary between root variable data and root
constant data. In this case, decreasing DATAORG increases root variable space and descreases root con-
stant space.

When separate 1&D space is off, DATAORG defines the boundary between root variable data and the
combination of root code and root constant data. Note that root constants are in the base segment with
root code. In this case, decreasing DATAORG increases root data space and decreases root code space.

e Use xmem for large RAM buffers

xalloc () can be used to allocate chunks of RAM in extended memory. The memory cannot be
accessed by a 16 bit pointer, so using it can be more difficult. The functions xmem2root () and
root2xmem () are available for moving from root to xmem and xmem to root. Large buffers used by
Dynamic C libraries are already allocated from RAM in extended memory.

Dynamic C User’s Manual digi.com 335

www.digi.com

336 digi.com Hints and Tips

www.digi.com

RABBIT = PRODUCT MANUAL

APPENDIX A. MACROS AND GLOBAL
VARIABLES

This appendix contains descriptions of macros and global variables available in Dynamic C. This is not an
exhaustive list.

A.1 Macros Defined by the Compiler

The macros in the following table are defined internally. Default values are given where applicable, as well
as directions for changing values.

Table A-1. Macros Defined by the Compiler

Macro Name Definition and Default

This is the debug baud rate. The baud rate can be changed in the

BIOSBAUD L. . .
— — Communications tab of Project Options.

This is read from the System ID block or defaulted to 0x100 (the
BL1810 JackRabbit board) if no System ID block is present. This can be
used for conditional compilation based on board type. Board types are
listed in boardtypes.lib.

_BOARD_TYPE

This macro identifies the CPU type, including its revision; e.g.,
#if CPU ID >= R3000 RI
CPU ID will identify a Rabbit 3000 rev. 1 or newer chip

Look in \Lib\..\BIOSLIB\sysiodefs.1lib for the constants
and mask macros that are defined for use with CPU_ID .

CC_VER Gives the Dynamic C version in hex, i.e., version 7.05 is 0x0705.

DC _CRC_PTR Reserved.

The compiler substitutes this macro with the date that the file was
compiled (either the BIOS or the . c file). The character string literal is of
the form Mmm dd yyyy. The days of the month are as follows: "Jan,"
"Feb," "Mar," HApr," "May”l "Jun’" "Jul," "Aug’ll "Sep’" HOct,H "NOV,"
"Dec." There is a space as the first character of dd if the value is less than
10.

__DATE

Dynamic C User’s Manual digi.com 337

www.digi.com

Table A-1. Macros Defined by the Compiler

Macro Name

Definition and Default

__DynamicC

This macro identifies the Dynamic C compiler, e.g:
#ifdef DynamicC
// conditional code goes here
#endif

may be used in a portable application to enclose conditional code that
applies only to Rabbit targets.

DEBUG RST

Go to the Compiler tab of Project Options and click on the “Advanced”
button at the bottom of the dialog box. Check “Include RST 28
instructions” to set DEBUG_RST to 1. Debug code will be included
even if #nodebug precedes the main function in the program.

__FILE

The compiler substitutes this macro with the current source code file
name as a character string literal.

_FAST_RAM

FLASH

RAM

These are used for conditional compilation of the BIOS to distinguish
between the three options:

» compiling to and running in flash

* compiling to and running in RAM

» compiling to flash and running in RAM
The choice is made in the Compiler tab of Project Options. The default
is compiling to and running in flash.
The BIOS defines FAST RAM COMPILE, FLASH COMPILE and
RAM COMPILE. These macros are defined to 0 or 1 as opposed to the
corresponding compiler-defined macros which are either defined or not
defined. This difference makes possible statements such as:

#if FLAS H COMPILE || FAST RAM COMPILE

Setting FAST RAM COMPILE limits the flash file system size to the
smaller of the following two values: 256K less the SystemID/User
Blocks reserved area; the sum of the completely available flash sectors
between the application code/constants and the SystemID/User Blocks
reserved area.

_FLASH_SIZE

_RAM SIZE

These are used to set the MMU registers and code and data sizes
available to the compiler. The values of the macros are the number of 4K
blocks of memory available.

__LINE

The compiler substitutes this macro with the current source code line
number as a decimal constant.

NO BIOS

Boolean value. Tells the compiler whether or not to include the BIOS
when compiling to a .bin file. This is an advanced compiler option
accessible by clicking the “Advanced” button on the Compiler tab in
Project Options.

338

digi.com

www.digi.com

Table A-1. Macros Defined by the Compiler

Macro Name Definition and Default

Boolean value. It defaults to 0. Set it by selecting “Compile defined
_TARGETLESS COMPILE |target configuration to .bin file” under “Default Compile Mode,” in the
Compiler tab of Project Options.

The compiler substitutes this macro with the time that the file (BIOS or

TIME
— — . ¢) was compiled. The character string literal is of the form hh :mm: ss.

Dynamic C User’s Manual digi.com 339

www.digi.com

A.2 Macros Defined in the BIOS or Configuration Libraries

This is not a comprehensive list of configuration macros, but rather, a short list of those found to be com-
monly used by Dynamic C programmers. Most default conditions can be overridden by defining the macro
in the “Defines” tab of the “Project Options” dialog.

All the configuration macros listed here were defined in RabbitBIOS. ¢ prior to Dynamic C 9.30. Since
then many of them have been moved to configuration libraries while RabbitBIOS. ¢ has become a
wrapper file that permits a choice of which BIOS to compile. See Section 17.1 for more information on the
reorganization of the BIOS that occured with Dynamic C 9.30.

CLOCK_DOUBLED

Determines whether or not to use the clock doubler. The default condition is to use the clock doubler,
defined in \BIOSLIB\sysconfig.lib. Override the default condition by defining
CLOCK_DOUBLED to “0” in an application or in the project.

DATAORG

Defines the beginning logical address for the data segment. Defaults are defined in the BIOS: 0x3000 if
separate I&D space enabled, 0x6000 otherwise. Users can override the defaults in the Defines tab of Proj-
ect Options dialog.

WATCHCODESIZE

Specifies the number of root RAM bytes for watch code. Defaults are defined in the BIOS: 0x200 bytes if
watch expressions are enabled, zero bytes otherwise. The defaults cannot be overridden by an application.

USE_TIMERA PRESCALE

Uncomment this macro in \BIOSLIB\sysconfig. c to run the peripheral clock at the same frequency
as the CPU clock instead of the standard “CPU clock/2.” This feature is not compatible with the Rabbit
2000.

USE_2NDFLASH CODE

Uncomment this macro in \BIOSLIB\sysconfig.c only if you have a a board with two 256K
flashes, and you want to use the second flash for extra code space. The file system (FS2) is not compatible
with using the second flash for code.

340 digi.com

www.digi.com

A.3 Global Variables

These variables may be read by any Dynamic C application program.

dc_timestamp

This internally-defined long is the number of seconds that have passed since 00:00:00 January 1, 1980,
Greenwich Mean Time (GMT) adjusted by the current time zone and daylight savings of the PC on which
the program was compiled. The recorded time indicates when the program finished compiling. The follow-
ing program will use dc_ timestamp to help calculate the date and time.

printf ("The date and time: %$1x\n", dc timestamp);

main () {
struct tm t;
printf ("dc timestamp = %$1x\n", dc_timestamp);
mktm(&t, dc timestamp);

printf ("%$2d/%02d/%4d %$02d:%02d:%02d\n",
t.tm mon,t.tm mday,t.tm year + 1900, t.tm hour,t.tm min,
t.tm sec);

OPMODE
This is a char. It can have the following values:
e (x88 = debug mode

¢ (0x80 = run mode

SEC_TIMER

This unsigned long variable is initialized to the value of the real-time clock (RTC). If the RTC is set cor-
rectly, this is the number of seconds that have elapsed since the reference date of January 1, 1980. The
periodic interrupt updates SEC_TIMER every second. This variable is initialized by the Virtual Driver
when a program starts.

MS_TIMER

This unsigned long variable is initialized to zero. The periodic interrupt updates MS_TIMER every milli-
second. This variable is initialized by the Virtual Driver when a program starts.

TICK_TIMER

This unsigned long variable is initialized to zero. The periodic interrupt updates TICK _TIMER 1024
times per second. This variable is initialized by the Virtual Driver when a program starts.

Dynamic C User’s Manual digi.com 341

www.digi.com

A.4 Exception Types

These macros are defined in errors.lib:

#define ERR BADPOINTER 228
#define ERR BADARRAYINDEX 229
#define ERR DOMAIN 234
#define ERR RANGE 235
#define ERR FLOATOVERFLOW 236
#define ERR LONGDIVBYZERO 237
#define ERR LONGZEROMODULUS 238
#define ERR BADPARAMETER 239
#define ERR INTDIVBYZERO 240
#define ERR UNEXPECTEDINTRPT 241
#define ERR_CORRUPTEDCODATA 243
#define ERR VIRTWDOGTIMEOUT 244
#define ERR BADXALLOC 245
#define ERR BADSTACKALLOC 246
#define ERR BADSTACKDEALLOC 247
#define ERR BADXALLOCINIT 249
#define ERR NOVIRTWDOGAVAIL 250
#define ERR INVALIDMACADDR 251
#define ERR INVALIDCOFUNC 252

A.5 Rabbit Registers

Macros are defined for all of the Rabbit registers that are accessible for application programming. A list of
these register macros can be found in the user’s manuals for the Rabbit microprocessor, as well as in the
Rabbit Registers file accessible from the Dynamic C Help menu.

A.5.1 Shadow Registers

Shadow registers exist for many of the I/O registers. They are character variables defined in the BIOS. The
naming convention for shadow registers is to append the word Shadow to the name of the register. For
example, the global control status register, GCSR, has a corresponding shadow register named
GCSRShadow.

The purpose of the shadow registers is to allow the program to reference the last value programmed to the
actual register. This is needed because a number of the registers are write only.

342 digi.com

www.digi.com

RABBIT = PRODUCT MANUAL

APPENDIX B. MAP FILE GENERATION

All symbol information is put into a single file. The map file has three sections: a memory map section, a
function section, and a globals section.

The map file format is designed to be easy to read, but with parsing in mind for use in program down-load-
ers and in other possible future utilities (for example, an independent debugger). Also, the memory map, as
defined by the #org statements, will be saved into the map file.

Map files are generated in the same directory as the file that is compiled. If compilation is not successful,
the contents of the map file are not reliable.

B.1 Grammar

<mapfile>: <memmap section> <function section> <global section>
<memmap section>: <memmapreg>+
<memmapreg>: <register var> = <8-bit const>
<register var>: XPC|SEGSIZE|DATASEG

<function section>: <function descripton>+

<function description>: <identifier> <address> <size>
<address>: <logical address> | <physical address>
<logical address>: <16-bit constant>

<physical address: <8-bit constant>:<16-bit constant>
<size>: <20-bit constant>

<global section>: <global description>+

<global description>: <scoped name> <address>
<scoped name>: <global>| <local static>

<global>: <identifier>

<local static>: <identifier>:<identifier>

Comments are C++ style (// only).

Dynamic C User’s Manual digi.com 343

www.digi.com

344 digi.com

www.digi.com

RABBIT = PRODUCT MANUAL

APPENDIX C. SECURITY SOFTWARE & UTILITY
PROGRAMS

This appendix documents the security software and utility programs available for Rabbit-based systems.
The security software is called the Rabbit Embedded Security Pack. It is summarized in Section C.1. There
are several Dynamic C utilities, each one described in Section C.2.

C.1 Rabbit Embedded Security Pack

The Rabbit Embedded Security Pack is composed of AES and SSL functionality. It is available for pur-
chase on the Digi website:

www.digi.com/support/

Documentation for the security pack is also available online.

C.1.1 AES

Advanced Encryption Standard (AES) is an implementation of the Rijndael Advanced Encryption Stan-
dard cipher with 128 bit key. This is useful for encrypting sensitive data to be sent over unsecured network
paths.

C.1.2SSL

Secure Sockets Layer (SSL) is a security protocol that transforms a typical reliable transport protocol
(such as TCP) into a secure communications channel for conducting sensitive transactions. The SSL proto-
col defines the methods by which a secure communications channel can be established—it does not indi-
cate which cryptographic algorithms to use. SSL supports many different algorithms, and serves as a
framework whereby cryptography can be used in a convenient and distributed manner.

Dynamic C User’s Manual digi.com 345

http://www.digi.com/support/
www.digi.com

C.2 Dynamic C Utilities

There are several utilities bundled with Dynamic C.

C.2.1 Library File Encryption
The Library File Encryption Utility, Encrypt . exe, allows distribution of sensitive runtime library files.

The encrypted library files compile normally, but cannot be read with an editor. The files will be automati-
cally decrypted during Dynamic C compilation, but users of Dynamic C will not be able to see any of the
decrypted contents except for function descriptions for which a public interface is given. An optional user-
defined copyright notice is put at the beginning of an encrypted file.

To use this utility, double-click on the program name, Encrypt . exe. The following window will
appear:

EE_E‘]‘ Encrypt Dynamic C Library Files

Add Filez to Encrypt ? Help

O ptional copyright notice to put at ztart of each enciypted file:

File[z) to encpt and save with extension Ielib

Complete instructions are available by clicking on the Help button in the upper righthand corner of the
program window. Context-sensitive help is accessed by positioning the cursor over the desired subject and
then pressing <F1>.

C.2.1.1 Add Files to Encrypt
There are two ways to select files to encrypt.
1. Type the path and filename in the lower window.

2. Click the Add Files to Encrypt button to bring up a file open dialog box and browse for the desired file.

The list of files to be encrypted may be edited if desired. Notice that if anything is entered in the lower
window, a new button named “Encrypt” appears. Two entries in the window change it to “Encrypt All”.
Clicking this button causes the utility to encrypt the file(s) listed in the lower window.

346 digi.com

www.digi.com

C.2.1.2 File Extension

Encrypted files will be saved with the same pathname but with the extension supplied. Dynamic C will use
encrypted and non-encrypted files seamlessly, so the choice of extension is for one’s own file manage-
ment.

C.2.1.3 Optional Text Area

The upper window is a text window of up to 4k bytes in length. Any text entered will appear in all files in
the list appearing in the lower window. If two files are to be given unique headers, they should be
encrypted separately.

This area can be used for copyright information, instructions, disclaimers, warnings, or anything else rele-
vant to viewers of the file.

C.2.2 File Compression Utility

Dynamic C has a compression utility feature. The default utility implements an LZSS style compression
algorithm. Support libraries to decompress files achieve a throughput of 10 KB/s to 20 KB/s (number of
bytes in uncompressed file/time to decompress entire file using ReadCompressedFile ()) depending
upon file size and compression ratio.

The #zimport () compiler directive performs a standard #ximport, but compresses the file by invok-
ing the compression utility before emitting the file to the target. Support libraries allow the compressed file
to be decompressed on-the-fly. Compression ratios of 50% or more for text files can be achieved, thus
freeing up valuable xmem space. The compression library is thread safe.

For details on compression ratios, memory usage and performance, please see Technical Note 234, “File
Compression (Using #zimport)” available on our website, at www.digi.com/support/.

C.2.2.1 Using the File Compression Utility

The utility is invoked by Dynamic C during compile time when #zimport is used. The keyword
#zimport will compress any file. Of course some files are already in a compressed format, for example
jpeg files, so trying to compress them further is not useful and may even cause the resulting compressed
file to be larger than the original file. (The original file is not modified by the compression utility nor by
the support libraries.) The compression of FS2 files is a special case. Instead of using #zimport,
#ximport is used along with the function CompressFile ().

Compressed files are decompressed on-the-fly using ReadCompressedFile (). Compressed FS2 files
may also be decompressed on-the-fly by using ReadCompressedFile (). Inaddition, an FS2 file may
be decompressed into a new FS2 file by using DecompressFile ().

There are 3 sample programs to illustrate the use of file compression
® Samples/zimport/zimport.c: demonstrates #zimport

* Samples/zimport/zimport fs2.c:demonstrates file compression in combination with the
file system

* Samples/tcpip/http/zimport. c: demonstrates file compression support using the http server

Dynamic C User’s Manual digi.com 347

www.digi.com
http://www.digi.com/support/

C.2.2.2 File Compression/Decompression API
The file compression API consists of 7 functions, 3 of which are of prime importance:

OpenInputCompressedFile () - open a compressed file for reading or open an uncom-
pressed #ximport file for compression.
CloseInputCompressedFile () - close input file and deallocate memory buffers.

ReadCompressedFile () - perform on-the-fly decompression.

The remaining 4 functions are included for compression support for FS2 files:

OpenOutputCompressedFile () - open FS2 file for use with CompressFile ().
CloseOutputCompressedFile () - close file and deallocate memory buffers.
CompressFile () - compress an FS2 file, placing the result in a second FS2 file.
DecompressFile () - decompress an FS2 file, placing the result in a second FS2 file.

Complete descriptions are available for these functions in the Dynamic C Function Reference Manual and
also via the Function Lookup facility (Ctrl+H or Help menu).

There are several macros associated with the file compression utility:

* ZIMPORT MASK - Used to determine if the imported file is compressed (#zimport) or not
(#ximport).

* OUTPUT COMPRESSION BUFFERS (default = 0) - Number of 24K buffers for compression (com-

pression also requires a 4K input buffer, which is allocated automatically for each output buffer that is
defined).

* INPUT COMPRESSION BUFFERS (default=1) Number of 4KB internal buffers (in RAM) used for
decompression.

Each compressed file has an associated file descriptor of type ZFILE. All fields in this structure are used
internally and must not be changed by an application program.

C.2.2.3 Replacing the File Compression Utility

Users can use their own compression utility, replacing the one provided. If the provided compression util-
ity is replaced, the following support libraries will also need to be replaced: zimport.1lib, 1zss.1lib
and bitio.lib. They are located in 1ib\ . .\zimport\. The default compression utility,
Zcompress.exe, is located in Dynamic C’s root directory. The utility name is defined by a key in the
current project file:

[Compression Utility]
Zimport External Utility=Zcompress.exe

To replace Zcompress . exe as the utility used by Dynamic C for compression, open your project file
and edit the filename.

348 digi.com

www.digi.com

The compression utility must reside in the same directory as the Dynamic C compiler executable. Dynamic
C expects the program to behave as follows:

¢ Take as input a file name relative to the Dynamic C installation directory or a fully qualified path.

* Produce an output file of the same name as the input file with the extension .DCZ at the end. E.g.,
test.txt becomes test.txt.dcz.

e Exit with zero on success, non-zero on failure.

If the utility does not meet these criteria, or does not exist, a compile-time error will be generated.

C.2.3 Font and Bitmap Converter Utility

The Font and Bitmap Converter converts Windows fonts and monochrome bitmaps to a library file format
compatible with Rabbit’s Dynamic C applications and graphical displays. Non-Roman characters may also
be converted by applying the monochrome bitmap converter to their bitmaps.

Double-click on the fmbcnvtr.exe file in the Utilities folder where you installed Dynamic C. Select
and convert existing fonts or bitmaps. Complete instructions are available by clicking on the Help button
within the utility.

When complete, the converted file is displayed in the editing window. Editing may be done, but probably
won’t be necessary. Save the file as name me . 1ib: the name of your choice.

Add the file to applications with the statement:

#use name me.lib // remember to add this filename to “lib.dir” file

or by cut and pasting from name me . 1ib directly into the application file.

C.2.4 Rabbit Field Utility

The Rabbit Field Utility (RFU) will load a binary file created with Dynamic C to a Rabbit-based board.
The RFU can be used to load a binary file without Dynamic C present on the host computer, and without
recompiling the program each time it is loaded to a controller.

The Dynamic C installation created a desktop icon

for the RFU. The executable file, rfu.exe, can _ X
be found in thjc subdlrec.tory named Ut111t1§S ﬂ Rabbit Field Utility

where Dynamic C was installed. Complete instruc-

tions are available by clicking on the Help button RFU Yersion 3.05

within the utility. The Help document details setup Copyright = 2001

information, the file menu options and BIOS Zwiorld Inc.

requirements. Al rights reserved.

The RFU executable that comes with the Dynamic
C distribution is branded as a product, as seen in the
“About” screenshot shown here. You can brand the RFU or customize its functionality to suit your needs.
Please contact technical support for the source file needed for customization:

http://www.digi.com/support/

The RFU enables those without Dynamic C to update their Rabbit-based board with a few files installed on
the computer and the appropriate connection to the target board.

Dynamic C User’s Manual digi.com 349

http://www.digi.com/support/
www.digi.com

The necessary files are
included with Dynamic C.
They are: the executable
(Rfu.exe), the cold loader,
the pilot BIOS, and a file used
to determine information about
the memory device being used.
The default files used for the
cold loader, etc., can be seen by
selecting “File Locations...”
from the Setup menu.

Rfu.exe and its ancillary
files are freely distributable.

The RFU communicates with
the target using either a serial
or a TCP/IP connection. The
serial connection requires a
programming cable. The
TCP/IP connection requires
either a RabbitLink board or a
RabbitSys-enabled board.

T Rabbit Field Utility 3.05 - o] x|
“ Filz Setup Help ‘
x
— File Locations
e sl | WD C 96055 Mbioghcoldload. bir |
Filat BIOS :IE:'&DE_SEDSSL\biDs\piIDt.bin |
Flash table:IE:'\DE_E!EDSSL'\FIash.ini |
(] | Canicel Help |
| | Y

There is also a command line version of the RFU. On the command line specify:

clRFU SourceFilePathName [options]

where SourceFilePathName is the path name of the .bin file to load to the connected target. The

options are as follows:

-s port:baudrate

Description: Select the comm port and baud rate for the serial connection.

Default: COMI and 115,200 bps

RFU GUI From the Setup | Communications dialog box, choose values from the Baud
Equivalent: Rate and Comm Port drop-down menus.

Example: clRFU myProgram.bin -s 2:115200

350

digi.com

www.digi.com

-t ipAddress:tcpPort

Description:
Default:

RFU GUI
Equivalent:

Example:

Description:

Default:

RFU GUI
Equivalent:

Example:

Select the IP address and port.
Serial Connection

From the Setup | Communications dialog box, click on “Use TCP/IP Con-
nection,” then type in the IP address and port for the controller that is
receiving the . bin file or use the “Discover” radio button.

clRFU myProgram.bin -t 10.10.1.100:4244

Causes the RFU version number and additional status information to be dis-
played.

Only error messages are displayed.

Status information is displayed by default and there is no option to turn it
off.

clRFU myProgram.bin -v

-cl ColdLoaderPathName

Description:
Default:

RFU GUI
Equivalent:

Example:

Select a new initial loader.
\bios\coldload.bin

From the “Choose File Locations...” dialog box, visible by selecting the
menu option Setup | File Locations,, type in a pathname or click on the
ellipses radio button to browse for a file.

clRFU myProgram.bin -cl myInitialLoader.c

-pb PilotBiosPathName

Description:
Default:

RFU GUI
Equivalent:

Example:

Select a new secondary loader.
\bios\pilot.bin

From the “Choose File Locations...” dialog box, visible by selecting the
menu option Setup | File Locations, type in a pathname or click on the
ellipses radio button to browse for a file.

clRFU myProgram.bin -pb mySecondaryLoader.c

Dynamic C User’s Manual digi.com

351

www.digi.com

-fi Flash.ini PathName

Description: Select a new file that Dynamic C will use to externally define flash.
Default: flash.ini
RFU GUI From the “Choose File Locations...” dialog box, visible by selecting the
Equivalent: menu option Setup | File Locations, type in a pathname or click on the
ellipses radio button to browse for a file.

Example: clRFU myProgram.bin -fi myflash.ini

-vp+
Description: Verify the presence of the processor by using the DSR line of the PC serial

connection.

Default: The processor is verified.
RFU GUI From the “Communications Options” dialog box, visible by selecting
Equivalent: Setup | Communications, check the “Enable Processor Detection” option.
Example: clRFU myProgram.bin -vp+

-Vp-
Description: Do not verify the presence of the processor.
Default: The processor is verified.
RFU GUI From the “Communications Options” dialog box, visible by selecting
Equivalent: Setup | Communications, uncheck the “Enable Processor Detection” option.
Example: clRFU myProgram.bin -vp-

-usb+
Description: Enable use of USB to serial converter.
Default: The use of the USB to serial converter is disabled.
RFU GUI From the “Communications Options” dialog box, visible by selecting
Equivalent: Setup | Communications, check the “Use USB to Serial Converter” option.
Example: clRFU myProgram.bin -usb+

352 digi.com

www.digi.com

-usb-

Description:

Default:

RFU GUI
Equivalent:

Example:

Description:

RFU GUI
Equivalent:

Example:

Disable use of USB to serial converter.
The use of the USB to serial converter is disabled.

From the “Communications Options” dialog box, visible by selecting
Setup | Communications, uncheck the “Use USB to Servile Converter”
option.

clRFU myProgram.bin -usb-

Run Ethernet discovery. Don’t load the . bin file. This option is for infor-
mation gathering and must appear by itself with no other options and no
binary image file name.

From the Setup | Communications dialog box, click on the “Use TCP/IP
Connection” radio button, then on the “Discover” button.

clRFU -d

Dynamic C User’s Manual digi.com

353

www.digi.com

354 digi.com

www.digi.com

RABBIT = PRODUCT MANUAL

APPENDIX D. ADDITIONAL DOCUMENTATION

There is a suite of documentation available for the Dynamic C user. Numerous application notes, technical
notes and white papers are available to help the reader learn more about different topics likely to be of
interest to embedded systems engineers.

Dynamic C documentation is found in two places:

1. Online at the Digi website: www.digi.com.

2. On the software CD that comes with Rabbit-based hardware. The documentation can be accessed

by opening Dynamic C and clicking on the Help menu or by clicking on the desktop icon that was cre-
ated during the Dynamic C installation.

Some technical notes of general interest are:

TN202 “Rabbit Memory Management in a Nutshell”
TN203 “Porting a Program to Dynamic C”

TN213 “Rabbit Serial Port Software”

TN261 “The Slave Port Driver”

Dynamic C User’s Manual digi.com 355

http://www.digi.com/support/
www.digi.com

356 digi.com

www.digi.com

RABBIT S

Semiconductor

PRODUCT MANUAL

Index
Symbols A
_GLOBAL INITooovieievieeie e 212 ADANAON ...viviiiieicicceec e 193
{1 curly Bracesccovveevevieieniieieceeieseee e 32 ADOTT ovivieeieeiieieee ettt 193
@LENGTH ..ottt 175 about Dynamic Ccccoeveieviiiienieiieiesieie s 301
@PC e 175 abstract data typesccceeveevverierieneereneeie e 34
@RETVAL ..ooviveieee e 175, 183 adc (add-with-carry)ccccceveevivieneiieiesieieeens 171
@SP e 175,179, 182, 183, 184, 192 add-on modulescccooeveiiiiiiiie 345
ettt ettt 47 Address SPACEccvevveveerierieieeiee e 12, 125
A ettt et 156 Advanced buttonccceeveeieriiecieniniee e 282
M1 oottt ettt s e e reesberaens 146 AES encryptioncccceeeeeviecieneenieneeieseeee e 345
AL ettt ettt ettt ettt ettt b e s e et eese e b e eraenrens 146 aggregate data typesccocvvveevierieneeieieeiee e 35
and ## (OPETAtOTS) .veevevveeeieeiienieereereeee e seeeve e 27 ALIGN oo 194
HASIM .o 171,222,331 ALT key
HACDUZ .o 209, 223, 331 See keystrokes
HAefINe ..ovveeeiececeee 26, 27,223 AIWAYS 0N .ovieeiiiieieciecicce et 194
HELIE e 225 ANYIMEIN .ovivieiiieeeereeeeereeeeessesreesesseessesseenseesaesseans 194
HEISC uveeiiieie et 225 application Programc.cceeeeeevereecresreesveseereenes 46
#Hendasmoocceeviiiiiieee e 171, 175, 223 argument passing 39,178,179, 183, 185
HENAIE oo 225 modifying valueccceevveviieieniiiiee e 39
HETTOT c.vveeeveeiieeie ettt etee et et e e sate b eaes 224 AITANZE 1COMS .uvrevrereeerereeresreeeesseesesseessensenaensenns 293
HEAtAl oo 223 AITAYS 1eevverveereereeeereesseesesseessesseessenseessenseenes 35, 36, 39
HIUNCChaINooovveiiviiceeece e 44, 224 ChATACTETScvveeeeeieeeee e 30
FE e e e 225 SUDSCIIPLS 1.vvevieeieieeierieeeieiestesieseeereseeeseereense e 35
FEACT oo 225 AITOW KEYS .vieeiieiieiieiieiieeeie et 245, 246
Hifndef ..o 226 ASTIL ottt ettt ettt ettt 195
#include asSeMDIYccoevviriiiiiee e, 11, 171-192, 255
abSENCe Of ..oovviiieiiiieicce s 46 blocks 1N XMEMeeveeereiieeieiieiesie e 177
HINLETICAVE o.ovieveiicieie e 226 embedding C statementsccccceeeeerreerennrnne. 172
#makechaincccoooevvvviiiiiiiecceeeeee e, 44, 226 Stand-alonecccooevveviieiiiieiieeeee e 177
HMEMMAD ...vevveieevieieeiereeeeie e sreeee e eenens 227,333 WINAOW .eeviiiiiiieeeeecee e 181,294
#n0debug ...cooeveviieieeeee 209, 223, 331 aSSIZNMENt OPETALOLSvevvveveveeereieereereeveneeeaenns 235
HNOINLETICAVE ..o 226 ASSOCIALIVILY .oovvieereiieiieiieieieeeeeee st eae e 231,232
HNOUSCIX 1.vvevveieeenieiieeiesieeeesreesesteessesseeseessesseesseenns 229 attributes of @ fileccoecvvvieriiiericeeeee 149
HUNAET ..o 29 10110 SRR 176, 177, 195
FUSE oo 46,47, 228 storage of variablescccoeveeieriieieniinienenne, 178
HUSCIX 1vvivieieiieeiesteete e eee e eere e essesseeseesseeneesseens 229
BWAITIS oottt 29 B
#wgrnt ... 229 back slash 156
#X}mport .. 229 backslash (\)
E27A1111 010) o PO UTRSUPR 230 character literals ..o 27,31
Numerics continuation in directivesccccceveevereneennenne. 222
basic unit of a C programcccceceevvevvenienceneenne. 33
2nd copy Of FAT oo 166 baud 1ateooceeveiiieiie e 278
BCDE ..ot 177, 183, 185
BeginHeaderccccooeeiiiieiiniiinccceee 48, 49
binary operatorsccoceeeereeiereenenennieneeee e 231

Dynamic C User’s Manual

digi.com

www.digi.com

BIOS e 14 closing a filecccovveiiiiieiiriee e 247
D (< L USRS 119 clusters
calling premain()ccoeeeeverieieeieieeee e, 113 ASSIZNMENLS ..o 166
command line compilerc.ccoeceeeeennne. 304,312 definitionoccevieiereeeee e 164
compilation environmentsc.ccccceeeeereeenne. 325 CoData Structurecocceeeerereereeieeeee e 59
compile OPtioncceeceevieiiriieiieeee e 338 POINLET O ..eoveiiieiieiieieeieee et 61
configuration Macroscceceeveeeereeeeeneeneeennn. 123 COFUNC e 197
control blocksceceveriivenenicnieiicieeincecenas 130 COTUNCLIONS ..ovveniiiiiinicccrtccecccc e 62-68
MAcro definitionscoceeveverenverienieneeencncnnens 288 AbANAON ...eviiiiiieieccec e 67
memory loCationccoeceererieienieieeee e, 126 calling restrictionsceceveeeeeereroenenieseeeene 63
MEMOTY SEtHNES ..vevveeieveeiieiieieeie e eeeseeenee 283 EVEIYHITIC .oeiitieiieiieie ettt 67
user-definedccooovvviiiiiiiiiiiieeees 283,329 FIFSTHIME e 202
variable defined inc..ccccoceveveninccicccneceene, 201 INAEXEA .o 64
BlOCKING ..o 140 KeywWordc.ooveiieieieee e 197
blocking a non-blocking functionccccccc..... 151 SINGLE USET ..eoviiiieiieiieiieie e 65
blocking modececcveieviiieniieeeeeee 143 SUSPEINA ..ottt 217
board informationccecceveeveriennenne. 253,290-291 534 117 D: QRSP PS 62
BPB o 165 cold 10aderc.oocvvuiririiiriicicccc e 254
branchingccoeceeeevieiinieereeeee e 42,43 COIUMN TESIZING ...veveeniieeieieeiieie e 295
Dreak ..ooooeveeiiiieeeee e 196, 215 command line interfaceccccoevvveeeiieinnns 303-324
EXAMPIE .o 41 communication
KeYWOId ..o 41 TCP/IP e 279
LMItations ...oceeeeeereeeierieieseeie e 41 compatibility with pC/OS-IIcccooeriiiiiieee 168
0Ut OF @ LOOP w.eveeieiieiiee e 41 compile
out of a switch statementcoceccrerenvcncnennes 41 BIOS e 254
breakpoints command linec.ccooeevevenininee 303-321
assembly Windowccccoecivieiienieieneee e 181 3 (0] ¢TSRS 251
ENALIE ..ottt 286 TNCTIUL enneieeiteieeteete et et eneene et eaesae b b naenees 253
hard ..o 256 0] 015 Te) 1RSSR 279
INtErrupt Status .oovvveeeeeieiecieeeeee e 255,256 RAM oo 281, 335
NOrst Keywordcoocevvrieiiiieieee e 209 SPEEA oot 11
PEISISLENE ..ottt 255 SEALUS oeeeieeeeiiieie et 297
RST 28 e 330 t0 DN fIle .oeeriiiieii 254
single StePPINgcoecvveevevieiieieeeeeee e 255 £0 fIl@ oo 245
SOTE e 255 0 flash c..ooveieiiiiiien 253
Watches Windowccccceveevinieiiniee e 258 £O TALZEL woveeieieeeiee e 245,253
bringing up the FAT file systemcccccerennene 142 compiler
line parsing HMmitccoocveieriiieneieeeceeee 32
C compiler directivesccoocveeeririenerieresieeee 222
C 1anguage 11,12, 23, 30, 34, 44, 173, 177 #asm s 171,222,331
calling assemblyc.ccoceverenineiieneece 183 OPHONS o 222
embedded in aSSEMDBLYvvvvrrrroe oo 172 #class 222
cached WIIE ...o..ovveeeieieieiececeece e 147 OPUONS ovvvvvvvvissssssissviiiniss s 222
Call SEQUENCE ...vvevvevieeieiieieeeeee e 297 HAEDUG oo 209,223,331
CAITIAZE TCTUITL ..eovvivrenieeeienreeeiereeeeereeseesreesneseeennens 146 #de,ﬁne """"""""""""""""""""""""""""""" 27,223
cascaded windows. ..o 203 HEIE oo 225
CASE oo 43,196, 200 HEISE oo 225
CRAT oo 34,197,219 HeNASM o 171,175,223
characters HeNAIf oo 225
ALTAYS —orereeeee oo seeeeeeeeeeneeeeee oo 30 HETTOT ..ttt 224
embedded qUOTESvvvvverorrereeeseeoeeeeoeeeereeen 31 #fatal s 223
NONPEINGNG VAIUES oo 31 #uncchainocooevveeieiiiiieeeeeees 44,224
special valuescccceceverinenienienieece e 31 #,GLOBAL—INIT """"""""""""""""""""""""" 224
CHPBOATA .ovvevoeeeeeeeoeeeeeeeee oo 249 FE s 225
358 digi.com Index

http://www.rabbit.com
www.digi.com

Hifndef ..o 226
HINLEIICAVE ..ot 226
#makechaincccocoeovvviiiiiiiiiic e, 44,226
HMETNIMAD ...veenveeiieeieeniteeieeniee et esee e 227
10] 015 T0) 1 TP 227
#n0odebugocvvveieieiee e 209, 223, 331
HNOoINtErleaveccoeveeiieieieee e 226
23 110 <) SRR 229
HPIAGMA .eoeveeiiiiieeieenieeee sttt 227
Hprecompilecoooeiiiiiiiee e 228
Hundef ..o 29,228
HUSC .ot 46,47, 228
HUSCIX eevveeneeiieieeteeeteetee et ee e s 229
FHWAITIS cnvveeiieeiiieeieeite ettt eate et e e 229
HWAITIE et 229
20 1101 010) o AU 229
2741 101010) 4 RSP SU 230
line continuationcceeeeeveeiieneeiceneeeeeeen 222
compound
NAIMNES .vveeireereeniteeteeniteeteesteesbeessreeteensaeenseennees 26
STALEIMENLS ...eovviiiiieeieiieieeete et 32
COMPIESSION .eveeneeeieiierieeeeeteetesteeeeseeeneeeeeeneeseeenes 347
concatenation of Stringsc.cceeceeeeervreeenerceneennen. 30
configuration libraryccccoceeeeiinieiinieneene 143
170} 4 1] A RUROUURORRRRRNE 173, 198, 222
1070015 101 1= PSRN 41, 199, 215
EXAMPIC ..ot 41
COPYING tEXE wnvrenieieriieieeieeieeite it eee st enee e ee e 249
COSLALE ..eiruvieiiiiiieriteete ettt 199
COStatemMentsoeeevevveeeennnnnrrnennns 56-62, 151-153
ADOTIT e 193
FIFSTHME ..o 202
KeYWOrdeooeiiiiiee e 199
SUSPENA ..t 217
SYIEAX c.eveevteeireeniieeteeiee et stt ettt e e 57
ViCld o 221
creating a fileoccoooeeoeiiiii 146
curly braces { } .ooooeoeiieeeeee e 32
cursor
EXECULION wevvveiiieriieieeeeiieeeeeeereeeeeeeeaaeeeeeas 255,256
POSIHIONING ..o 246, 251
custom device driverccoceeevieeeneeieneece e 143
CULHING tEXT .vevieeeeeieiesieeee ettt 249
D
data areaooceoevereneeeee e 166
data structure
COMPOSIEES 1ovvverrieererieierrieeesseessesressesseesessaessenns 36
KEYWOId ..cvievieiieeieiieiece e 32
NESEINE ©vevvveriieeieiieieteeeerteeeesteseessesreessesseesesseens 36
offset of elementccooeveveieinincciiicncnne 176
PasS bY Valuecoccvevvivieiiieieceee e 39
returned by functioncceceveveriecieneeiennee, 183

18041 0) ¢ TSRS 36
data tYPES ..eeveeiieiee e 35
AGETEGATE .eevvieieeiieeieeeie ettt ettt 35
PIAMILIVE .ot 25
DATAORGooiiiiiiiiiicieiececeencseee 333,335
DATASEG ..ot 125
date and timecocevirieiiiieee e 114
AD e 173
dEebUEZ .o 330
dialog DOX ..ooveieieieee e 285
differences highlightingccccoeoeiininnnne. 258
disassemble at addressccoeeeeiieierinieninnne. 258
disassembled codeccooviriiiiiiiiiieeeee, 258
hints and tipscceveeieieeieee e 91-112
Keywordccooeieiieee e 199
MEMOTY dUMP ..eeeeieiiieieie et 258
1070 ¢ [P 256
polling the targetccocvevinieienieeieeee 255
SEEP OVET eeniiiiiiieiieeiiee sttt ettt 255
switching Mmodesccccevveveniierenieereeene 251
tLACE IO .eeuvieeiieieieeeieie et 255
trACE MACTOS .eevvveenveeeeerireenirenteenteeeteereesireeee e 21
update watch eXpressionsc..ccoeeeeereecuennenns 258
watchdog timerscccoeeeeveeiiiieeeeeeeeee 116
WINAOWS ...ovvvviieiiieieeeeeeeieeeee, 269-275, 293-297
declarationscoccevveeieviiiieeeeeeieee e 32,48
defaultooooviiiiiiie e 43,200
Default Compile Modeccoeceeieninieieeeeee. 282
delay LoOP .ooveeeeeieeeeee e 115
delimiter matchingcoccoooeevivieienieiesceeee 246
1415010150 4 RS 280
EVICE .ottt 140
differences highlightingcccccoooiioieiiineinncnns 258
QITECLOTY vttt 140
CTEALE ..vevuveeirieieeniteeiee st et et et e it s e sereeneens 159
default searchcoccoooeeiiiiiiiiee 161
delete ..o 162
ENLIY SIIUCTUIE ..eovuveeiiieiieiierieeieeeteeie e 160
NAINIES .eveeuveeireereeniteeieentesreesireereenseesnseenseesnees 167
TOOL eteniteenieenite ettt et ettt ettt sare e 166
search conditionsccceceeveercerveceneseeneeenes 160
disassemble
At AddresS ..eevvvevieieieeecee e 258, 294
AL CUTSOT ittt e e e e e e e 258,294
DLM and FAT ...ccoooiiiiiiiiinnnencncceeee 155
O 100D i 40
dOt OPETAtOr ...c.ieieiieeieiceee e 26, 36
download ManNagerc.ccoceevereeienenieneeeene 155
downloadingcoceeceriereiieieree e 11
AUIVET ot 140
DSR Checkooviiiiieiiiieeeieeee e 278
dump Windowccceceviiieniiieeeee e 259
AW s 174
Dynamic C

Dynamic C User’s Manual

digi.com

359

www.digi.com

1) € | USSR 248
SUPPOITE FIIES ..oeeiiieiieiiieeeee e 52
Dynamic C modulesccccceevirieninieniiieenee 345
dynamic storage allocationcccceeveveereeeenennee. 37
E
Edit Mmenuccocevinininiiceccee 249
edit MOAE ..oooeeviieceeeeeeee e, 245,251
EAILOT oottt 11
CISE e 200
embedded assemblycccooirieinnnn 11, 178, 183
embedded qUOLEScceecvieieriieieie e 31
570101 174 5 0] 4 AU 345
ENA KCY ooieeieeeieeeeeeee e 245
EndHeadercc.oooovvveviiieeeiiieeeeeeeeeee 48, 49
EIMUI ..ottt ere st et seeesne s eeeenneeae 201
EOU euteeeeeeiteeite ettt et e st e et et e bt et st et e e sabeebeenaee s 175
EITOT COAES ..coviviriiriiniiniiniintcietetetetee e 143
errors
EITOT COUE TANZES ..eovvvvvenverereneeeeieieeeieeeeeeneeeneas 119
LOCAtING ..o 251
TUN-TINE ovvieiieceeee e 119, 280
ESC key
0 ClOSE MENU ...eveiiiiiiienicececececcceececeeee 246
escape characterococcevvvvieviecierieeee e 156
examples
BIEak ..oc.ovvevieniiieieieccc e 41
CONEIMUE ..oviviiiiiiinienientetete ettt 41
delay 10OP vvvveieeieeeeeee e 115
fOr LOOP evveieiieeeeeee e 40
MOAUIEServiriiiiiiiieee e 50
OF AITAY eveiieieeiieeeee e 35
HMING 100D eveviiieiieeee e 114
UNIOML oottt sttt ettt se e 36
exit Dynamic Ccccevieieiieiecieie e 248
extended MEMOTYccccvevevvieeenrieierieeienes 183, 220
aSM BIOCKSoeuiiiriiiiriiiiieeeeec e 177
EXLEITL cevvvveiieeeeieeeee et ee e 49, 50, 201
F
FAT and DLM ..o 155
fat AutoMouNtoooveviiriiiiiiieee e 144
fat_config.lib ...oooeviiiiii 143
fat direntoccooveiiiiiiie 160
fat TNt oo 144
fat PATt oot 144
fat_ part mountedcccooceriiniiiiiniiiiee 144, 159
FAT USE FORWARDSLASHcccccevvnvrinnne. 156
file
ALIDULES .eovvienieiiieieiieeee e 149
COMMANAS ..ot 247
COMPIESSION .evvieereeereeereereeiresseesseessreesseensaenns 347
CTEALE woeiiveeeeeeeeeeeeeee et eaaeee s 146, 159

CIEte .ooeieeeeeeee e 162
EXLENSIONS ..oeeeveieieiieeeieeeeeeeeeeetee e e et e eeeeeeereeeenns 254
ENETAtEd ..oeevieiiiieie e 254
NAIMES .vveeeeeeeiieeeeeeeiteeeeeeeetateeeeeeeiasreeeeeeesnreeaeeanns 167
0] 0153 | R PP PO PORTPOTOPROORONY 146, 156
PIANE e 248
TEAA e 147, 157
SEEK e 158
STALE weiiiiieeiiiiee ettt e 151
WIIEE oot 146, 157
file system
in primary flashcoccoooiiiiiiiiii 133
INRAM e 130
max. # of filescccoooeiiiiii 130
max. file SIZ€ ...cooovveiieiee e 130
MUltitaskingoccoeovevieiinieiree e, 131
files
additional SOUrCecccoevveeeeiueeeeiieeeieeeeeeen 46
Find Next <F3> ... 250
FIFSTHIME ..o 202
flags TeISEr ...c.vevvieeieiieiee et 295
flash
file SYStemM ...ooeeeeieiirieeeee e 130
initialized variablescccccceiiiiiieiiieeee 13
USE 2NDFLASH CODEccccoiiiiiiieiene 130
WIENE L0 ceeieiiieieeeeiieee e 129
XIMEIM ACCESS vvvreeeeerrrrreeeeeirreeeeeeeiarrereeeenrreeeeeanns 125
flash types supportedccoooevireiiinieiieieee 141
float ..., 34,202,219
VAIUCS eveeceieceeeee e 29
TOr 100D i 40, 203
forward slashccccoooviiiiiiiieieeeee e, 156
frame
reference Pointccoccevveeeereeieneeeeeeeene 183
reference pointerc........ 182, 183, 209, 330
fUNCHON ..ooieiiice e 33
auto variablescccccooeeiiiiiiiiieee e 195
CallsS i 33,178,179, 183
calls from assemblycecevieiiiiniiniiie 185
ChaINS .ooiiiiiiic e 44,212
create Chainscoooeeeeeeiiieiiieeeee e 226
eNtry and eXitcoecereerereee e 330
EXCCULION tIMEcvveeieeeiieeiieeeciieeeeee e 330
headersooooviiiiiieee e, 52
REIP e 52
indirect callccooeeeiiiiiie e 38
PIOLOLYPES oeeneiiiieiiiiiieeieeeee et 33, 35, 48
(11015 0 1RO 183, 185
SAVING TEZISLELS ..eonvevieieiieieeiieieeeeeie e eeeeeeneas 192
StACK SPACE .o.veeeeeiieiieee e 330
transferring controlccoccoeieiiniicinenenene. 40
unbalanced stackcoocoiiiiiiiiiiiiiee. 192
function lookup <CTRL-H>cccceooiiiiiiiine 299

function prefix

360 digi.com

Index

http://www.rabbit.com
www.digi.com

ANYIMEIN .eeenvierireeiienteenieeeieenieesbeeseeesaeeenbeeseeenne 194
debUZ oo 199
FIFSTHME ..o 202
TECTTUPE et 205
NOAEDUEZ ..o 209
NOTST ettt ettt ettt 209
1101011 b QSRS 209
TOOL ettt ettt sttt st e s see e 211
SIZE eeeeiieeeiteete ettt et 213
SPEEA ettt 213
USCIX +enventeenteeueeeeeseeeesieentesseeteeseeeeeneeneeeneeneeens 216
XINICTIL oouveeniieentieniteeteeniteete ettt sbeeseeesaeeenbeesaeeenne 220
G
Global Initializationccceeevvecienincienieieieeenn 45
global variablescccccevieveeieriiciee e 37
BOLO et 41,42, 203, 251
EICPD eeeuteeniieenieeniteertee st e et e st e st e sba ettt saees 251
H
hard breakpointsc.coccveeveerieiciieniecie e 256
header
fUNCHION oot 52
MOAUIE ..evvviiiiie s 48, 50
Help Mmenuccoevveeiieiecieeeceee e 299
hexadecimal INtEEETcceevevieiirieiiiiec e, 29
HL e, 177,182, 183, 185
HOME KEY oottt 245
horizontal tilingccceeevvevierciierieeie e 293
hot-swapping
SD card ...oooeeiieieeeee e 169
XD Card oo 168
|
icons
ATANEZEA .ooeviiieieeiieiee e 293
IEEE floating pointcccceeeeeieieneeeieneeeeeeene 202
T s 200
MUItICHOICE ..o 42
1001 o) (<SP 42
With €IS€ ..ooeieeiiiiiee e 42
information Windowccccoveuvveeiiiiinnnnennn. 293,297
10V L o) s RSP 204
INIHAlIZAtION .o.eeeieiiiiec e 144
INliNe COde ..oovieieiiiieceee e 282
INSErtion POINtccevverereieririere e 249, 251
Inspect Menucoceeeveeeiiiiiiiniiiiieeceen 257,293
Instruction Set Referencecccooveeeieeeennenene. 301
TOE oo 34, 205, 219
TNEEEETS weveentiiieieeieee et ettt et eennene 29
A1 0 110 £ S S 186
breakpointsccceveeveeieneeieeee e 255
keyword for ISRoccoooiiiii 205

LAteNCY .ooveeeieiieee e 186

unpreserved regiStersooveirierereeeeneeeenienns 192
V101 70) ¢ S 187, 206
ISR e 186, 333
IX (index register) 64, 182, 183, 209, 216

KCY ettt 48
keystrokes

<ALT-Backspace>

undoing changesccccceeevveveerveneenen. 249
<ALT-C>

select Compile menucocceeeveveeevennnnne 253
<ALT-F10>

Disassemble at Addressc.cceeeveneennen. 258
<ALT-F2>

Toggle Hard Breakpointcc.ccccoeee 256
<ALT-F4>

quitting Dynamic Cccocevcverieeienne 248
<ALT-F9>

Run w/ No Pollingccccevveeierveeenen. 255
<ALT-H>

select Help menucccoocvevveeveiieniennnne 299
<ALT-O>

select Options MENUccecveevereeeevennnne 261
<ALT-SHIFT-backspace>

redoing changesccccoeeverveevereeeennen. 249
<ALT-W>

select Window menuc..ccceevenvenennee 293
<CTRL-F10>

Disassemble at Cursorccceeeveneennen. 258
<CTRL-F2>

Reset Programccccooveevveniiienienicnnne 256
<CTRL-G>

GOtO et 251
<CTRL-H>

Library Help looKuUpcccoveeveevveieeiiennnns 299
<CTRL-N>

NEXLE CITOT ..eovveireieeireieeiienieeieenieeaenieeneens 251
<CTRL-O>

Poll Targetc.occeeveeveeiieieecieieeieene 256
<CTRL-P>

PIEVIOUS CITOT ...ovveeveiienieereenreeieeaesereneans 251
<CTRL-U>

Update Watch windowccccvenennen. 258
<CTRL-V>

PASHING tEXE 1.vveviieieiieiieie e 249
<CTRL-W>

Add/Del Itemsccecveeeinenininienenennee 257
<CTRL-X>

CULEING tEXE 1vvevvieeienreeereie e e 249
<CTRL-Y>

Reset Target/Compile BIOS 254
<CTRL-Z>

Dynamic C User’s Manual

digi.com 361

www.digi.com

<F10> SCOTUNC ..o 211
Assembly Windowccceeeeviiieiinnnn. 293 SEECHAIN ..eovviiieiiiiiee e 212
<F2> sharedoccooieiiie 212
Toggle Breakpointccccceeeeeveveeennne. 255 SHOTT oot 213
<F3> SIZE ettt 213
Find Next ...ccoooveviiiieieeeeeee 250 SIZEOT oot 213
<F5> SPEEA e 213
Compile oooeeieee 253 SEALIC wneeeieieiiieie ettt e 214
<F7> SETUCT ettt 214
Trace iNtoocceveeevieeieeeieeeee e 255 SWILCH oo 215
<F8> tyPedet ..o 215
SEEP OVET et 255 10341 0) 4 OSSPSRt 216
<F9> UNSIZNEA .eeiiiiiieieeiieeece et 216
RUN (e 255 USCIX eeueetieitentieieeteeteeneeneeeneenteeeeseeeneenneeneeneeans 216
keywordsoccovieiiiieeieeee 183, 193, 209 7703 1« TSR 217
ADOTT .ot 193 VOLAtIle .o 217
ALIGN oo 194 WAItTOT oo 217
AlWAYS_ ON c.eiiiiiieiieiiee e 194 WaItfordonecoccooceeiiiieiin e 218
1137410153 1 ST 194 WHILE .o 218
e T) 1 SRS 195 XAALA oo 219
AULO Leuveeiitieiee ittt ettt et 195 XITICTIL c.eeneeenieeeiieeteesateettesaeeebeeeaeeebeesaneenaeenaees 220
BBramM ..o 195 XSELIME ettt 220
DIEak ..o.ooveieiieieeee e 196 VICLA oo 221
C ettt ettt n et e ne ettt e naeenean 196
CASEC eureeirieteentteeteentte st e et e sttt e sbeeeate st e e niaeereenee 196 L
ChAT oo 197 1anguage elementso...ooo..... 23,26, 30, 193
COTUNC .o 197 OPETALOTS . oeeeeeeeeeee e 231
cons.t .. 173 libdit oo 46,47, 51,228
COMUNUE oo 199 LBrariescccocoveeneinenecceee e 11, 46
COSLALE ..evviiiiiiieeniteeie ettt 199 BKIE oo 46
dEbUZ oo 199 real-time ProZrammingoovvvvvooorooooceer 11
defaultoooeeii e 200 WHHNE YOUE OWIL +eovvroeeeeeeeeeeeeee e 47
O e 200 Library Help 100KUD «.......ccovvvorrrreeeseroeererer 52,299
BISE wevvesrnerscsrns st 200 line feed ... 146
CIIUII oo 201 KNG v 1
CXICTI oo B 8 1 281
FIFSTHME ..o 202 TOCAENG CITOTS +rrrrroeeeeeeeee e 251
FlOAL ..o 202 long
FOT e 203 e 29
goto .. 203 KEYWOIA +roooeoeeeeeeeeeeeeeeeeeee e 208
¥f. .. 204 10OKUP FUNCHON oo 299
IIE_OT) o g LOOPS et 40, 41
¥nt ... 205 DIEAKING OUE O wevvveeeeeeeeeeeeeeeeees e 41
mterrupt ... 205 delay With MS_TIMER ...ooooeeeeeeeeeeeeeeeeoeo. 115
e 206 O e 200
100G o 208 T SRS 203
NOAEDUEZ ..o 209 SKIPPING t0 NEXE PASS. +rrrrreeoeooeeereeeoeeeresesseoeeeee 41
norst e 209 timing with MS_TIMER ..oovvvrerrrerreeeeeeeeees. 114
MOUSCIX .vveeuveevreeteenieeeteenieesieeesbeesseesreesmnesneenne 209
NULL oot 209 M
PIotected ...ooeeiiiieiieeee e 210
TEZISTET ©.vvvvereeeeetete e 210 TNACTOS wvovruririririnininininisinnisinissisiniiees 27,175,223
T 211 TESIIICLIONS .vevenvieireieieieiereteeecee e 29
With Parameterscccoecveeeienieerieeseesreeseenieens 27

362 digi.com Index

http://www.rabbit.com
www.digi.com

main functioncccceevevvvvvveeeeiennnen. 33,46, 208, 331

Map file .ooeeeiiieie 343
max number of characters readc.ccccoccrennnne. 147
MBR .o 164
memory
address SPACEeevveeeieiieiee e 125
configuration Macroscccceeceeeeereeneeeeenuennens 132
DATAORGooviiiiiieicicicieieeeeene, 333,335
AUMP oo 257
dump at addresscooceeieieiieiene e 258
dump flash ..o 258
dump t0 file .ooiiiei 258
eXteNdedoooiiviiiiiieiee e 183, 220
MANAZEMENE «..evenveeiierieeieeeieeiee e 194,211
TNAD cenveeenreeniteeteenite et ettt et e esaee e 125, 343
TOOT weviuieienieneentenieneeeereeeeeneenens 127,176,211, 333
use 2ndflash codecoocoveiieiiniiiieee 126
memory management UNitcocceevereeeeeneeenennn 125
menus
close all OPenceevveveeiieieieee e 246
COMPILE ..o 253
Edit oo 249
Help oo 299
INSPECt i 257,293
(03] 51071 TSRS 261
RUN oo 255
message WindOWccceveeveerieneneeieieeenne 251,293
MEtadatacoevvervirieieeee e 136
Micro C/OSHIT ..o 168
MMU L 125
mode
Chan@ingccceveeiinieiieeee e 256
debug (IUn) ...eeeeeeeeeeieeeeeee e 251
CAIE et 251
PLINt PIEVIEW ..eovviiieiieierieeiesie e 248
MOAUIES ... 47, 50, 345
BOAY oo 48, 49, 50
EXAMPIE ..o 50
headeroooovvevviiiiiieee e 48, 50, 201
KCY et 48
TNOUSE ...ttt sttt e 245
MS TIMER ...cccooiiiinininencceeceeeeen, 114, 341
multitasking
COOPCTALIVE ...eeevieiiintieiieetieieeteeteseeeseeseee e eneeneene 53
PIEEMPLIVE ..ovieniiiieieeiieieiteeee sttt 70
multitasking compatibilityccccoeeivniinenenne. 168
N
NAINIES .evvvviieeeeireeeeeeeeirreeeeeenareeeeeeeareeeeeenarenens 26, 167
HAEINE ...ooveiiiieiciccrcceee 26
N aSSEMDBIY ..ooviieiiiicieieeeee 176
Next error <CTRL-N> ... 251
nodebug 171, 209, 255, 258, 281, 330, 331
NON-blOCKINGoovvieiiieieiiiieiecieiceee e 140, 150

0 0)) AU 209
TMOUSECIX evveeereevreereeteesreesseessseesseessseesseesssessseesssenns 209
NULL ot 209
num_fat devicesccooeeverieieeieeee e 144
o
OCtAL INTEEET ..ovvveveeeieeieeeieie et 29
offsets in assemblycccccoevevivieneriieienene 182, 183
online helpccoevvveieiirieeeeee e 52,301
opening a fileoccoecvevirieniiieeee e 146
OPCTALOTS .eveenvieiieeieeieeeteeiee st erieesareebeesiaeeeeeaas 231
and ## (INACTOS) ..vvvveveeeieeieeieieee e 27
arithmetic Operatorscccoceevveeerieneereeennene. 232
decrement (=) ..ooceveeeienieieneeeeeee 234
diVISION (/) weveevieieiieieee e 233
increment (F4) cooovveeeenieieneeeeeeee 234
indirection (*) ...occeeveeeeriiieneeeeeee 233
IMINUS (=) teovieireeeiie e eeiee e e sreereeeeee e 232
MOdUlUS (%0) .eeveeieieiieieeeeeeeee e 234
multiplication (¥)cccceevevverienereeenenn 233
PIUS (1) et 232
POINLETS ..oovieieiienieieeie e 233
post-decrement (==)ccoceereerverereenienens 234
post-increment (++)ooccevircieneiieienen. 234
pre-decrement (==)occeeevereirienerienienens 234
pre-increment (+4) ..ooveeeerieiienieeeenee. 234
assignment OPEratorsc.cceeveeeververeereesneannes 235
add assign (=) ..ccoovvvverieieeeeeeee 235
AND assign (&=) .ccceeveveverrenreieneeienens 236
ASSIZN (Z) wevevvereeieieee e 235
divide assign (/=) ..oceeeevveieereeieieiee 235
modulo assign (%=) ..cccccevveveriereriennens 235
multiply assign (*=)ccoevevveiereeeene 235
OR asSigN (=) weevvevrreienieiereeieieeieeeee 236
shift left (S<=) oo 235
shift right (>>=) ..o, 236
subtract assign (-=) ...c.cccceeereecrerieciennenns 235
XOR asSigN (M=) .eccveeveieeieieeiere e 236
ASSOCIALIVILY .vvevvevieeierieeiesie e 231,232
DINATY .eviiieiieiieieieee e 231
bitwise operators
Address (&) vevveeeereeeieieiee e 237
bitwise AND (&) c.ovvevvveeieieieieiieceienen 237
bitwise exclusive OR (M) .oovvvveevvvvenennen. 237
bitwise inclusive OR (]) .ccovvvvevvereeiennen. 237
complement (~)ccoceevrereerienireieniieennns 237
POINLETS ..o.vvenveereiieeieiiereeeeere e saeeaeneens 237
shift left (<<) covevieieiee e, 236
shift right (>>) oo, 236
COMMIMA .ieeiniiieenienite ettt et e st eiee st eeeesaeenee e 244
conditional operators (? @)cceevevveereenrrerennenne 242
equality Operatorscccccevereerrerverreneennenns 239
eqUAl (55) oo 239
not equal (!=) oo 239

Dynamic C User’s Manual

digi.com

www.digi.com

N aSSEMDBLYooiieieiiiee e 173 choosing a printercoceveveeeeneeceneeeene 248
logical Operatorsccoceververieeieenieeiese e, 239 Print fileocoooiiieiee e 248
logical AND (&&) .eovvvvvveieeieieieeee 239 PNt PIEVIEW ..oovieiiiiieiieiieieeteeie e 248
logical NOT (1) toveoeiieeieeeeeeeee 240 PIANtE o 31, 35,270
logical OR (]]) ceveereereeeenieeieeeeeeeene 239 program
operator precedenceeeeervereereereereneeneennn 244 EXAMPIE .o 34
POSIIX EXPIESSIONS ...eeevereieneeeiieieeieeieeeeeee e 240 FlOW e 40
() parenthesesccccoeceevereeieneeeenenees 240 TESCL evieuteeiieeteereeereestteeteesteesbeerseesebeesaennneennes 256
[]array indicesccecveveneeienieieenees 240 spanning 2 flashcccooviiiiiiiin. 130, 331
Ot (1) e 240 project filescoovevirieiieieeeee 247, 325-327
parentheses () .ooceeeereeeeneniereeeeeeiene 240 PIOMOTION ..ottt 232
right arrow (=) .ooooeieieeeeeee 241 protected
PIECedeNCE ...oueeeieieieeieceeee e 231 KeyWordcooeeiiiieieeee e 210
reference/dereference operatorscccoeeeee.. 241 Variablesocooeiiniee e 11,210
Address (&) .oevveerereeeneeeeeee e 241 prototypes
bitwise AND (&) .ooovveevverieeiieciieeieeeee 241 checkingoocoviiiiiiiee e 280
Indirection (*) ...occceeveeevienieeieeeee e, 241 fUNCLION .evieiiecieeeeeeee e, 33, 35, 48
multiplication (*) ...cccooeeviiieieeee 241 in module headercceeeeviieiieniecieeieeiene 48
relational Operatorscocceevereeieniieeenieeeene. 238 PUNCTUALION ..ottt 24
greater than (>) ..ooccovevveeienieeeee 238
greater than or equal (>=)ccecevrnee 238 Q
less than (<) ceeeeeocenncene 238 QUItEINE DYNAMIC C oo 248
less than or equal (<=) ..occeeierieiernee 238
SIZEOT vt 243 R
UDNATY covteenieennteeieeniteeteesitesieeesbeeeaeesneesareesseenaneen 231
optimize $ize o SPEEdcevrvrvevevererererererereeeennens 281 Rabbit restart
options protected variablescoccoccevciiiiiiiiiniees 210
COMPIIET e 279 RabDItSYS .eeeiiiiieieieeee e 282
IMENU ..ottt ee e es s s s s enen e 261 RAM compileooovviiiiiiiiiiiiiiinnns 281,335
OFLZINS ©.vovovveeecteeeee ettt nas 222 RAM fUnctions ... 192
reading a filecocooeiiiiiiin 147
P reading max number of charactersc......... 147
real-time
PageDown Keycccovevenienieniciciciicccnencscee 245 PIOZIAIMIIING .vvvveeevreeeeeeseeeseeeereeeeee e 11
Pagc.a[.Jp KEY ot 245 1edoing Changesccceeveeecieerieerieeniecieesee e 249
part%t%on ... 140 registers
parqqon'structure .. 144 SAVINgG ANd TESIOTNG ~vvvvvrvrererereeereeeeeeeeeeoe 186
PAILIHONING woovvvvvviii 135, 154-155 N A 342
passing ATGUMENLS ovvvvovrveesoeees 39, 178, 179, 183, 185 SNAPSNOLS ..ooviiiiiieiieciieeeee e 295
PASHING LEXE .eeeviieiiieiieeiieerieeeee ettt ere et ee e 249 window . 293,295
path S?P?rator """""""""""""""""""""""""""""""" 156 relocatable codec.coeeiiiiiiiiiiiiiee e, 192
peI:IOdIC 1ntermpt """"""""""""""""" 62,70, 113, 341 removable device advicecccevveeeiiiieiiiennnenen. 147
p0¥nter ChecKingccoovvvvieiivieieciee e 38 FESEIVING file SPACE oo 143
POINLELS eooviiiieiiiiciicerie e 30, 37, 38, 39 reset
UNINIAlZEd ...veoeviiieieeicieccceee e 38 PIOZIAIM oo 256
poll.target .. 256 FESIZING COIUMNS —rrrrrere oo 295
poll.lr‘lg - 255 FESUIE COAE (1C) wrvvrrrrrrrereeeeeeeeeeeeeeeeeeeeoeeeeeeee 143
POSHIONING LEXL 1 oovosvvsvvsvvss oo E L < ST 183, 186
PrEalloc oo 143 R 186
precomplle e 48,228 T 183,211,215
preserving TEGISIELS ..ovvvooieiniieis 185,192 return addresscoooevieieiiii e 178
Pr'eV1ous error <CTRL-P> ..o, 251 root memory
primary TCGISTET wovvvoeinri 177, 183, 185 file SyStem USagecceecveeeveerieeieenie e 131
PrIMItive data typesooovvvvvmvvvmnnrrnnsiisissisns 25 KEYWOLA orrrreooooeoeoeoee oo 211
print MEMOTY MAP .vvevveereerreereereereesseeaesreesesreessesseens 125
364 digi.com Index

http://www.rabbit.com
www.digi.com

Static variablesooovvviiiiviiiieiieeeee e 127

variable addresscccoeeveeeiieniieiieeee e 176
RST 28H ..o 255, 330
run

100 1<) 1 10 SRS 255

MOAE oo 251,255

N0 POLING oo 255
TUN-TIME ©ITOTS .evieeveeieeiieeieeteeseveeneeeseveeseensneeanas 119
S
sample programs

basic C CONSIIUCES ..cveveerereeieieeieniesiieieseeeieeieens 34
SAVING @ f1l€ .ooveeieiiiee e 247
SCOTUNC ..ot 211
o1 (o] 118 1)« AP 250
SEC _TIMERccoooviiiiiieieieeereeeeie 114, 341
SECLOT eveeuvrienieeiteeteenite st et e st e et eesite et e sbeeebeeaee s 164
SECUre COMMUNICAtIONSeevvrereeererereieeenieeeeneenns 345
SEECHAIN ..eoeviiieiieiieiecee e 44,212
SEGSIZE ..ottt 125
separate I&D spaceccocceeveeennee. 173, 187, 258, 282
SFL000 ...ooeieiieiieieie et 168
Shadow TegIStErsccveveereeeieeiieie e 342
Sharedc.cceeieriieeiee e 212
shared variablescccoevevieiieiieeeeeeee. 11, 210
shell programccoeeevvevieniecieneeeee e 148
] 10 PP 213
single stepping

assembly WIndOWcccceeveeiinienieriieieeiee e 181

10] 01 T0) 1 TSRS 255

watches WINdOWcccevvevieeieniieieieeieeeeene, 258
SIZE oo 213,281
SIZEOT 1ot 213
skipping to next 100p Passcccceeeeerrrverieiienienienns 41
slice StateMEntsccccceeeereieieie e 70
S0ft breakpointsccceveeeeveriierienieieeieeeeeee e 255
SOUICE TIIES .vivvveiieiiiiieiece e 46
SP (stack pointer) 179, 184, 185, 192, 229
special Characterscecevvecierieciene e 31
special symbols

N aSSEMDbIY ..ooviiiiiicieiccee e 175
SPEEA ittt 213, 281
SSL it 345
stack

eNable tracingcceeeverveeverieeienieeeereeeeeseeenees 286

enter fUnNCtionccocceeveeiecieeienie e 330

framecccoevvivievieieieen, 178,179, 183, 185, 192

frame reference pointcecevveeieriieierienennns 183

frame reference pointer 182, 183, 209, 330

function argumentscoccoeeecvereecienieerennenes 39

function returning structccoveevverrvecverrennnns 183

ISR oo 186

local variablesc.cccoovvvviveeiiiiiieieeene, 182,195

TMOUSCIX 1vviereveeriereetesieensesseesesseesesseessesssensenees 209

pointer (SP)cccccevvervnnenne. 179, 184, 185, 192, 229
SNAPSHOLS .o 296
trace WINAOWoocvvveeeiieieiieeeeeeieeeeeeeaee 275,297
unbalancedcoocoeoiiieiii e 192
WINAOW .o 296
STACKSEGooiiiriniininienenereceneeeeeeeeeeenens 125
state machine
19 C:111] o) (<SS 54
state Of file ...ooeeviiieiie 151
StALEIMENTS .eouveeiiiiieeniiieieeeie et 32
static variables
INItAlIZAtIoN ...ooeeiieiiieec e 13
Keywordcccoveeiiieee 214
TOO MEMOTY .eeuvveenreeiieeieenieeeieenieesireeneeeneeennees 127
PN (704 1] 1<) AU SR 295
Stdio WINAOW ...covvvveiiiiiiiiiieeiieeeeeeeeeeee 269, 293
STDIO DEBUG SERIALcccoceveiiiiieininns 270
SEEP OVET eeeivieiiieiieeieenite ettt 255
StOp Program eXeCUtiONcccceeveereeeeneeeeenuennes 255
SEOTAZE ClaSS ...veeueeeieieieieieie et 32
AULO wvvteeiieeieteteeete ettt ettt 37
SEALIC 1.ttt 37
SEEINES eeiiieieeee et 30,219
CONCATENATION ...veneiiieeeeeieie e 30
TUNCHONS .o 30
Literal ...oocueieie 27
terminating null bytecocoooiiiniiniiiiiee 30
Struct Keywordooccoveeiiiieiee e 214
structure
COMPOSILES .envieeienieeieieeteeie st eiesieeeee e eeee e 36
KeyWOrdoooviieieiiiieeee e 32
NESTINE .eeveitieieieeie ettt ettt 36
offset of elementccccoooiiiiiiiiiiiiieee 176
Pass by valueccocovieiiinieicieeee e 39
TELUITL SPACE ..venveererienieenieenieenirenieenns 179, 183, 185
returned by functionccccoeceeieiiieiinienens 183
10311 0) 4 USSR 36
SUDAITECIOTY wnvieeieiieieiieeeeeee e 140
subscripts
AITAY c.eveenreerntieteenite et esite et e sbee e bt esbeesebeesbeesateennee 35
SUPPOTITL FIIES .veeniiiiiiiiiieeeee e 52
supported flash typesccceevereeieiieeiereeceee, 141
SWILCH Lot 43, 200, 215
breaking out ofccoooeiiiiiiine e 41
CASE wrvrerureeieieteeitente et e st e et e sateete e st e b ennteea 215
switching to edit modeccccooceeieiiniinieee. 251
symbol informationccecceviriiiiiinieninee. 343
Symbolic conStantcceceveereeieneeieneeceee 223
T
target informationcocceevvevevennnne. 253,290-291
TCP/IP ..ot 279
tEXt €AILING .oovveeeeeieiieiecieee e 249
teXE SEATCH ..vovinveiiiciiiciecec e 250

Dynamic C User’s Manual

digi.com

www.digi.com

TICK _TIMERccociiiiniiiiiieieceeeeee, 114, 341 WAINING TEPOIS .eovveeieieeeieieetieieeneeneeeeceneesneeneeeneas 280
tiling WINAOWS ...c.eovuieiiiieieieeeecee e 293 watch expressions
tiMING 100D .eeeeeieieiiee e 114 add or deleteoooeveeiiiiiiee 257
toggle ENADIE ..ot 286
breakpointccoeeeeveeeeereniereee e 255,256 single stepping in assemblyc.ccooceiiiiennn. 97
tOOIDAT ..ot 292 watch menu optioncoccoeeeeverieneeienieieees 293
EFACE TNTO .oveiiiieeiiiiieeieiiee et e e e e e enree e e e e 255 watch WIndowcccocvviviviiiieiiiiiieeeeeee 257,293
trACE MNACTOS .eeuveveenierieeieerieieeneeeeeneeeeeneeneeeneeneesneas 21 watchdog timersccoveeeverierierieeeee e 116
tracing watchdogs, virtual ..o 116
CXAMPIE .o 20 WEQ e 218
type WHILE Lo 32,40, 218
CASEINE eeveeeeeiieieeeeee ittt ettt 232 wildcard maskccoooeiiiiii 47
checkingcccoveeiieieiieeceee e 33,280 windows
definitionsoceveeeiieieieeeeee e 34 ASSEMDLY ..o 181,294
typedef ... 34,215 cascadedcoocoiiiiiie e 293
INFOrMAationoocevvvveevieiiiieeeieieeeee e 293,297
U INESSAZE wvvveenveerurerreerireenieeneeeniteseeebeeseeeesseennees 293
UCOSZ et 168 TORISTET wovvcvrrersessrssssessrsssssssrssssssarsssssson 293, 295
UAPPAZES.C woevvveereniieiieii et eee et eeaens 148 stagk """""""""""""""""""""""""""""""" 293,296
UNATY OPETATOTS ..vveeneeererieiieeireeiiesteereesieeesneenaeenns 231 Stdlo B 269,293
unbalanced stackc..cocooevevieiiiiininine 192 tiled horiZONEALLY w.ovvevvesrrersssrrssssssnssrsssnrnses 293
UNAOINE CHANZES ..o 249 tiled verticallyccooeiieieiiiee e 293
uninitialized Watch ... 258,293
POINLETS vvieeieneiiieieeeeieeeeeteeeeeeeeee e eeesneensenneas 38 wr%tF:-back €ACHE o 147
WHON oo 32,136,216 Writing a file ...oooooviiieie 146
unpreserved re@iStersvvvvereriereerereeereennns 185,192 X
UNSIZNEA .oeieiieiieiieieee e 216
UNSigNed INEEETocvveveeeeeierieeieeieie e 29 XAALA 1ot e 219
unsupported FAT featuresccccceevevevieveniennnnne 169 D141 15111 H SRS 183,220
untitled filesooeveveneniineeen 247 asMm blOCKScooevevieiiicincccceee 177
USB o 278 definitioncccoevenenicicicicc e 125
USE 2NDFLASH CODE 126, 130, 331 100t fUNCtions N ...c..cceeevererenenenicicieeccnee, 208
USCIX wenvenreneenienieiieieeteste sttt ene e 182,216, 330 XPC e 125,333
USer blockoovvveeieiieieieeeeee e 331, 332 D111 14 <SS 220
using the FAT file systemccccooevevvrienenennnnne 145
Utility Programs Y
File Cor'npression/ Decompression 347 VICLA e 221
Font/ Bitmap Converterccoeeveeevereernennnns 349
Rabbit Field Utilitycccveevinineninececece 349 Z
\' PC/OS-IT compatibilityo.cooovvevveeeeeereeeeen. 168
variables
AULD ettt sttt ettt 195
lobal ..o 37
SEALIC .ouvitiiereieieeee e 214
vertical tilingcocevevieiiniiiice e 293
virtual watchdogscccoevveeceeicienieeeeieeee e 116
VOIA 1ottt 217
VOLAtILE .o 217
W
WAItFOT ©oviiiiiee e 217
Waitfordoneoccovoieiiiiiiin e 218
366 digi.com Index

http://www.rabbit.com
www.digi.com

	Table of Contents
	1. Installing Dynamic C
	1.1 Requirements
	1.2 Assumptions

	2. Introduction to Dynamic C
	2.1 The Nature of Dynamic C
	2.1.1 Speed

	2.2 Dynamic C Enhancements and Differences
	2.3 Rabbit and Z180 Comparison

	3. Quick Tutorial
	3.1 Run DEMO1.C
	3.1.1 Single Stepping
	3.1.2 Watch Expression
	3.1.3 Breakpoint
	3.1.4 Editing the Program

	3.2 Run DEMO2.C
	3.2.1 Watching Variables Dynamically

	3.3 Run DEMO3.C
	3.3.1 Cooperative Multitasking

	3.4 Run DEMO4.C
	3.4.1 Trace Macros

	3.5 Summary of Features

	4. Language
	4.1 C Language Elements
	4.2 Punctuation Tokens
	4.3 Data
	4.3.1 Data Type Limits

	4.4 Names
	4.5 Macros
	4.5.1 Macro Operators # and ##
	4.5.2 Nested Macro Definitions
	4.5.3 Macro Restrictions

	4.6 Numbers
	4.7 Strings and Character Data
	4.7.1 String Concatenation
	4.7.2 Character Constants

	4.8 Statements
	4.9 Declarations
	4.10 Functions
	4.11 Prototypes
	4.12 Type Definitions
	4.13 Aggregate Data Types
	4.13.1 Array
	4.13.2 Structure
	4.13.3 Union
	4.13.4 Composites

	4.14 Storage Classes
	4.15 Pointers
	4.16 Pointers to Functions, Indirect Calls
	4.17 Argument Passing
	4.18 Program Flow
	4.18.1 Loops
	4.18.2 Continue and Break
	4.18.3 Branching

	4.19 Function Chaining
	4.20 Global Initialization
	4.21 Libraries
	4.21.1 LIB.DIR

	4.22 Headers
	4.23 Modules
	4.23.1 The Parts of a Module
	4.23.2 Module Sample Code
	4.23.3 Important Notes

	4.24 Function Description Headers
	4.25 Support Files

	5. Multitasking with Dynamic C
	5.1 Cooperative Multitasking
	5.2 A Real-Time Problem
	5.2.1 Solving the Real-Time Problem with a State Machine

	5.3 Costatements
	5.3.1 Solving the Real-Time Problem with Costatements
	5.3.2 Costatement Syntax
	5.3.3 Control Statements

	5.4 Advanced Costatement Topics
	5.4.1 The CoData Structure
	5.4.2 CoData Fields
	5.4.3 Pointer to CoData Structure
	5.4.4 Functions for Use With Named Costatements
	5.4.5 Firsttime Functions
	5.4.6 Shared Global Variables

	5.5 Cofunctions
	5.5.1 Cofunction Syntax
	5.5.2 Calling Restrictions
	5.5.3 CoData Structure
	5.5.4 Firsttime Functions
	5.5.5 Types of Cofunctions
	5.5.6 Types of Cofunction Calls
	5.5.7 Special Code Blocks
	5.5.8 Solving the Real-Time Problem with Cofunctions

	5.6 Patterns of Cooperative Multitasking
	5.7 Timing Considerations
	5.7.1 waitfor Accuracy Limits

	5.8 Overview of Preemptive Multitasking
	5.9 Slice Statements
	5.9.1 Slice Syntax
	5.9.2 Usage
	5.9.3 Restrictions
	5.9.4 Slice Data Structure
	5.9.5 Slice Internals

	5.10 µC/OS-II
	5.10.1 Changes to µC/OS-II
	5.10.1.1 Ticks per Second
	5.10.1.2 Task Creation
	5.10.1.3 Restrictions

	5.10.2 Tasking Aware Interrupt Service Routines (TA-ISR)
	5.10.2.1 Interrupt Priority Levels
	5.10.2.2 Possible ISR Scenarios
	5.10.2.3 General Layout of a TA-ISR

	5.10.3 Library Reentrancy
	5.10.4 How to Get a µC/OS-II Application Running
	5.10.4.1 Default Configuration
	5.10.4.2 Custom Configuration
	5.10.4.3 Examples

	5.10.5 Compatibility with TCP/IP
	5.10.5.1 Socket Locks

	5.10.6 Debugging Tips

	5.11 Summary

	6. Debugging with Dynamic C
	6.1 Debugging Features Prior to Dynamic C 9
	6.2 Debugging Features Introduced in Dynamic C 9
	6.3 Debugging Tools
	6.3.1 printf()
	6.3.2 Software Breakpoints
	6.3.3 Single Stepping
	6.3.4 Watch Expressions
	6.3.5 Evaluate Expressions
	6.3.6 Memory Dump
	6.3.7 MAP File
	6.3.8 Execution Trace
	6.3.9 Symbolic Stack Trace
	6.3.10 Assert Macro
	6.3.11 Miscellaneous Debugging Tools

	6.4 Where to Look for Debugger Features
	6.4.1 Run and Inspect Menus
	6.4.2 Options Menu
	6.4.3 Window Menu

	6.5 Debug Strategies
	6.5.1 Good Programming Practices
	6.5.2 Finding the Bug
	6.5.2.1 Reproduce the Problem
	6.5.2.2 Minimize the Failure Scenario
	6.5.2.3 Other Things to Try

	6.6 Reference to Other Debugging Information

	7. The Virtual Driver
	7.1 Default Operation
	7.2 Calling _GLOBAL_INIT()
	7.3 Global Timer Variables
	7.3.1 Example: Timing Loop
	7.3.2 Example: Delay Loop

	7.4 Watchdog Timers
	7.4.1 Hardware Watchdog
	7.4.2 Virtual Watchdogs

	7.5 Preemptive Multitasking Drivers

	8. Run-Time Errors
	8.1 Run-Time Error Handling
	8.1.1 Error Code Ranges
	8.1.2 Fatal Error Codes

	8.2 User-Defined Error Handler
	8.2.1 Replacing the Default Handler

	8.3 Run-Time Error Logging
	8.3.1 Error Log Buffer
	8.3.2 Initialization and Defaults
	8.3.3 Configuration Macros
	8.3.4 Error Logging Functions
	8.3.5 Examples of Error Log Use

	9. Memory Management
	9.1 Memory Map
	9.1.1 Memory Mapping Control
	9.1.2 Macro to Use Second Flash for Code

	9.2 Extended Memory Functions
	9.3 Code Placement in Memory
	9.4 Dynamic Memory Allocation

	10. File Systems
	10.1 FS2
	10.1.1 General Usage
	10.1.1.1 Maximum File Size
	10.1.1.2 Two Flash Boards
	10.1.1.3 Using SRAM
	10.1.1.4 Wear Leveling
	10.1.1.5 Low-Level Implementation
	10.1.1.6 Multitasking and FS2

	10.1.2 Application Requirements
	10.1.2.1 Library Requirements
	10.1.2.2 FS2 Configuration Macros
	10.1.2.3 FS2 and Use of the First Flash

	10.1.3 File System API Functions
	10.1.3.1 FS2 API Error Codes

	10.1.4 Setting up and Partitioning the File System
	10.1.4.1 Initial Formatting
	10.1.4.2 Logical Extents (LX)
	10.1.4.3 Logical Sector Size

	10.1.5 File Identifiers
	10.1.5.1 File Numbers
	10.1.5.2 File Names

	10.1.6 Skeleton Program Using FS2

	10.2 FAT File System
	10.2.1 Overview of FAT Documentation
	10.2.2 Running Your First FAT Sample Program
	10.2.2.1 Bringing Up the File System
	10.2.2.2 Using the File System

	10.2.3 More Sample Programs
	10.2.3.1 Blocking Sample
	10.2.3.2 Non-Blocking Sample

	10.2.4 FAT Operations
	10.2.4.1 Format and Partition the Device
	10.2.4.2 File and Directory Operations
	10.2.4.3 Error Handling

	10.2.5 More FAT Information
	10.2.5.1 Clusters and Sectors
	10.2.5.2 The Master Boot Record
	10.2.5.3 FAT Partitions
	10.2.5.4 Directory and File Names
	10.2.5.5 µC/OS-II and FAT Compatibility
	10.2.5.6 SF1000 and FAT Compatibility
	10.2.5.7 Hot-Swapping an xD Card
	10.2.5.8 Hot-Swapping an SD Card
	10.2.5.9 Unsupported FAT Features
	10.2.5.10 References

	11. Using Assembly Language
	11.1 Mixing Assembly and C
	11.1.1 Embedded Assembly Syntax
	11.1.2 Embedded C Syntax
	11.1.3 Setting Breakpoints in Assembly

	11.2 Assembler and Preprocessor
	11.2.1 Comments
	11.2.2 Defining Constants
	11.2.3 Multiline Macros
	11.2.4 Labels
	11.2.5 Special Symbols
	11.2.6 C Variables

	11.3 Stand-Alone Assembly Code
	11.3.1 Stand-Alone Assembly Code in Extended Memory
	11.3.2 Example of Stand-Alone Assembly Code

	11.4 Embedded Assembly Code
	11.4.1 The Stack Frame
	11.4.1.1 Stack Frame Diagram
	11.4.1.2 The Frame Reference Point

	11.4.2 Embedded Assembly Example
	11.4.3 The Disassembled Code Window
	11.4.4 Local Variable Access

	11.5 C Calling Assembly
	11.5.1 Passing Parameters
	11.5.2 Location of Return Results
	11.5.3 Returning a Structure

	11.6 Assembly Calling C
	11.7 Interrupt Routines in Assembly
	11.7.1 Steps Followed by an ISR
	11.7.2 Modifying Interrupt Vectors

	11.8 Common Problems

	12. Keywords
	abandon
	abort
	align
	always_on
	anymem
	asm
	auto
	bbram
	break
	c
	case
	char
	cofunc
	const
	continue
	costate
	debug
	default
	do
	else
	enum
	extern
	firsttime
	float
	for
	goto
	if
	init_on
	int
	interrupt
	interrupt_vector
	__lcall__
	long
	main
	nodebug
	norst
	nouseix
	NULL
	protected
	register
	return
	root
	scofunc
	segchain
	shared
	short
	size
	sizeof
	speed
	static
	struct
	switch
	typedef
	union
	unsigned
	useix
	void
	volatile
	waitfor
	waitfordone (wfd)
	while
	xdata
	xmem
	xstring
	yield
	12.1 Compiler Directives
	#asm
	#class
	#debug #nodebug
	#define
	#endasm
	#fatal
	#GLOBAL_INIT
	#error
	#funcchain
	#if #elif #else #endif
	#ifdef
	#ifndef
	#interleave #nointerleave
	#makechain
	#memmap
	#pragma
	#precompile
	#undef
	#use
	#useix #nouseix
	#warns
	#warnt
	#ximport
	#zimport

	13. Operators
	13.1 Arithmetic Operators
	+
	–
	*
	/
	++
	––
	%

	13.2 Assignment Operators
	=
	+=
	-=
	*=
	/=
	%=
	<<=
	>>=
	&=
	^=
	|=

	13.3 Bitwise Operators
	<<
	>>
	&
	^
	|
	~

	13.4 Relational Operators
	<
	<=
	>
	>=

	13.5 Equality Operators
	==
	!=

	13.6 Logical Operators
	&&
	||
	!

	13.7 Postfix Expressions
	()
	[]
	. (dot)
	->

	13.8 Reference/Dereference Operators
	&
	*

	13.9 Conditional Operators
	? :

	13.10 Other Operators
	(type)
	sizeof
	,

	14. Graphical User Interface
	14.1 Editing
	14.2 Menus
	14.2.1 Using Keyboard Shortcuts
	14.2.2 File Menu
	New <Ctrl+N>
	Open <Ctrl+O>
	Save <Ctrl+S>
	Save As
	Save All <Shift+Ctrl+S>
	Close <Ctrl+F4>
	Project
	Print Setup
	Print Preview
	Print
	Exit <Alt+F4>

	14.2.3 Edit Menu
	Undo <Ctrl+Z>
	Redo <Shift+Ctrl+Z>
	Cut <Ctrl+X>
	Copy <Ctrl+C>
	Paste <Ctrl+V>
	Insert Code Template <Ctrl+J>
	Toggle Bookmark
	Go to Bookmark
	Find <Ctrl F>
	Replace <F6>
	Find Next <F3>
	Reverse Find Next <Alt+F3>
	Find in Files (Grep)... <Shift+Ctrl+F>
	Go to Line Number
	Previous Error <Ctrl+Alt+P>
	Next Error <Ctrl+Alt+N>
	Edit Mode <F4>
	Editor Window Popup Menu
	Open File at Cursor <Ctrl+Enter>

	14.2.4 Compile Menu
	Compile <F5>
	Compile to Target
	Compile to .bin File
	Reload RabbitSys binary
	Reset Target/Compile BIOS <Ctrl+Y>

	14.2.5 Run Menu
	Run <F9>
	Stop <Ctrl+Q>
	Run w/ No Polling <Alt+F9>
	Step Into <F7>
	Step Over <F8>
	Source Step Into <Alt+F7>
	Source Step Over <Alt+F8>
	Toggle Breakpoint <F2>
	Toggle Hard Breakpoint <Alt+F2>
	Clear All Breakpoints <Ctrl+A>
	Poll Target <Ctrl+L>
	Reset Program <Ctrl+F2>
	Debug Mode <Shift+F5>
	Close Connection

	14.2.6 Inspect Menu
	Add Watch <Ctrl+W>
	Delete Watch
	Delete All Watches
	Update Watch Window <Ctrl+U>
	Evaluate Expression
	Disassemble at Cursor <Ctrl+F10>
	Disassemble at Address <Alt+F10>
	Dump at Address <Ctrl+D>
	Stop Execution Tracing <Ctrl+Alt+T>
	Start Execution Tracing <Shift+Ctrl+T>
	Goto execution point <Ctrl+E>

	14.2.7 Options Menu
	Environment Options
	Editor Tab
	Gutter & Margin Tab
	Display Tab
	Syntax Colors Tab
	Code Templates Tab
	Debug Windows Tab
	Print/Alerts Tab

	Project Options
	Communications Tab
	Compiler Tab
	Debugger Tab
	Defines Tab
	Targetless Tab

	Toolbars

	14.2.8 Window Menu
	Watch
	Stdio
	Assembly (F10)
	Register (F11)
	Stack (F12)
	Execution Trace (Alt+ F12)
	Stack Trace (Ctrl+T)
	Information

	14.2.9 Help Menu
	Online Documentation
	Keywords
	Operators
	HTML Function Reference
	Function Lookup <Ctrl+H>
	Instruction Set Reference <Alt+F1>
	I/O Registers
	Keystrokes
	Contents
	Tech Support
	Register Dynamic C
	Tip of the Day
	About

	15. Command Line Interface
	15.1 Default States
	15.2 User Input
	15.3 Saving Output to a File
	15.4 Command Line Switches
	15.4.1 Switches Without Parameters
	-b
	-bf-
	-br
	-h+
	-h-
	-id+
	-id-
	-ini
	-lf-
	-mf
	-mfr
	-mr
	-n
	-r
	-rb+
	-rb-
	-rd+
	-rd-
	-ri+
	-ri-
	-rp+
	-rp-
	-rw+
	-rw-
	-sp
	-sz
	-td+
	-td-
	-tp+
	-tp-
	-tt+
	-tt-
	-vp+
	-vp-
	-wa
	-wn
	-ws

	15.4.2 Switches Requiring a Parameter
	-bf BIOSFilePathname
	-clf ColdLoaderFilePathname
	-d MacroDefinition
	-d- MacroToUndefine
	-eto EthernetResponseTimeout
	-i InputsFilePathname
	-lf LibrariesFilePathname
	-ne maxNumberOfErrors
	-nw maxNumberOfWarnings
	-o OutputFilePathname
	-oa OutputFilePathname
	-pbf PilotBIOSFilePathname
	-pf projectFilePathname
	-pw TCPPassPhrase
	-ret Retries
	-rf RTIFilePathname
	-rti BoardID:CpuID:CrystalSpeed:RAMSize:FlashSize
	-s Port:Baud:Stopbits
	-sto SerialResponseTimeout
	-t NetAddress:TcpName:TcpPort

	15.5 Examples
	Example 1
	Example 2
	Example 3

	15.6 Command Line RFU
	-cl ColdLoaderPathName
	-d
	-fi Flash.ini PathName
	-pb PilotBiosPathName
	-pw
	-s port:baudrate
	-t ipAddress:tcpPort
	-v
	-vp+
	-vp-
	-usb+
	-usb-

	16. Project Files
	16.1 Project File Names
	16.1.3 Active Project

	16.2 Updating a Project File
	16.3 Menu Selections
	16.4 Command Line Usage

	17. Hints and Tips
	17.1 A User-Defined BIOS
	17.2 Efficiency
	17.2.1 Nodebug Keyword
	17.2.2 In-line I/O

	17.3 Run-time Storage of Data
	17.3.1 User Block
	17.3.2 Flash File System
	17.3.3 WriteFlash2
	17.3.4 Battery-Backed RAM

	17.4 Root Memory Reduction Tips
	17.4.1 Increasing Root Code Space
	17.4.2 Increasing Root Data Space

	Appendix A. Macros and Global Variables
	A.1 Macros Defined by the Compiler
	A.2 Macros Defined in the BIOS or Configuration Libraries
	A.3 Global Variables
	A.4 Exception Types
	A.5 Rabbit Registers

	Appendix B. Map File Generation
	B.1 Grammar

	Appendix C. Security Software & Utility Programs
	C.1 Rabbit Embedded Security Pack
	C.1.1 AES
	C.1.2 SSL

	C.2 Dynamic C Utilities
	C.2.1 Library File Encryption
	C.2.2 File Compression Utility
	C.2.3 Font and Bitmap Converter Utility
	C.2.4 Rabbit Field Utility
	-s port:baudrate
	-t ipAddress:tcpPort
	-v
	-cl ColdLoaderPathName
	-pb PilotBiosPathName
	-fi Flash.ini PathName
	-vp+
	-vp-
	-usb+
	-usb-
	-d

	Appendix D. Additional Documentation
	Index

