BBI %&2

Rabbit 2000™ Microprocessor

Designer’s Handbook

019-0070 ® 020207 - J

™
Rabbit 2000 Microprocessor Designer’s Handbook
Part Number 019-0070 « 020207 - J « Printed in U.S.A.

Copyright
© 2000 Rabbit Semiconductor < All rights reserved.

Rabbit Semiconductor reserves the right to make changes and improvements to its products with-
out providing notice.

Trademarks
¢ Dynamic Ce isaregistered trademark of Z-World
e 780/7180isatrademark of Zilog, Inc.

Company Address
Rabbit Semiconductor
2932 Spafford Street

Davis, California 95616-6800
USA

Telephone: (530) 757-8400
Facsimile: (530) 757-8402

Web site; http://www.rabbitsemiconductor.com

Table of Contents

1 o (1ot i oo P S 1
1.1 Summary of DeSIgN CONVENTIONScocceiiririiiirierie ettt sttt e e sbe e sbe b e e seas 1

2 Rabbit Hardware DeSigN OVEINVIEWcccoveeeieeieniesieeieeseeseesseesseessesseessesssssseessens 3
2.1 DESION CONVENLIONSviuetireetirietereetesietesietestete st st ste et et e sesbe e ebeseebeneebee st eeebeseebeseebesbebeseebesbenens 3

Rabbit Programming CONMNECLONcuoeireirrerieeriiesiesesie e sesse s ssesssseneesas 3

IMEMOTY CRIPS ...ttt sttt sttt s sttt se et et et st et ebe e st eneebeneas 4

OSCHIBLON CrYSEAIS.... et b bbbttt senes 4

2.2 OPEratiNg VOITAOEScueieeuieteeie ittt sttt ettt s b et ae et e e sttt sbeebe e besbeseese e bene e e aneaneenas 4

2.3 POWES CONSUMPLION ..ottt sttt sttt sttt b e bt ebe b se et e se e se et e s ene et abessenbesnesbesbees 5

2.4 Through-hole TEChNOIOQYcceeveiiiecirece e e ens 5

3 Core Design and COMPONENES.........cciieiiieeiiecieesieeereesee e seesbeesreesseesseesreesreesnneas 7
3L COCKS....eneeteeetereete ettt b b bbb bbbkt ettt b et 7

L OW-POWE DESIQNveueeeieieeieceeeesee e steste st see st sae e ese e te s e e eseesessessessesaesaestensesaeseeneeneeseeneenens 8

Conformal Coating of 32.768 kHz OsCillator CirCUIL.........ccccovvvrieresiesesereseseeseeeeseseenens 8

I 2 T S Tl =0 qTo YA I L= T o 9
MEMOPY ACCESS TIIME....cuieeeeeeeeeeeieeeste s e stese e teseeseese e eesee e eseesessessessesaeseesseneesaeseeneenseneennenens 9

Precautions for Unprogrammed Flash MemOrycovvvveiinenieeeseeeese e 9

3.3 PC Board Layout and Memory Line PermMUEationccoereieiennenienene e 11

3.4 PC Board Layout and Electromagnetic INtErfErenCe.........cvvvvvrierereeieeieseeeseseseeseessseesesseenens 12

LY I = U1 = o] SR 12

EMI M@EaSUNNG DEVICEScueevivireieeetisesiesesseeesee st eere e te et see e enaenaenes 12

Classes FOr EMI TESHING .vvvveieeeeeeeeiestesteseseeseseesesneeeeseeesee e s sseee e sesnsesannes 12

Layout and Decoupling fOr LOW EMIc.oveiiiece e 13

EMI SOUICES ...ttt sttt bbb 13

L0 LoTox QS o 7= I 1 o I R 14

High Frequency OsCillator CirCUItcocevivverereeeee e 15

Processor DECOUPIING ...c.vevvreririereiisieieseeseeseeeeseseere e sresresee e see e e e enessennes 17

Elimination of POWEr Plane ... s 18

4 How Dynamic C Cold Boots the Target SyStem........ccoceveeierieneeneneseeie e 19
4.1 How the Cold Boot Mode WOrks In Detailccoevieieiiicieicecee e 20

4.2 Program Loading ProCESS OVEIVIEWcuieeieeerieiesiesieseeseeaesesessessessessessessesssssessesssssessssennes 21
Program Loading ProCess DELalS........cccoveerieieriinee e 21

5 Rabbit Memory OrganiZation.............ccueiieeieeiiieeiie e 23
5.1 PhYSICEI IMBIMOIY ..ottt ettt sttt e e e et b e it bt b e b s e ee et se e s ene e s eneenea 23

FIASN IMIBIMOIY ...ttt bbbt ettt b e s sae b b e 23

SRAM Lttt e E e e E e e b e b e st Re et e e R e e eseeeeseeeenentenennas 23

BasiCc Memory CONfigUIAioNcoceieiiiire et s 24

5.2 MEMOIY SEOMENLS.......ueiieiieeiesteeseesteestesseeeeeseessesseessesseesseseessesseessessesssesssesseensesseeseessesssssseessens 24
DEFINITTIONS ..ttt bbb st ettt ettt sttt nbe e 25

The ROOt MEMOrY SEOMENL........civieeierireiestestesiesteeesteeeeseesesseesessessesreseesseseessessesssseenens 25

Types of Code Best-Suited for the Root Memory Segmentcocevvvereveene. 25

The Data SEOMENE.....cceiieie e et et e se e e se s e esesseesesresreseeseesensesennnenens 26

The SEACK SEOMENTee et se et sresreseese e senaenennnenens 26

The Extended MemOory SEOMENTocvviirererieseeseree e se e sre e st re e e sesaesesseenens 26

5.3 How The Compiler CompileSt0 MEMONY.......ccccvvirirereriereeeseeere e sre e see e seeeeseeeeseenens 26
Placement of COAEIN IMEMONYcocvieiiieiere ettt st ne e e e e 26

Paged Accessin EXtENded MEMOTYccovvireieveieceeesese st 27

Designer’s Handbook

10

1

12

The RabDIt BIOS..........cooiice e 29

6.1 Startup Conditions Set Up By the BIOS.........ccoo it 29
6.2 BIOS FIOWCNEIT........ocvieiireeicreires ettt 31
6.3 Internally DEfiNEA IMBCTOS.........coiiiiiririe ettt bbbt s 32
6.4 MOdifying the BIOS.......cco ettt sttt e s e e 32
6.5 Origin Statementsto the COMPIIENocvieee e 34
OFigin SEEEMENT SYNLAX ...veuveueeeeeeereeerese e ses e seeeeeseesesse s e sresrestesaesseseeseeseeseesessessessenees 34

Origin StEEMENt SEMANLICS.....ceeieeeeeerese e e e et e e e e seeresreseesrenean 34

Origin Statement EXAMPIES........cooveiiiriiie e se e er e enesre e 36

Origin Directivesin Program COE.........ccuvrererierieseresereeseeeesese e siesie e e esaesesneesenss 36

The SYyStEM ID BIOCKccveieeece ettt 37
7.1 Definition Of SYSIDBIOCKcccciiieirieeisese e s ee s e e e e e e e sae s eseeseeaesesseesesreseseessenseses 38
7.2 AACCESS. ... ittt ettt ettt ettt ettt a e skt e s e bt e e b e b £ e A b e e R £ eae e SR e e Rt SRt e EeeRe e eReeReeeEeeRRen bt eat e benre e renaeenas 39
Reading the SystemID BIOCKcoiiiiiiiiiiee e s 39

Writing the SystemiD BIOCKcooiiiiieieinene e e 39

7.3 Determining the Existence of the SystemID BlOCK..........ccoiirrieniniiene e 40
BIOS Support for Program ClONING........ccccceiierieiieseee e eie e 43
8.1 OVEIVIEW OF CIONING ...ttt ettt bbb bbb et e e e e e ne e 43
Evolution of CloniNg SUPPOITcocuiiiiiiiiie ettt s ene 44

R A O = 1] oo = W O Lo L= T USSR 44
Stepsto Enable and Set UP ClLONINGoiviiiiieeeiereeree e 44

SEEPS L0 PErfOrm ClONINGccueiiiieieiesieie sttt b e s eeas 44

LED PaTEINS ...ttt ettt e e b et e bt et e b e eae e sae e e e see e e e nne e e 45

8.3 ClONING QUESLIONSc.veviiiuieieseeeeeisie e tese et e sae e e e eseeseeseesessesaessesteseeseenseneeneeseenenseenensessenes 45
MAC AGAIESS.....ceee ettt ettt et s sae st st et e ebe et e e beeebeeasebeeabesbeeneesaenneesaean 45

DIfferent Flash SIZES........ccuviciinee e 45

DESIGN RESIMNCHIONSeveieseeseiecie ettt st e e e s b e saesnesr e eeseenrenen 46
Low-Power Design and SUPPOITc.eeieieriiereesieeie e s a7
9.1 Software Support for Low-Power Sleepy MOTES.cccoieiiieiiieieeee e 49
9.2 Baud RateSiN SIEEPY MOUE.....c.uceeeeeeeire e e e st se st sttt se et esae e eneene e e e 49
MEMOIY PlaNNINGcccuoieiiirieiie ettt st s sb e e e 51
10.1 Making @ RAM-0NIY DOAIM.cccoiuiiiiiieireeete et s 51
HaraWare ChanGgESueuereeeeeeeereee ettt sttt ettt s b e sae st e be e seenean 52

SOftWEAIE CRANQES. ...ttt ettt st eb e bbbt e e e et ene e e eneeneenas 52

FIASh IMBIMOTIES. ..ottt b e 53
11.1 Supporting Other Flash DEVICES..........cciireiiere e s s 56
11.2 Writing YOUr OWN FIaSh DIVcoiiiiiii et 56
Troubleshooting Tipsfor New Rabbit-Based Systems........ccccooeveevvicesecvie e, 59
12,7 INIIAl CRECKS....ceeeeeeecee bbb sttt b et b e sb et e b b 59
12.2 DIAONOSC TESE H2 ...ttt ettt s e e e et eae e e aeeae et e besaese e beneesseneennenas 59
G T B TT=o 0 Lo 1= 2 T 60
Supported Rabbit 2000 BaUd RALESccceiiriiieieeee e 63
LAY S = (= =TT S 65
(@< VT Tl 11 T (o TS 65
Wait SLALES 1N DELAIMEMOIYcoiiiieiitiiie ettt sttt s b bbb se e e e e sae e sbeeaas 65
Wait StALES N COUE MEITIONYccuiiiieiieree ettt ettt eb st s b et s se et e e e et eae e sbenaas 66

Rabbit 2000 Microprocessor

Instructions Affected by the Wait Stat€@ BUQcoevvereeeeiiirie et 66

DYNamiC C VEIrSION 7.05cececeeeierieecte st este s e e sae e see e e se e e sseesestesteseeseesaeseensnsennessensens 67

Prior versions of DYNAMIC C......cocvvevirieiereeeiesesseee s se e e sts e sae e e sssesesseesessesnessesses 67

Output Enable Signal and Conditional JUMPSccccovvieiirierecrerecresese e s se e 67
Workaround for Wait State Bug with Conditional JUMPS.........cceeeerrerinenienene e 68

Output Enable Signal and MUl INSEFUCHTONc.coiiiiiiiiieee e 68
Alternatives to Wait StatesSin Code MEMOIYcccuveeirereriesereesieeesesesse e seeseeseeseeseeeesessessessens 68
ENADIING WAL SEBLES.....c.eeeeeeeeeeieie ettt saese et ettt se e e e se e e ereeseeseenentesrennenseneenes 69
ST 1010 7= Y 69
=0 = Ao 1 o = S 71

Designer’s Handbook

Rabbit 2000 Microprocessor

1. Introduction

This manual isintended for the engineer designing a system using the Rabbit microprocessor and
Z-World's Dynamic C development environment. It explains how to develop a Rabbit micropro-
cessor-based system that can be programmed with Z-World's Dynamic C.

With the Rabbit and Dynamic C, many traditional tools and concepts are obsolete. Complicated
and fragile in-circuit emulators are unnecessary. EPROM burners are not needed. The Rabbit
microprocessor and Dynamic C work together without el aborate hardware aids, provided that the
designer observes certain design conventions.

1.1 Summary of Design Conventions
* Include a programming connector.

* Connect astatic RAM having at least 32K bytes to the Rabbit 2000 using /CS1, /OE1 and
/WEL.

* Connect aflash memory that is on the approved list and has at least 128K bytes of storageto the
Rabbit 2000 using /CS0, /OEQ and /WEO.

* Install acrystal or oscillator with afrequency of 32.768 kHz to drive the battery-backable clock.
(Battery-backing is optional, but the clock is used in the cold boot sequence to generate a
known baud rate.)

* Install acrystal or oscillator for the main processor clock that is amultiple of 614.4 kHz, or bet-
ter, amultiple of 1.8432 MHz.

Asshown in Figure 1, the Rabbit programming cable connects a PC serial port to the program-
ming connector of the target system. Dynamic C runs as an application on the PC, and can cold
boot the Rabbit-based target system with no pre-existing program installed in the target.

PC Hosts Dynamic C Rabbit

Microprocessor

Rabbit Programming
Cable

Level

Conversion
Target
\ System
PC Serial Programming
Port Connector

Figure 1. The Rabbit Microprocessor and Dynamic C

Dynamic C programming uses the Rabbit’s serial port A for software development. However, it is
possible with some restrictions for the user’s application to also use port A.

Designer’s Handbook 1

Rabbit 2000 Microprocessor

2. Rabbit Hardware Design
Overview

Because of the glueless nature of the external interfaces, especially the memory interface, it is easy
to design hardware in a Rabbit-based system. More details on hardware design are given in the
Rabbit 2000 Microprocessor User’s Manual.

2.1 Design Conventions

* Include a standard Rabbit programming cable. The standard 10-pin programming connector
provides a connection to serial port A and allows the PC to reset and cold boot the target sys-
tem.

* Connect astatic RAM having at least 32K bytesto the processor using /CS1, /OE1 and /WEL. It
isuseful if the PC board footprint can also accommodate a RAM large enough to hold all the
code anticipated. If alarge RAM can be accommodated, software development will go faster.
Although code residing in some flash memory can be debugged, debugging and program down-
load is faster to RAM. There are a so types of flash memory that can be used, but they cannot
support debugging.

* Connect aflash memory that is on the approved list and has at least 128K bytes of storage to
the processor using /CS0, /OEO and /WEOQ. Non-approved memories can be used, but it may be
necessary to modify the BIOS. Some systems designed to have their program rel oaded by an
external agent on each powerup may not need any flash memory.

* Instal acrystal or oscillator with afrequency of 32.768 kHz to drive the battery-backable clock.
(Battery-backing is optional, but the clock is used in the cold boot sequence to generate a
known baud rate.)

* Install acrystal or oscillator for the main processor clock that isamultiple of 614.4 kHz, or bet-
ter, amultiple of 1.8432 MHz. These preferred clock frequencies make possible the generation
of sensible baud rates. If the crystal frequency is amultiple of 614.4 kHz, then the same multi-
ples of the 19,200 bps baud rate are achievable. Common crystal frequenciesto use are 3.6864,
7.3728, 11.0592 or 14.7456 MHz, or double these frequencies.

* Digital 1/0line PB1 should not be used in the design if cloning isto be be used. (See “BIOS
Support for Program Cloning” on page 43 for more information on cloning.)

2.1.1 Rabbit Programming Connector

The user may be concerned that the requirement for a programming connector places added cost
overhead on the design. The overhead is very small—less than $0.25 for components and board
space that could be eliminated if the programming connector were not made a part of the system.

The programming connector can aso be used for avariety of other purposes, including user appli-
cations. A device attached to the programming connector has complete control over the system
because it can perform a hardware reset and load new software. If this degree of control is not
desired for a particular situation, then certain pins can be left unconnected in the connecting cable,

Designer’s Handbook 3

limiting the functionality of the connector to serial communications. Z-World will be developing
products and software that assume the presence of the programming connector.

2.1.2 Memory Chips

Most systems have one static RAM chip and one or two flash memory chips, but more memory
chips can be used when appropriate. Static RAM chips are available in 32K x 8, 64K x 8, 128K x
8, 256K x 8 and 512K x 8 sizes. The 256K x 8 ismainly availablein 3V versions. The other chips
areavailablein 5V or 3V versions. Suggested flash memory chips between 128K x 8 and

512K x 8 are given in Chapter 10, Flash Memories.

Dynamic C and a PC are not necessary for the production programming of flash memory since the
flash memory can be copied from one controller to another by cloning. Thisis done by connecting
the system to be programmed to the same type of system that is already programmed. This con-
nection is made with a cloning cable. The cloning cable connects to both programming ports and
has a button to start the transfer of program and an LED to display the progress of the transfer.

2.1.3 Oscillator Crystals

Generally a system will have two oscillator crystals, a 32.768 kHz crystal to drive the battery-
backable timer, and another crystal that has a frequency that is a multiple of 1.8432 MHz or amul-
tiple of 3.6864 MHz. Typical values are 1.8432, 3.6864, 7.3728, 11.0592, 14.7456, 18.432,
25.8048, and 29.4912 MHz. These crystal frequencies (except 1.8432 MHz) allow generation of
standard baud rates up to at least 115,200 bps. The clock frequency can be doubled by an on-chip
clock doubler, but the doubler should not be used to achieve frequencies higher than about
22.1184 MHz on a5V system and 14.7456 MHz on a 3.3 V system. A quartz crystal should be
used for the 32.768 kHz oscillator. For the main oscillator a ceramic resonator, accurate to 0.5%,
will usualy be adeguate and less expensive than a quartz crystal.

2.2 Operating Voltages

The operating voltage in Rabbit-based systemswill usualy be5V or 3.3V, but 2.7V isalso a
possibility. The maximum computation per watt is obtained in the range of 3.0V t0 3.6 V. The
highest clock speedsrequire 5 V. The maximum clock speed with a3.3 V supply is 18.9 MHz, but
it will usually be convenient to use a 7.3728 MHz crystal, doubling the frequency to 14.7456
MHz. Good computational performance, but not the absol ute maximum, can be implemented for 5
V systems by using an 11.0592 MHz crystal and doubling the frequency to 22.1184 MHz. Such a
system will operate with 70 ns memoaries. If the maximum performance is required, then a29.4912
MHz crystal or resonator (for acrystal this must be the first overtone, and may need to be special
ordered) or a29.4912 MHz external oscillator can be used. A 29.4912 MHz system will require 55
ns memory access time. A table of timing specification is contained in the Rabbit 2000 Micropro-
cessor User’s Manual.

4 Rabbit 2000 Microprocessor

2.3 Power Consumption

When minimum power consumption isrequired, a3.3 V power supply and a 3.6864 MHz or a
1.8432 MHz crystal will usually be good choices. Such a system can operate at the main 3.6864
MHz or 1.8432 MHz frequency either doubled or divided by 8 (or both). A further reductionin
power consumption at the expense of computing speed can be obtained by adding memory wait
states. Operating at 3.6864 MHz, such a system will draw approximately 11 mA at 3.3 V, not
including the power required by the memory. Approximately 2 mA is used for the oscillator and 9
mA is used for the processor. Reducing the processor frequency will reduce current proportion-
aly. At 1/4th the frequency or (0.92 MH2z) the current consumption will be approximately 4 mA.
At 1/8th the frequency, (0.46 MHz) the total power consumption will be approximately 3 mA, not
including the memories. Doubling the frequency to 7.37 MHz will increase the current to approx-
imately 20 mA.

If the main oscillator is turned off and the microprocessor is operated at 32.768 kHz from the
clock oscillator, the current will drop to about 200 WA exclusive of the current required by the
memory. The level of power consumption can be fine-tuned by adding memory wait states, which
have the effect of reducing power consumption. In order to obtain microampere level power con-
sumption, it is necessary to use auto powerdown flash memories to hold the executing code.
Standby power while the system is waiting for an event can be reduced by executing long strings
of multiply zero by zero instructions. Keep in mind that a Rabbit operating at 3.68 MHz has the
compute power of a Z180 microprocessor operating at approximately triple the clock frequency
(11 MHz).

2.4 Through-hole Technology

Most design advice given for the Rabbit assumes the use of surface-mount technology. However,
it is possible to use the older through hole technology and develop a Rabbit system. One can use
Z-World's Rabbit-based Core Module, asmall circuit board with a complete Rabbit core that
includes memory and oscillators. Another possibility isto solder the Rabbit processors by hand to
the circuit board. Thisis not difficult and is satisfactory for low production volumesif the right
technique is used.

Designer’s Handbook 5

Rabbit 2000 Microprocessor

3. Core Design and Components

Core designs can be devel oped around the Rabbit 2000 microprocessor. A core design includes
memory, the microprocessor, oscillator crystals, the Rabbit standard programming port, and in
some cases a power controller and power supply. Although modern designs usually use at least
four-layer printed circuit boards, two-sided boards are a viable option with the Rabbit, especidly if
the clock speed is not high and the design is intended to operate at 2.5V or 3.3 V—factors which
reduce edge speed and el ectromagnetic radiation.

Schematicsillustrating the use of the Rabbit microprocessor are available at www.rabbitsemicon-
ductor.com.

3.1 Clocks

The Rabbit has two built-in oscillators. The 32.768 kHz clock oscillator is needed for the battery-
backable clock (aka, the real-time clock), the watchdog timer, and the cold boot function. The high
frequency main oscillator is generally used to provide the main CPU clock.

XTALA2 330 kQ 15 pF XTALB2 2kQ 33 pF

10 MQ<CuL=12.5 pF—= 32.768 kHz 1 MQ< Ci=20pF—= 11.0592 MHz
O—t —
XTALA1 15 pF = XTALB1 33 pF =
(a) 32.768 kHz Oscillator (b) Main Oscillator

Figure 2. Rabbit 2000 Oscillator Circuits

The 32.768 kHz oscillator is slow to start oscillating after power-on. For this reason await loop in
the BIOS waits until this oscillator is oscillating regularly before continuing the startup procedure.
The startup delay may be as much as 5 seconds. Crystals with low seriesresistance (R < 35 kW)
will start faster. If the clock is battery-backed, there will be no startup delay since the oscillator is
aready oscillating.

Designer’s Handbook 7

http://www.rabbitsemiconductor.com
http://www.rabbitsemiconductor.com

3.1.1 Low-Power Design

The power consumption is proportional to the clock frequency and to the square of the operating
voltage. Thus, operating at 3.3 V instead of 5V will reduce the power consumption by afactor of
10.9/25 or 43% of the power required at 5 V. The clock speed is reduced proportionaly to the volt-
age at the lower operating voltage. Thus the clock speed at 3.3 V will be about 2/3 of the clock
speed at 5 V. The operating current is reduced in proportion to operating voltage.

The Rabbit does not have a"standby" mode that some microprocessors have. Instead, the Rabbit
has the ability to switch its clock to the 32.768 kHz oscillator. Thisis called the leepy mode.
When this is done, the power consumption is dramatically decreased. The current consumption is
often reduced to the region of 100 YA at this clock speed. The Rabbit executes about 6 instructions
per millisecond at this low clock speed. Generally, when the speed is reduced to this extent, the
Rabbit will be in atight polling loop looking for an event that will wake it up. The clock speed is
increased to wake up the Rabbit.

If current consumption by the real-time clock (RTC) isimportant, the regulator circuit shownin
the figure below will reduce the current consumption by a substantial amount when a3V lithium
battery is used. Using this circuit, the battery-backed clock requireslessthan 25 pA. If the full 3V
is used, the current consumption will be approximately 70 pA.

1KQ
BAT3V A~

Safety resistor required
by regulatory agencies 220 KO

battery backup
power

ZMQ =~ 0.1 F

4.3MQ

i =

Figure 3. Clock Oscillator Regulator Circuit

3.1.2 Conformal Coating of 32.768 kHz Oscillator Circuit

This circuit has low microampere level circuits. To avoid leakage due to moisture and ionic con-
tamination it is recommended that the oscillator circuit be conformally coated. Thisissimplified if
all components are kept on the same side of the board as the processor. Feedthroughs that pass
through the board and are connected to the oscillator circuit should be covered with solder mask
which will serve asa conformal coating for the back side of the board from the processor. An
application note on conformal coating is available from Rabbit Semiconductor.

8 Rabbit 2000 Microprocessor

3.2 Basic Memory Design

Normally /CS0 and /OEQ and /WEQO should be connected to aflash memory that holds the startup
code that executes at address zero. When the processor exits reset with (SMODE1, SMODEQ) set
to (0,0), it will attempt to start executing instructions at the start of the memory connected to /CS0,
/OEQ, and /WEQ.

By convention, the basic RAM memory should be connected to /CS1, /OE1, and /WE1. /CS1 hasa
special property that makes it the preferred chip select for battery-backed RAM. A bit may be set
inthe MMIDR register to force /CS1 to stay enabled (low). This capability can be used to counter
a problem encountered when the chip select line is passed through a device that is used to place
the chip in standby by raising /CS1 when the power is switched over to battery backup. The bat-
tery switchover devicetypically has a propagation delay that may be 20 ns or more. Thisis enough
to require the insertion of wait states for RAM accessin some cases. By forcing /CS1 low, the
propagation delay is not a factor because the RAM will be always selected and will be controlled
by /OE1 and /WEL. If thisis done, the RAM will consume more power while not battery-backed
than it would if it were run with dynamic chip select and await state. If this special featureis used
to speed up accesstime for battery backed RAM then no other memory chips should be connected
to OE1 and WEL1.

3.2.1 Memory Access Time

The memory access time required depends on the clock speed and the capacitive loading of the
address and data lines. Wait states can be specified by programming to accommodate slow memo-
riesfor agiven clock speed. Wait states should be avoided with memory that holds programs
because thereis a significant dowing of the execution speed. Wait states are far more important in
the instruction memory than in the data memory since the great majority of accesses are instruc-
tion fetches. Going from 0 to 1 wait statesis about the same as reducing the clock speed by 30%.
Going from 0 to 2 wait states is worth approximately a 45% reduction in clock speed. A table of
memory access times required for various clock speedsis given in the Rabbit 2000 Microproces-
sor User’s Manual.

3.2.2 Precautions for Unprogrammed Flash Memory

If a Rabbit-based system is powered up and released from reset when not in one of the cold boot
modes, the processor attempts to begin execution by reading from address zero of the memory
attached to /CS0, /OEQ, and /WEQ. If this memory is an unprogrammed or improperly pro-
grammed flash memory, there is a danger that the memory could be destroyed if the write security
feature of the flash memory is disabled. Flash memories have awrite security feature that inhibits
starting write cycles unless a special codeisfirst stored to the memory. For example, Atmel flash
memories use the bytes AAh, 55h, and AOh stored to addresses AAAA or 5555h in a particular
sequence. Any write executed that is not prefixed by this sequence will be ignored. If the memory
has write protection disabled, and execution starts, it is possible that an endless loop that includes
awrite to memory will establish itself. Since the flash memory wears out after a few hundred
thousand writes, the memory could be damaged in a short period of time by such aloop. Unfortu-
nately, flash memory is shipped from the factory with the protection feature disabled to accommo-
date obsolete memory programmers.

The solution to this problem isto order the memory with the write protection enabled, or to enable
it with aflash programming system. Then the memory will be safeif it is soldered into the Rabbit

Designer’s Handbook 9

system. If an unsafe memory is soldered into a system, then the memory can be powered up with
the programming cabl e connected, and a sequence can be sent using the cold boot procedure to
enabl e the write protection. Compiling any Dynamic C program to the flash will make the mem-
ory safe. If thisis not convenient, tester software can make the memory safe by sending a byte
sequence over the programming connection serial link.

The following example shows a program that can be downloaded via the cold boot protocol to
make a Atmel AT29C010A 128K x 8 flash memory safe. In this case, the RAM connected to /CS1
isused to hold a program starting at address zero. The flash memory is mapped into the data seg-
ment starting at address 1000h for access to the start of the flash memory.

; Before storing this program, the RAM is mapped to the first quadrant.
; The program resides at address zero in RAM.
; NOTE: this program has not been tested

| d a, Oelh
ioi Id (13h),a
Id a, 3fh

Id(12h), a
a, 0
(15h), a
a, Oaah
(5555h+1000h), a
a, 55h
(2AAAh+1000h), a
a, 0a0h
(5555h+1000h), a
hl , 1000h
(hl'), 0c3h

i nc hl

Id (hl), 00h

i nc hl

Id (hl), 00h
jro*

00000000000

3e el segsizerey

d3 32 13 00 data seg starts at 1000h

3e 3f dataseg reg

d3 32 12 00 set data seg base of flash to 1000h
3e 00 for MB1CR memory bank reg for flash on CSO
321500 bank 1 reads flash starting at 256k
3eaa

32 55 65 first byte of unlock code

3e55

32 aa 3a 2nd byte of unlock code

3eal

32 55 65 3rd byte of unlock code

21 00 10 point to start of flash memory

36 c3 jump op code

23

36 00 zero

23

36 00 zero

; 18 fe end with endless loop

This code can be sent by means of a sequence of triplets viathe serial port.

80 14 01
00 00 3e
00 01 el
00 02 d3
00 03 32
00 04 12
00 05 00

:continue code above here

00 2b 18
00 2c fe
80 24 80

; 1/O write 01 to 0000 MBOCR select csl- map RAM to Q1
; write to memory address 0

last instruction
last byte
; start execution of program at zero

The program will execute within about 10 ms.

10

Rabbit 2000 Microprocessor

3.3 PC Board Layout and Memory Line Permutation

In order to use the PC board real estate efficiently, it is recommended that the address and data
lines to memory be permuted to minimize the use of PC board resources. By permuting the lines,
the need to have lines cross over each other on the PC board is reduced, saving feed-through’s and
space.

For static RAM, address and data lines can be permuted freely, meaning that the address lines
from the processor can be connected in any order to the address lines of the RAM, and the same
appliesfor the datalines. For example, if the RAM has 15 address lines and 8 data lines, it makes
no difference if A15 from the processor connects to A8 on the RAM and vice versa. Similarly D8
on the processor could connect to D3 on the RAM. The only restriction isthat al 8 processor data
lines must connect to the 8 RAM datalines. If severd different types of RAM can be accommo-
dated in the same PC board footprint, then the upper address lines that are unused if a smaller
RAM isinstalled must be kept in order. For example, if the same footprint can accept either a
128K x 8 RAM with 17 address lines or a512K x 8 RAM with 19 address lines, then address lines
A18 and A19 can be interchanged with each other, but not exchanged with AO-A17.

Permuting lines does make a difference with flash memory. If the memory is socketed and it is
intended to program the memory off the board, then it is probably best to keep the address and
data linesin their natural order. However, since the flash can be programmed in the circuit using
the Rabbit programming port, it is expected that most designers will solder the flash memory
directly to the board in an unprogrammed state. In this case, the permeation of data and address
lines must till be taken into account because flash memory requires the use of a special unlock
code that removes write protection. The unlock operation involves a special sequence of reads and
writes accessing special addresses and writing the unlock codes.

Another consideration is that the flash memory may be divided into sectors. In order to modify the
memory, an entire sector must be written. In the small-sector memories the memory is divided into
1024 sectors. If the largest flash memory that is usable in a particular design is 512K, the largest
sector sizeis 512 bytes. If the smallest memory used is 128K, then the smallest sector is 128 bytes.
In order that the sector can be contiguous for all possible types of memory, the lower 7 address
lines (AO...A6) should be permuted as agroup. Address lines A7 and A8 should not be permuted
a al if it isdesirable to keep the larger sectors contiguous. The upper 10 address lines can be per-
muted as a separate group. The specia memory chip addresses 05555h and OAAAAh must be
accessed as part of the unlock sequence. These addresses use only thefirst 16 address lines and
have the odd and even numbered bits the same. The unlock codes use the numbers 55h, AAh or
AOh.

Permuting data or address lines with flash memory should probably be avoided in practical sys-
tems.

Designer’s Handbook 11

3.4 PC Board Layout and Electromagnetic Interference

Most design failures are related to the layout of the printed circuit board (PCB). A good layout
results when the effects of electromagnetic interference (EMI) are considered. EMI refersto unin-
tentional radiation from the circuit board that might cause interference with other devices, mainly
television sets. If the PCB layout meets EMI regulations, it will probably be otherwise electrically
sound.

3.4.1 EMI Regulations

The Federal Communications Commission (FCC) regulates EMI standards in the United States.
Their jurisdiction isall 50 states, the District of Columbia, and U.S. possessions. The European
Union (EV) regulates EMI standardsin Europe by means of a CE Marking that acts as a product’s
passport in the European market. The actual CE Marking isthe letters "CE," an abbreviation of a
French phrase " Conformite Europeene.”

These regulations specify the maximum radiation measured in units of field strength (microvolts/
meter) at a standard distance, usually 3 meters. The field strength must be measured using a partic-
ular type of filter (120 kHz wide) and a particular type of peak detection (quasi-peak). With Rab-
bit-based systems, the radiation will generally be pure tones at harmonics of the clock speed. This
makes it unnecessary to use a special filter or quasi peak detection except for final verification
measurements.

3.4.1.1 EMI Measuring Devices

The measurements are performed using a spectrum analyzer coupled to a calibrated antenna. The
equipment needed to perform these tests may cost $25,000 or more. Many designers will use out-
side laboratories to perform the tests. There is not necessarily alega requirement to perform the
tests. It depends on the type of equipment and its intended use. For example, FCC regulationsin
the USA exempt industrial equipment.

3.4.1.2 Classes For EMI Testing
FCC computer regulations divide equipment into two classes.

CLASS A CLASS B

Computer equipment meant for office use: business | Computer equipment meant for home use, where a
machines, office computers television is likely to be nearby.

Lessrestrictive emissions requirement: less than 50
dB/uv/M at 3 meters (50 dB relative to 1 microvolt
per meter or 300 microvolts/ meter).

More restrictive emissions requirement: 40 dBuV/M
or 100 uV/M.

Note that for field strength, 20 dB is afactor of 10 and 6 dB isafactor of 2. Field strength declines
inversely with distance, so at 10 metersthe field strength for the same device will be about 3/10ths
aslarge as at 3 meters which is approximately 10 dB less. (20 dB isafactor of 10, 10 dB isafac-
tor of the square root of 10 or 1/3.16 = 3.16/10.) These limits apply in the range of 30-230 MHz
for the more restrictive CE test. Above 230 MHz the limit is 7 dB higher. Although the test range
goesto 1 GHz, with Rabbit-based systems there will rarely be any concern above 300 MHz.

12 Rabbit 2000 Microprocessor

With a Rabbit-based system it is easy to meet the Class B limitsif proper PCB layout precautions
are observed. At Z-World, our target isto beat the Class B limit by 10 dB.

3.4.2 Layout and Decoupling for Low EMI

Generally you should design with a4 (or more) layer printed circuit board. The cost of a4-layer
board as compared to a 2-layer board is about 30% more per square inch and generally well worth
it. Although we have not attempted it, a 2-layer design would probably work for lower clock fre-
guenciesif the ground and power nets are well gridded for power distribution (see Section 3.4.2.5
on page 18).

Usually a4-layer printed circuit board has a ground plane and a power plane located as the two
inner layers and connect layers on the top and bottom layers. Components may be mounted on
only one side or on both sides. A 6-layer board places the ground and power layers as the middle
two layers and then has two routing layers both above and below. Adjacent routing layers run
traces at right angles to minimize coupling between signal traces. Someti mes the ground and
power layers are placed on the outside of the boards, but this makes debugging more difficult and
compromises the layers more since they have to be cut up for the component footprints.

3.4.2.1 EMI Sources

Most EMI comes from signalsthat are strictly regular. The main sources are the crystal oscillator,
the lines emanating from the Rabbit chip that are affected by the internal clocking of the chip, and
the actual clock or clock/2 if it is run around the printed circuit board. Address and data lines gen-
erate less EMI because there is no regular frequency on these lines since the bus cyclesvary in
length, shifting the signal phase constantly. AQ is the hottest address line since it is varying most
rapidly and also has a stronger drive than the other address lines.

A sguare wave has harmonics at odd frequencies that decline in amplitude proportional to 1/f. A
small wire that acts as an antenna radiates more the higher the frequency of excitation. The effec-
tiveness as an antenna increases proportional to frequency. These two effects approximately can-
cel, resulting in an approximately flat spectrum for atypical printed circuit board. For example,
without taking precautions, it would not be unusual to have a problem with the 7th harmonic, or
154.7 MHz when the Rabbit clock is 22.1 MHz. Above approximately 300 M Hz, the edges are not
fast enough to generate strong harmonics for typical Rabbit systems.

Designer’s Handbook 13

3.4.2.2 Clock Signal Pin 1

Pin 1 of the Rabbit can be programmed to output the internal clock or the internal clock divided by
2. The Z-World BIOS automatically disables this pin, starting with Dynamic C, revision 7.01. To
minimize EMI, avoid using this pin as aclock output. Most Rabbit designs don’t need to explicitly
use the clock output pin. However, in cases that require a clock, use clock/2 if possible. Also, a
series resistor can (and should) be placed in the clock line to slow down the rise and fall times,
which will reduce radiation at higher harmonics of the frequency. Place the resistor, which might
be around 1 K ohms, as closeto pin 1 as possible. The capacitive load of whatever the clock lineis
connected to, along with the resistor, creates an RC time constant that slows the edge. If the capac-
itiveload is larger, a smaller resistor is heeded and vice versa.

The clock line should be kept as short as possible, and run over a ground plane—or even better
between 2 ground planes. It should be positioned well away from other traces, especially traces
running parallel to it for any distance. Coupling to a parallel trace is greater the faster the edges. If
you run parallel ground traces or a ground trace above the clock line then the parallel ground
traces should be connected with very low inductance connections to the ground plane. Thisis done
by using many feedthroughs.

. Feedthroughs to
P(lirllli 1 kO Ground Plane
e ¢ ¢ o o o |

T Parallel
Ground Traces

Figure 4. Many feedthroughs provide very low inductance connections between parallel
ground traces and a ground plane

14 Rabbit 2000 Microprocessor

3.4.2.3 High Frequency Oscillator Circuit

The Rabbit's oscillator circuit typically runsat 11.05 MHz for a22.1 MHz internal clock. The
internal clock doubler is used to double the clock frequency. If the clock doubler is not used then
the external oscillator circuit runs at the full interna clock frequency, resulting in more radiation
from the external circuit due to its higher frequency. In either case there should not be excessive
radiation from this circuit if layout guidelines are followed.

The main objectiveisto keep the loop area of the circuit small so asto avoid coupling the clock to
other lines and because current circulating in aloop acts as an antenna. The part of the circuit most
susceptible to radiation is the trace from pin 91 to the 2 kQ resistor (see Figure below). The
remainder of the circuit has the edges slowed by the 2 kQ resistor.

The low frequency of the 32.768 kHz clock causes no radiation.

XTALB2(91) 2kQ 3P
AN~ - | 1
1 MQ § Current == Crystal (typ. 11.05 MHz)
Loop 20 pF
H—
XTALB1(90) 33 pF L

Figure 5. Loop area of the circuit should be kept small.

Designer’s Handbook 15

Copper pour connected to ground plane

—
— [] Rabbit 2000
> L
[]
[]
[]
[]
i P e
XTALB1
A]
\ XTALB2
— VbD
[]
" []
- []
[]
[]
L
L
N L
O
Figure 6. Avoid coupling the clock to other lines.
Component Component Description Value
Name
CL1 Input Cap 33 pF
CL2 Output Cap 33 pF
Rp Bias Resistor 1MQ
Rs Current Limiting Series Resistor 2KQ
Y1 High speed oscillator CL=20 pF

Table 1: High Speed Crystal Oscillator

16

Rabbit 2000 Microprocessor

3.4.2.4 Processor Decoupling

Theinternal clock of the processor is routed throughout the silicon die. On the rising edge of the
clock all the flip flops on the die are clocked within a nanosecond or so of each other, resulting in
large current flows through the ground and power pins. The current surge is mainly due to the
capacitance driven by the clock and by flip flops changing their state on the clock. The connec-
tions from the ground and power pins to the die have inductance, as do the connections within the
die. The ground and power on the die will bounce up and down at the clock frequency and this
will be coupled to al the other I/O lines that are clamped to power or ground by transistors. To
minimize this bouncing a low impedance path from the pairs of ground and power pins to decou-
pling capacitors should be provided.

The Rabbit has 6 power and 6 ground pins. Of the six power pins, five reside on the main power
grid and are used to power the CPU, peripherals and the I/O. The other one, pin 42, resides on a
separate power net to supply the battery-backed clock. The ground pins are al tied to the common
ground network.

To minimize EMI, connect all power pins as directly as possible to a ground plane running under
the processor without large slots or non-metal areasin the plane. A low inductance connection is
obtained by a short and wide trace leading to the feedthrough to the ground plane. A pair of
feedthroughs has less inductance than a single feedthrough. The power pins should be connected
by alow inductance path to the power plane, or if there is no power plane, to a decoupling capaci-
tor.

For capacitors immediately adjacent to the processor, use 10 nF decoupling capacitors (.01 uF).
Larger capacitors have too much inductance, resulting in excessive harmonics above 100 MHz.

Rabbit 2000

b

Figure 7. Decoupling capacitor placement and layout.

Decoupling of pin 42 (V) isnot critical since relatively small currents flow through this pin.

Designer’s Handbook 17

3.4.2.5 Elimination of Power Plane

If the power planeis eliminated or extensively slotted to accommodate routed traces, decoupling
and power distribution becomes more critical. The key isto maintain alow inductance connection
from “hot” package power pinsto a decoupling capacitor. Also, keep the inductance between
widely separated parts of the power net as low as possible. Gridding the net in a cross connect pat-
tern will lower inductance between points, as will wider traces. The procedure isto use agrid and
then use wide traces from grid intersections to the decoupling capacitors or packages.

M)

W/ -/ N\
N\ Decoupling)
v Wide Capacitor N

Trace |
N N (
O O O

Figure 8. Power Distribution Grid

18 Rabbit 2000 Microprocessor

4. How Dynamic C Cold Boots the
Target System

Dynamic C assumes that target controller boards using the Rabbit CPU have no pre-installed firm-
ware. It takes advantage of the Rabbit’s bootstrap (cold boot) mode that allows memory and I/0O

writes to take place over the programming port.

()]
® ©6 6 0 1
e © 6 0 O
[}

Programming
Header Pinout

Figure 9. Rabbit Programming Port

RABBIT 2000

RXA
VSS
CLKA
VDD
/RESET
TXA

STATUS
SMODEO
SMODE1

Circuit Board with Rabbit 2000 Processor
. Vce
Programming o P
Header 2 $;
1 51
RXA
2 GND
GND
3 94
CLKA L 4
4 +5V
Vce
5 37
/RESET ®
6 54
TXA
7
nc.— [
8 38
STATUS
9 36
SMODEO T
10 35
SMODE1
g S¢
3 <8
1] l

The Rabbit programming cable is a smart cable with an active circuit board in its middle. The cir-
cuit board converts RS-232 voltage levels used by the PC serial port to CMOS voltage levels used

by the Rabbit.

When the programming cable connects a PC serial port to the target controller board, the PC run-
ning Dynamic C is connected to the Rabbit as shown in Table 1.

Table 2. Programming Port Connections

PC Serial Port Signal

Rabbit Signal

DTR (output)

/RESET (input, reset system)

DSR (input)

STATUS (gen purpose output)

TX (serial output)

RXA (seria input, chan A)

RX (serial input)

TXA (serial output, chan A)

Designer’s Handbook

19

The programming cable includes an RS-232 to CMOS signal level converter circuit. The level
converter is powered from the +5V or +3.3 V power supply voltage present on the Rabbit pro-
gramming connector (see Figure 7 on page 31). Plugging the programming cable into the Rabbit
programming connector results in pulling the Rabbit SMODEOQ, SMODEL1 (startup mode) lines
high. This causes the Rabbit to enter the cold boot mode after reset.

Dynamic C can cold boot the Rabbit-based target system with no pre-existing program installed in
the target. The flash memory on the target system can be blank or it may contain any data. The
cold boot capability permits the use of soldered-in flash memory on the target. Soldered-in mem-
ory eliminates sockets, boot blocks and prom programming devices. However, it isimportant that
the flash memory have its software data protection enabled beforeit is soldered in.

4.1 How the Cold Boot Mode Works In Detail

The microprocessor starts executing a 12-byte program contained in an internal ROM. The pro-
gram contains the following code.

; origin zero
00 IdlI,n ; N=0cOh for seria port A
; N=020h for paralld (slave port)
02 ioi |Idd,(hl) ; get address most sig byte
04 ioi Id e, (hl) ; get least sig byte
06 ioi Id a,(hl) ; get data (h isignored)
08 ioi or nop ; if D(7)==1ioi, else nop
09 Id (de),A ; storein memory or I/O
10 jr O ; jump back to zero

; note wait statesinserted at bytes 3, 5 and 7 waiting
; for serial port or parallel port ready

The contents of the boot ROM vary depending on the settings of the pins SMODEO and SMODE1
and on the contents of register D bit 7 which determinesiif the storeisto be an 1/O store or adata
store. If the boot is terminated by storing 80h to /O register 24h then when the boot program
reaches address zero the boot mode is disabled and instruction fetching resumes at address zero.

Wait states are automatically inserted during the fetching of bytes 3, 5 and 7 to wait for the seria
or parallel port ready. The wait states continue indefinitely until the serial port is ready. Thiswill
cause the processor to be in the middle of an instruction fetch until the next character is ready.
While the processor isin this state the chip select, but not the output enable, will be enabled if the
memory mapping registers are such asto normally enable the chip select for the boot ROM
address. The chip select will stay low for extended periods while the processor iswaiting for the
serid or parallel port datato be ready. Additionally, the chip sdlect will go low when awriteis per-
formed to an 1/0 address if the address is such as to enable that chip select if it were awriteto a
memory address.

20 Rabbit 2000 Microprocessor

4.2 Program Loading Process Overview
The program loading process described hereis current through Dynamic C version 7.06.

On start up, Dynamic C first uses the PC's DTR line on the serial port to assert the Rabbit RESET
line and put the processor in cold boot mode. Next, Dynamic C uses afour stage processto load a
user program:

1

Load aninitial loader (cold loader) viatriplets sent at 2400 baud from the PC to atarget in cold
boot mode.

Run the initial loader and load a secondary loader (pilot BIOS) at 19200 or 57000 baud,
depending on the version of Dynamic C.

Run the secondary loader and load the BIOS (as Dynamic C compilesit).

Run the BIOS and load the user program at 115200 baud (after Dynamic C compilesit to a
file).

4.2.1 Program Loading Process Details
When Dynamic C starts, the following sequence of events takes place:

1

The serial port is opened with the DTR line high, closed, then reopened with the DTR line low
at 2400 baud. This pulses the reset line on the target low (the programming cable inverts the
DTR line) and prepares the PC to send triplets.

A group of triplets defined in the file COLDLQOAD. BI N consisting of 2 address bytes and a data
byte are sent to the target. The first few bytes sent are sent to I/0O addresses to set up the MMU
and MIU and do system initialization. The MMU is set up so that RAM is mapped to 0x00000,
and flash is mapped to 0x80000.

The remaining triplets place a small initial loader program at memory location 0x00000. The
last triplet sent is 0x80, 0x24, 0x80, which tells the CPU to ignore the SMODE pins and start
running code at address 0x00000.

The PC now bumps the baud rate on the serial port being used to 19200 or 57000 baud,
depending on the version of Dynamic C.

The primary loader measures the crystal speed to determine what divisor is needed to set a
baud rate of 19200 (or 57600). The divisor is stored at address 0x4002 for later use by the
BIOS, and the programming port is set up to be a 19200 (or 57600) baud seria port.

The program enters aloop where it receives a fixed number of bytes which compose a second-
ary loader program (pi | ot . bi n sent by the PC) and writes those bytes to memory location
0x4100. After all of the bytes are received, program execution jumps to 0x4100.

The secondary loader does a wrap-around test to determine how much RAM is available, and
reads the flash ID. Thisinformation is made available for transmittal to Dynamic C when
requested.

The secondary |oader now enters a finite state machine (FSM) that is used to implement the
Dynamic C/Target Communications protocol. Dynamic C compiles the core of the regular
BIOS and sends it to the target at address 0x00000 which is still mapped to RAM. Note that
this requires that the BIOS core be 0x4000 or lessin size.

The FSM checks the memory location 0x4001 (previoudly set to zero) after receiving each
byte. When the compilation and loading to RAM of the BIOS is complete, Dynamic C signals
the target that it is time to run the BIOS by sending a one to 0x4001.

Designer’s Handbook 21

10.The BIOS runs someinitialization code including setting up the seria port for 115200 baud,
setting up seria interrupts and starting a new FSM.

11.The BIOS code modifies ajump instruction at the beginning of the program so that the next
timeit runs, it will skip step 12. It also modifies a byte near the beginning of the program
where it stores the baud rate divider to achieve 19200 baud. This constant is used by the seria
communications initialization library functions to compute baud rate dividers.

12.The BIOS copiesitself to flash at 0x80000, and switches the mapping of flash and RAM so that
RAM isat 0x80000 and flash is at 0x00000. As soon as this remapping is done, the BIOS' exe-
cution of instructions begins happening in flash.

13.Dynamic C is now ready to compile a user program. When the user compiles his program to
the target, it isfirst written to afile, then the file isloaded to the target using the BIOS FSM.
Thefileisused as an intermediate step because fix-ups are done after the compilation is com-
plete and all unknown addresses are resolved. The fix-ups would cause extrawear on the flash
if done straight to the flash.

14.When the program is fully loaded, Dynamic C sets a breakpoint at the beginning of main and
runs the program up to the breakpoint. The board has been programmed, and Dynamic Cis
now in debug mode.

15.1f the programming cable is removed and the target board is reset, the user’s program will start
running automatically because the BIOS will check the SMODE pins to determine whether to
run the user application or enter the debug kernel.

22 Rabbit 2000 Microprocessor

5. Rabbit Memory Organization

The Rabbit architecture is derived from the original Z80 microprocessor. The original Z80 instruc-
tion set used 16-bit addresses to address a 64K memory space. All code and data had to fit in this
64K space. The Rabbit adopts a scheme similar to that used by the Z180 to expand the available
memory space. The 64K spaceis divided into zones and a memory mapping unit or MMU maps
each zone to ablock in alarger memory; the larger memory is 1 megabyte in the case of the Z180
or the Rabbit 2000. The zones are effectively windows to the larger memory. The view from the
window can be adjusted so that the window looks at different blocks in the larger memory.

Figure 10 on page 24 shows the memory mapping schematically.

5.1 Physical Memory

The Rabbit has a 1-megabyte physical memory space. In special circumstances more than 1-mega-
byte of memory can be installed and accessed using auxiliary memory mapping schemes. Typical
Rabbit systems have two types of physical memory: flash memory and static RAM memory. Flash
memory follows awrite-once-in-a-while and read-frequently model. Depending on the particular
type of flash used, the flash memory will wear out after it has been written approximately 10,000
to 100,000 times.

5.1.1 Flash Memory

Flash memory in a Rabbit-based system may be small-sector type or large-sector type. Small-sec-
tor memory typically has sectors of 128 to 1024 bytes. Individual sectors may be separately erased
and written. In large-sector memory the sectors are often 16K or 64K or more. Small-sector mem-
ory provides better support for program devel opment and debugging, and large-sector memory is
less expensive and has faster access time. The best solution will usually be to lay out adesign to
accept severa different types of flash memory, including the flexible small-sector memories and
the fast large-sector memoaries.

At the present time development support for programs tested in flash memory is confined to flash
memories with small sectors. If larger sectors are used, the code must be debugged in RAM and
then loaded to flash. Large-sector flash is desirable for the better access time and power consump-
tion specifications that are available. Dynamic C is being modified to handle large sector flash at
the time of thiswriting.

5.1.2 SRAM

Static RAM memory may or may not be battery-backed. If it is battery-backed it retains its data
when power is off. Static RAM chips typically used for Rabbit systems are 32K, 64K, 128K,
256K, or 512K. When the memory is battery-backed, power is suppliedat 2V to 3V from a
backup battery. The shutdown circuitry must keep the chip select line high while preserving mem-
ory contents with battery power.

Designer’s Handbook 23

5.1.3 Basic Memory Configuration

A basic Rabbit system has two static memory chips: one flash memory chip and one RAM mem-
ory chip. Additional static memory chips may be added. If an application requires storing alot of
datain flash memory, another flash memory chip can be added, creating a system with three mem-
ory chips—two flash memory chips and one RAM chip.

Trying to use a single flash memory chip to store both the user’s program and live data that must
be frequently changed can create software problems. When data are written to a small-sector flash
memory, the memory becomes inoperative during the 5 ms or so that it takes to write a sector. If
the same memory chip is used to hold data and the program, then the execution of code must cease
during thiswritetime. The 5 msistimed out by a small routine executing from root RAM while
system interrupts are disabled, effectively freezing the system for 5 ms. The 5 ms lockup period
can serioudly affect real-time operation.

5.2 Memory Segments

From the point of view of a Dynamic C programmer, there are a number of different uses of mem-
ory. Each memory use occupies a different segment in the logical 16-bit address space. The four
segments are shown here;

1 megabyte
Extended Memory i
t
Segmen Quadrant 3
64K
~J56k
Stack Segment_— —]
Segment— RAM Quadrant 2
Data Segment—
% Quadrant 1
o \
Root Memory —
Segment ok
Flash Quadrant 0

Typical mapping
16-bit to 20-bit address space

Figure 10. Memory Map of 16-bit Addressing Space

Thisfigure shows that the Rabbit does not have a“flat” memory space. The advantage of the Rab-
bit's memory organization is that the use of 16-bit addresses and pointersis retained, ensuring that
the code is compact and executes quickly.

Note: The relative size of the root memory and data segments can be adjusted in 4K steps.

24 Rabbit 2000 Microprocessor

5.2.1 Definitions
Extended Code: Instructions addressed in the extended memory segment.

Extended Constants. C constants addressed in the extended memory segment. They are mixed
together with the extended code.

Extended Memory: Logical addresses above OXDFFF.

Extended RAM: RAM not used for root variables or stack. Extended memory in RAM may be
used for large buffers to save root RAM space. The function xal | oc() allocates spacein
extended RAM memory.

Root Code: Instructions addressed in the root memory segment.

Root Constants: C constants, such as quoted strings or data tables, addressed in the root memory
segment.

Root Memory: Logica addresses below 0xEO0QO.

Root Variables: C variables, including structures and arrays that are not initialized to afixed
value, are addressed in the data segment.

5.2.2 The Root Memory Segment

The root memory segment has atypica size of 24K. The larger the root memory segment, the
smaller the data segment and vice-versa. Root memory segment address zero is always mapped to
20-bit address zero. Usually the root memory segment is mapped to flash memory since root code
and root constants do not change except when the system is reprogrammed. It may be mapped to
RAM for debugging, or to take advantage of the faster access time offered by RAM.

The root memory segment holds a mixture of code and constants. C functions or assembly lan-
guage programs that are compiled to the root memory segment are interspersed with data con-
stants. Data constants are inserted between blocks of code. Data constants defined insidea C
function are put before the end of the code belonging to the function. Data constants defined out-
side of C functions are stored as encountered in the source code.

Except in small programs, the bulk of the code is executed using the extended memory segment.
But code in the root memory segment operates dightly faster, also the root memory segment has
special properties that make it better for some types of code.

5.2.2.1 Types of Code Best-Suited for the Root Memory Segment

* Short subroutines of about 20 instructions or lessthat are called frequently will use signif-
icantly less execution timeif placed in root memory because of the faster calling linkage for 16-
bit versus 20-bit addresses. For acall and return, 20 clocks are used compared to 32 clocks.

* |nterrupt routines. Interruptsuse 16-bit addressing so the entry to an interrupt routine must be
in root.

* TheBIOScore. Theinitialization code of the BIOS must be at the start of the root memory
segment.

Designer’s Handbook 25

5.2.3 The Data Segment

The data segment is mapped to RAM and contains C variables. Typicaly it starts at 8K or above
and ends at 52K (OxCFFF). Data alocation starts at or near the top and proceedsin a downward
direction. It isaso possible to place executable code in the data segment if it is copied from flash
to the data segment. This can be desirable for code that is self modifying, code to implement
debugging aids or code that controls write to the flash memory and cannot execute from flash. In
some cases RAM may require fewer wait states so code executes faster if copied to RAM.

5.2.4 The Stack Segment

The stack segment normally is from 52K to 56K (0xD000-OxDFFF). It is aways mapped to RAM
and holds the system stack. Multiple stacks may be implemented by defining several stacksin the
4k space or by remapping the 4K space to different locations in physical RAM memory, or by
using both approaches.

For example, if 16 stacks of 1k length are needed then 4 stacks can be placed in each 4k mapping
and 4 different mappings for the window can be used.

5.2.5 The Extended Memory Segment

This 8K segment from 56K to 64K (OXEQ00-OxFFFF) is used to execute extended code and it is
also used by routines that manipulate data located in extended memory. While executing code the
mapping is shifted by 4K each time the code passes the 60K point. Up to a megabyte of code can
be efficiently executed by moving the mapping of the 8K window using special instructions (long
call, long jump and long return) that are designed for this purpose. This uses up only 8K of the 16-
bit addressing space.

5.3 How The Compiler Compiles to Memory

The compiler generates code for root code, root constants, extended code and extended constants.
It allocates space for data variables, but, except for constants, does not generate data to be stored
in memory. Any initialization of variables must be accomplished by code since the compiler is not
present when the program startsin the field.

5.3.1 Placement of Code in Memory

Code may be placed in either extended memory or root memory. Functions execute at the same
speed, but callsto functionsin root memory are slightly more efficient than calls to functionsin
extended memory.

In al but the smallest programs, most of the code is compiled to extended memory. Since root
constants share the memory space needed for root code, as the memory needed for root constants
increases, the amount of code that can be stored in root memory decreases, and code must be
moved to extended memory.

26 Rabbit 2000 Microprocessor

5.3.2 Paged Access in Extended Memory

The code in extended memory executes in the 8K window from E0Q0 to FFFF. This 8K window
uses paged access. |nstructions that use 16-bit addressing can jump within the page and also out-
side of the page to the remainder of the 64K logical space. Special instructions, particularly
lcall, 1jp,andlret, areused to access code outside of the 8K window. When one of these
transfer-of-control instructions is executed, both the address and the view through the 8K window
change, allowing transfer to any instruction in the 1M physical memory space. The 8-bit XPC reg-
ister controls which of two consecutive 4K pages the 8K window aligns with (there are 256
pages). The 16-bit PC controls the address of the instruction, usually in the region E000 to FFFF.
The advantage of paged access isthat most instructions continue to use 16-bit addressing. Only
when a page change is needed does a 20-bit transfer of control need to be made.

Asthe compiler compiles codein the extended code window, it checks at opportune timesto seeif
the code has passed the midpoint of the window or FO00. When the code passes FO00, the com-
piler dides the window down by 4K so that the code at FOO0+x becomes resident at EOO0+x. This
automatic paging results in the code being divided into segments that are typically 4K long, but
which can be very short or aslong as 8K. Transfer of control within each segment can be accom-
plished by 16-bit addressing. Between segments, 20-bit addressing is required.

Designer’s Handbook 27

28

Rabbit 2000 Microprocessor

6. The Rabbit BIOS

When Dynamic C compiles a user’s program to atarget board, the BIOS (Basic Input-Output Sys-
tem) is compiled first, as an integral part of the user’s program. The BIOS is a separate program
file that contains the code needed to interface with Dynamic C. It also normally contains a soft-
ware interface to the user’s particular hardware. Certain driversin the Dynamic C libraries require
BIOS routines to perform tasks that are hardware-dependent.The BIOS al so:

* Provides a variety of low-level services for the user’s program.
* Takes care of microprocessor system initialization.

* Provides the communications services required by Dynamic C for downloading code and
performing debugging services such as setting breakpoints or examining data variables.

* Defines the setup of memory.
A single, general-purpose BIOS is supplied with Dynamic C for the Rabbit. This BIOS will allow
you to boot Dynamic C on any Rabbit-based system that follows the basic design rules needed to
support Dynamic C. The BIOS requires both aflash memory and a 32K or larger RAM or just a
128K RAM for it to be possible to compile and run Dynamic C programs. If the user uses a flash
memory from the list of flash memories that are already supported by the BIOS, the task will be
simplified. If the flash memory chip is not already supported, the user will have to write adriver to
perform the write operation on the flash memory. Thisis not difficult provided that a system with
128K of RAM and the flash memory to be used is available for testing.

An existing BIOS can be used as a skeleton BIOS to create a new BIOS. Frequently it will only be
necessary to change #def i ne statements at the beginning of the BIOS. In this case it is unneces-
sary for the user to understand or work out the details of the memory setup and other processor ini-
tialization.

6.1 Startup Conditions Set Up By the BIOS
The BIOS sets up initial values for the following registers by means of code and declarations.

* Thefour memory bank control registers —VBOCR, MB1CR, MB2CR, and MB3CR—are 8-bit
registers, each associated with one quadrant of the 1M memory space. Each register determines
which memory chip will be mapped into its quadrant, how many wait states will be used for
accessing that memory chip, and whether the memory chip will be write protected.

* The STACKSEGregister isan 8-hit register that determines the location of the stack segment in
the IM memory.

* The DATASEGregister is an 8-bit register that determines the location of the data segment in
the 1M memory, normally the location of the data variable space.

* The SEGSI ZE register is an 8-bit register holding two 4-bit registers. Together the registers
determine the relative size of the base segment, data segment and stack segment in the 64K root
space.

* The MM DRregister isan 8-hit register used to force /CS1 to be always enabled or not. Having
CS1 aways enabled reduces power consumption.

Designer’s Handbook 29

* The XPCregister is used to address extended memory. Normally the user’s code frequently
changesthisregister. The BIOS sets theinitial value.

* The SP register is the system stack pointer. It is frequently changed by the user’s code. The
BIOS sets up an initial value.

All together there are 11 MMJ, M Uregistersthat are set up by the BIOS. These registers determine
all aspects of the hardware setup of the memory.

In addition, a number of origin declarations are made in the BIOS to tell the Dynamic C compiler
where to place different types of code and data. The compiler maintains a number of assembly
counters that it usesto place or alocate root code, extended code, data constants, data variables,
and extended data variables. Each of these counters has a starting location and a block size.

30 Rabbit 2000 Microprocessor

6.2 BIOS Flowchart

The following flowchart summarizes the functionality of the BIOS:

Sart at ,Ig\rpplication
addressO f?am
S Copy BIOS to BI1OS services
Initializing Yes flash. Clear flag for user appli-
BIOSflag? | in source code. cation program.

*No

Setup memory
control and
basic BIOS ser- [

vices.
* Start Dynamic C|
Is the program- v communications
ming cable con- es Uty state
nected? machine.
y No
Divert to BIOS|— &5
service? * *
Act as mas- | | Servicediag-
* No ter for clon- | | nostic port.
ing. (not yet
Call user appli- available)
cation program
(main).

Figure 11. BIOS Flowchart

Designer’s Handbook

6.3 Internally Defined Macros

Some macros used in the BIOS are defined internally by Dynamic C before the BIOS is compiled.
They are defined using tests done in the bootstrap loading, or by reading variables set in the GUI.
These are:

_FLASH , _RAM - Used for conditional compilation of the BIOS to distinguish between
compiling to RAM and compiling to flash. These are set in the Options | Compiler dialog box.

_RAM SI ZE , FLASH SI ZE - Used to set the MMU registers and code and data sizes
available to the compiler. The values given by these macros represent the number of 0x1000
blocks of memory available.

_BOARD_TYPE_ - Thisisread from the System ID block or defaulted to 0x100 (the BL1810
JackRabbit board) if no System ID block is present. This can be used for conditional compilation
based on board type.

6.4 Modifying the BIOS

The BIOS can be modified to be more specific concerning the user’s configuration. This can be
done one step at atime, making it easy to detect any problems. The source code for the Universal
BIOSisin Bl OS\ RABBI TBI CS. C. Dynamic C uses this source code for the BIOS by default,
but the user can specify another BIOS for Dynamic C to use in the Options | Compiler dialog
box.

There are several macros at the top of RABBI TBI OS. Cthat users may want to modify for boards
they design or for special situations involving off-the-shelf Rabbit-based boards. Not al of the
macros at the top of the BIOS are described here.

USE115KBAUD

The default value of 1 specifies that Dynamic C will communicate at 115,200 baud with the target.
If this macro is set to zero, Dynamic C will communicate at 57,600 baud. The lower baud rate
might be needed on some PCs that can not handle 115,200 baud. If USE115KBAUD is changed to
zero, the baud rate should be changed to 57,600 in the Dynamic C Options | Communications
dialog box. Starting with Dynamic C 7.05, USE115KBAUD is hot available to change the baud
rate, simply choose the baud rate in Options | Communications.

CLOCK_DOUBLED
The default value of 1 causes the clock speed to be doubled if the crystal speed isless than or
equal to 12.9 MHz. Setting this to zero means the clock speed will not be doubled.

ENABLE_CLONI NG

The default value of 0 disables cloning. Setting thisto 1 enables cloning and slightly increases the
code size of the BIOS. If cloning is used, PB1 should be pulled up with 50K or so pull up resistor.
Various cloning options are available when ENABLE _CLONI NGis set to one. For more informa-
tion on cloning, please see Chapter 8, “BIOS Support for Program Cloning,” in this manual and/or
Technical Note 207, Rabbit 2000 Cloning Board, which is available at rabbitsemiconductor.com.

32 Rabbit 2000 Microprocessor

DATAORG

Beginning logical address for the data segment. The default is 0x6000. This should only be
changed to multiples of 0x1000. Increasing it increases the root code space available, and
decreases root data space; decreasing it has the opposite effect. It can be changed to as low as
0x3000 or as high as 0xB00O0.

RAM Sl ZE

This macro sets the amount of RAM available. The default value isthe internally defined
RAM SI ZE The units are the number of 4k pages of RAM. In special situations, such as split-
ting RAM between two coresident programs, this may be modified to a smaller value than the
actual available RAM.

FLASH SI ZE

This macro sets the amount of flash available. The default value isthe internally defined
_FLASH_SI ZE_ The units are the number of 4k pages of flash. In special situations, such as
splitting flash between two coresident programs, this may be modified to a smaller value than the
actual available flash.

CS1_ALVWAYS_ON
Keeping CS1 active is useful if your system is pushing the limits of RAM accesstime. It will
increase power consumption alittle. Set to 0 to disable, 1 to enable

WATCHCODESI ZE

These define the number of bytes available to the debugger for compiling watch expression. The
default values are 0x200/0x060. Decreasing these increases the amount of RAM available for root
data.

NUM_RAM WAI TST, NUM FLASH WAI TST
These define the number of wait states to be used for RAM and flash. The default value for both is
0. Theonly valid valuesare 4, 2, 1 and 0.

MBOCR_I NVRT_A18, MB1CR | NVRT_A18, MB2CR_| NVRT_A18, MB3CR_| NVRT_A18
MBOCR_I NVRT_A19, MB1CR | NVRT_A19, MB2CR | NVRT_A19, MB3CR | NVRT_A19
These determine whether the M U registers for each quadrant are set up to invert addresslines A18
and A19 after the logical to physical address conversion. This allows each 256K quadrant of phys-
ical memory access up to four 256k pages on the actual memory device. These would be used for
special compilations of programsto be coresident on flashes between 512k and 1M in size. See
application note 202, Rabbit Memory Management In a Nutshell, and application note 210, Run-
ning Two Application on a TCP/IP Development Board for more details.

See the top of the BIOS source code (\BIOS\Rabbi t Bl CS. ¢) for more options.

Designer’s Handbook 33

6.5 Origin Statements to the Compiler

The Dynamic C compiler uses the information provided by origin statements to decide where to
place code and data in both logical and physical memory. The origin statements are normally
defined in the BIOS; however, they may aso be useful in an application program for certain tasks
such as compiling a pilot BIOS or cold loader, or specia situations where a user wants two appli-
cation coresident within a single 256K quadrant of flash.

6.5.1 Origin Statement Syntax
Prior to Dynamic C 7.05, origin statement syntax is:

#<origin type> <origin nane> <segnment val ue> <l ogi cal address>
<si ze> apply

All arguments are required.

Starting with Dynamic C 7.05, origin statement syntax (in BNF) is:

origin-directive : #origin-type identifier origin-designator

origin-designator : action-expression | origin-declaration

origin-declaration : physical-address size [follow-expression] [action-expression] [debug-expres-
sion]

origin-type: r codor g | xcodor g | wcodorg |rvarorg

follow-expression : f ol | ows identifier [spl i t bi n]

action-expression : r esune | appl y

debug-expression : debug | nodebug | al |

size : constant-expression

physical-address : constant-expression constant-expression

The non-terminals, identifier and constant-expressions, are defined in the ANSI C specification.

6.5.2 Origin Statement Semantics
An origin statement associates a code pointer and a memory region with a particular type of code.
The type of codeis specified by #origin-type.

Table 3. Origin types recognized by the compiler

origin type keyword
root code rcodorg
xnmem code xcodorg

wat ch code wcodor g

root data rvarorg

All code sections (r codor g, xcodor g code and wcodor g) grow up. All non-constant data
sections (r var or g) grow down. Root constants are generated to ther codor g region. xdat a
and xst ri ng are generated to the current xcodor g region.

34 Rabbit 2000 Microprocessor

All origin statements must have a unique ANSI C identifier. The scope of thisidentifier is only with
other origin statements or declarations. In the pre 7.05 syntax thisisthe<or i gi n nane>.

Each memory region is defined by calculating a physical address from an 8-hit base address (first
constant-expression of physical-address) and a 16-bit logical address (second constant-expression of
physical-address). The size of the memory region is determined by 20-bit size. Overflow of these
three values is truncated. In the pre 7.05 syntax these three values are <segnment val ue>,
<l ogi cal address>and<si ze>.

The keywords appl y andr esune are action-expressions. They tell the compiler to generate code
or data in the memory region specified by identifier. An appl y action resets the code or data
pointer for the specified region to the starting physical address of the region and makes the region
active. A r esurme action does not reset the code or data pointer, but does make the memory region
active.

A region remains active (i.e., the compiler will continue to generate code or data to it) until
another region of the same origin-type is activated with an appl y or r esun®e action or until the
memory region isfull.

The option follow-expression is best described with an example. First, let us declareyour code
in an origin statement containing an origin-declaration. A follow-expression can only name a
region that has already been declared in an origin-declaration.

#rcodorg yourcode 0x0 0x5000 0x500
then the origin statement:
#rcodorg mycode 0x0 0x5500 0x500 foll ows yourcode

tells the compiler to activate mycode when your code isfull. This action does an implicit

r esume onthe memory region identified by your code. In this example, the implicit r esurne
also generates ajump to ny code when your code isfull. For dataregions, the data that would
overflow the region is moved to the region that follows. Combined data and code regions (like

#r codor g) use both methods, which one is used depends on whether code or data caused the
region to overflow. In our example, if data caused your code to overflow, the datawould be writ-
ten to the memory region identified by mycode.

Furthermore, a follow-expression may specify that when the code or data resumes at the next
region it should generate a separate bin file. This option is designed to support burning multiple
flash or EPROM devices. The binary files generated share the same base name as the original file,
but appended with a number which is followed by the .bin extension. For example, if hel | 0. ¢, a
large program that spans both flash chips, is compiled to file with the spl i t bi n option on,

hel | 01. bi nand hel | 02. bi n will be generated. Obviously, this option is only meaningful
when compiling to afile.

The optional debug-expression isonly valid with thexcodor g origin-type. It tellsthe compiler to
generate only debug or nodebug codein that physical memory region. If debug-expression is
not specified, the declaration istreated asan al | region. Anal | region can have both debug
and nodebug code. Activatingan al | region (by using appl y or r esune) will cause both
debug and nodebug regionsto becomeinactive. If anal | regionisactive, both debug and
nodebug regions must be made active to entirely deactivatetheal | region. In other words, if an
al | regionisactiveand adebug region is activated, any nodebug code will still be generated
totheal | region until anodebug region is made active.

Designer’s Handbook 35

With regard to follow-expressions, adebug region may not follow anodebug region or vice
versa. Anal | region may follow either adebug or anodebug region. Only anal | region may
follow another al | region. Thisalowsdebug and nodebug regionsto spill into acommon

al | regio

n.

6.5.3 Origin Statement Examples

The diagram below shows how the origin statements define the mapping between the logical and
physical address spaces.

#def i
#rvar

ne DATASEGVAL 0x91
org rootdata (DATASEGVAL) Oxc5ff 0x6600

#rcodorg rootcode 0x00 0x0000 0x6000
#wcodor g wat code (DATASEGVAL) 0xc600 0x0400
#xcodor g xmencode Oxf8 0xe000 0x1a000
/] data declarations start here

apply // grows down

apply
apply
apply

Dynamic C defines macros that include information about compiling to RAM or flash and identify-
ing memory device types, memory sizes, and board type. The origin setup shown above differs from
that included in the standard BIOS included with Dynamic C as the standard BIOS uses additional
macros values for dealing with awider range of boards and memory device types.

OxFFFF

OxEO000

Ox CDFF
OxC5FF

0x6000

0x0000

Physical Address Space

Logical Address Space

Xxmemcode
stack r oot dat a
watcode wat code
rootdata
rootcode
xmencode
r oot code

6.5.4 Origin Directives in Program Code

To place programs in different placesin root memory or to compile aboot strapping program, such
asapilot BIOS or cold loader, origin statements may be used in the user’s program code.

For example, the first line of apilot BIOS program, pi | ot . ¢, would be

Hr

codorg rootcode 0x0 Ox0 0x6000 apply

OXFFFFF

0x9DDFF

0x97000
0x20000

0x06000

0x00000

A program with such an origin directive could only be compiled to a.bin file, because compiling it
to the target would overwrite the running BIOS.

36

Rabbit 2000 Microprocessor

7. The System ID Block

The BIOS supports a system identification block to be placed at the top of flash memory. Identifi-
cation information for each device can be placed in it for access by the BIOS, flash driver, and
users. Thisblock will contain specific part numbers for the flash and RAM devicesinstalled, the
product’s serial number, Media Access Control (MAC) addressif an Ethernet device, and so on. In
addition, the ID block is designed with future expansion in mind by including a table version num-
ber and storing the block’s size in bytes within the block itself. Pointers for a“user block” of pro-
tected data exist as well, with the planned use for storage of calibration constants, etc., although
the user may useit if desired.

Note that version 1 of the ID block (tableVersion = 0x01) has only limited functionality. In partic-
ular, only the following parameters are valid: t abl eVer si on, product | D, t i nest anp,
macAddr, i dBl ockSi ze, i dBl ockCRC, and mar ker . Version 2 and later ID blocks have all
the values filled with the exception of the flash and RAM speed fields, and Dynamic C versions
7.04x2 and later support use of the user block.

If Dynamic C does not find an ID block on a device, the compiler will assumethat it isaZ-World
BL 1810 (Jackrabbit) board.

Designer’s Handbook 37

7.1 Definition of SysIDBlock

The following global struct isdefined in | DBLOCK. LI B and isloaded from the flash device dur-
ing BIOS startup. Users can access this struct in RAM if they need information from it. The defi-
nition below isfor a 128-byte ID block; the actual size can vary according to the valuein

i dBl ockSi ze. Ther eserved[] fieldwill expand and/or shrink to compensate for the change
insize.

typedef struct {

int tabl eVersion; /1 ver. numfor this table |ayout

int productlD; [l Z-World part #

int vendorl D /11 =2zZ-Wrld

char tinmestanp[7]; Il YYYMDHMS

| ong flashlD; [l Z-World part #

int flashType; /] Wite nethod

int flashSize; /1 in 1000h pages

int sectorSize; /1l size of flash sector in bytes

int nunBectors; /'l number of sectors

int flashSpeed,; // 1n nanoseconds

| ong flash2l D, [l Z-World part #, 2nd flash

int flash2Type; // Wite nethod, 2nd fl ash

int flash2Size; /1 in 1000h pages, 2nd fl ash

int sector2Size; /1l byte size of 2nd flash's sectors

int nunRSectors; /1 number of sectors

int flash2Speed; /! in nanoseconds, 2nd fl ash

| ong ram D, [l Z-World part #

int ranSize; /1 in 1000h pages

int ranBpeed,; /1 in nanoseconds

int cpul D /1 CPU type identification

| ong crystal Freq; /1l in Hertz

char macAddr|[6] ; /1 Media Access Control (MAC) addr

char serial Nunber[24]; [/ device serial nunber

char product Nane[30] ; /1 NULL-term nated string

char reserved[1]; /'l reserved 4 |ater use - size can
11 gr ow

| ong i dBl ockSi ze; /1l size of the Sysl DBl ock struct

int wuserBl ockSize; /1l size of user block (directly
/1 bel ow | D bl ock)

int wuserBlockLoc; /] offset of start of user block
Il fromthis block

int idBlockCRC, /1 CRC of this block (when this
11 field is set to zero)

char nmarker[6]; /1 shoul d be 0x55 OxAA 0x55 OxAA

/1 0x55 OxAA
} Sysl DBl ock;

38 Rabbit 2000 Microprocessor

7.2 Access

The BIOS will read the system 1D block during startup, so all a user needsto do is access the sys-
tem ID block struct Sys| DBl ock in memory. If the BIOS does not find an ID block, it sets all
parametersin Sys| DBl ock to zero.

7.2.1 Reading the SystemID Block

If the user desiresto read the ID block off the flash, the following function (from | DBLOCK. LI B)
should be called:

_readl DBl ock
int _readl DBl ock(int flash_bitmap)

DESCRIPTION:

Attemptsto read the system ID block from the highest flash quadrant and saveitin the
system ID block structure. It performs a CRC check on the block to verify that the block
isvalid. If an error occurs, Sys| DBl ock. t abl eVer si on isset to zero.

PARAMETER

flash_bitmap Bitmap of memory quadrants mapped to flash. Examples:
0x01 = quadrant 0 only
0x03 = quadrants O and 1
0x0C = quadrants 2 and 3

RETURN VALUE:

0: Successful
- 1: Error reading from flash
- 2: 1D block missing
- 3: 1D block invalid (failed CRC check)

7.2.2 Writing the SystemID Block
TheW it eFl ash() function does not allow writing to the ID block. If the ID block needsto be
rewritten, a utility to do so is available for download from the Z-World website:

http://ww. zwor | d. conf support/feature_downl oads. ht
or contact Rabbit Semiconductor’s Technical Support.

Designer’s Handbook 39

http://www.zworld.com/support/feature_downloads.html

7.3 Determining the Existence of the SystemID Block
The following sequence of events can be used to determineif an ID block is present:

1

Thetop 16 bytes of the flash device are read (if a 256K B flash in stalled, 16 bytes starting at
address Ox3FFFO will be read) into alocal buffer.

Thetop six bytes of the buffer (read from Ox3FFF8-0x3FFFF) are checked for an alternating
sequence of 0x55, 0xXAA, 0x55, 0XAA, 0x55, OxAA. If thisis not found, the block does not
exist and an error (-2) isreturned.

The ID block size (=SIZE) is determined from the first 4 bytes of the 16-byte buffer.

A block of bytes containing all fields from the start of the Sys| DBl ock struct up to but not
including the reserved field is read from flash at address 0x40000-SIZE, essentialy filling the
Sys| DBI ock struct except for the reserved field (since the top 16 bytes have been read ear-
lier).

The CRC field issaved in alocal variable, then set to 0x0000. A CRC check isthen calculated
for the entire ID block except the reserved field and compared to the saved value. If they do not

match, the block is considered invalid and an error (-3) isreturned. The CRC field isthen
restored.

Thereserved field is avoided in the CRC check since its size may vary, depending on the size of the

ID block.
Table 4. The System ID Block
sg:tsgf‘ gﬁ)rgk Size (bytes) Description
00h 2 ID block version number
02h 2 Product ID
04h 2 Vendor ID
06h 7 Timestamp (Y Y/MM/D/HIM/S)
0Dh 4 Flash ID
11h 2 Flash size (in 1000h pages)
13h 2 Flash sector size (in bytes)
15h 2 Number of sectorsin flash
17h 2 Flash access time (nanoseconds)
19h 4 Flash ID, 2nd flash
1Dh 2 Flash size (in 1000h pages), 2nd flash
1Fh 2 Flash sector size, 2nd flash (in bytes)
21h 2 Number of sectorsin 2nd flash
23h 2 Flash access time (nanoseconds), 2nd flash
25h 4 RAM ID
29h 2 RAM size (in 1000h pages)

40

Rabbit 2000 Microprocessor

Table 4. The System ID Block (Continued)

sg:tsgf‘ EE)TK Size (bytes) Description

2Bh 2 RAM access time (nanoseconds)

2Dh 2 CPU ID

2Fh 4 Crystal frequency (Hertz)

33h 6 Media Access Control (MAC) address

39h 24 Serial number (as a null-terminated string)

51h 30 Product name (as a null-terminated string)

6Fh N Reserved (variable size)
SI ZE - 10h 4 Size of thisID block
SI ZE - 0Ch 2 Size of user block
SI ZE - 0OAh 2 Offset of user block location from start of this block
SI ZE - 08h 2 CRC value of this block (when this field = 0000h)
SI ZE - 06h 6 Marker, should = 55h AAh 55h AAh 55h AAh

Designer’s Handbook

41

42

Rabbit 2000 Microprocessor

8. BIOS Support for Program
Cloning

The BIOS supports copying designated portions of flash memory from one controller (the master)
to another (the clone). The Rabbit 2000 Cloning Board connects to the programming port of the
master and to the programming port of the clone.

J1 J2
RXA RXA
GND AN va GND
CLKA —|cLka s
D +5Vj— +5V
Connect JRESET}——0 JRESET Connect
to Master TxA | T N TXA to Clone
Programming N/CH— 7| —ne Programming
Port STATUS () STATUS Port
SMODEO|— CLONESIAES SMODEO
SMODE1 }— I—’\/\/\/—I—-SMODE1
470Q

Figure 12. Cloning Board

8.1 Overview of Cloning

If the cloning board is connected to the master, the signal CLKA isheld low. Thisis detected in
the BIOS after the reset ends, invoking the cloning support of the BIOS. If cloning has been
enabled in the master’'s BIOS, it will cold boot the target system by resetting it and downloading a
primary boot program. The master then sends the entire BIOS over to the clone, where the boot
program receivesit and storesit in RAM (just like Dynamic C does when compiling the BIOS). A
CRC check of the BIOS is performed on both the master and clone, and the results are compared.
The cloneisreset again, and the BIOS on the clone begins running. Finally, the master sends the
user’s program at high speed, and the program is written to the flash memory.

When the designated portion of the flash has been transferred, the clone flashesthe cable LED ina
distinctive pattern to indicate that the programming is done. At that point the cloning board can be
unplugged and plugged into another target. When the master is reset, it will program the next
clone.

Designer’s Handbook 43

8.1.1 Evolution of Cloning Support
Over several versions of Dynamic C, cloning has improved in terms of data transfer rates and
options that may be set in the BIOS.

Dynamic C .
Version Summary of Cloning Support

6. 50 Initial cloning support added. Data transfer rates of
' 57,600 bps or 115,200 bps available.

7 05 Fast cloning introduced with restrictions. Maximum
' data transfer rates determined by the crystal frequency.

7 20 Only fast cloning is available. Fast cloning restrictions
' removed. More options introduced.

For details on both the fast cloning restrictions and options, please see Technical Note 207 “ Rabbit
2000 Cloning Board.” This document may be found at:

www, zwor | d. com
or
www. r abbi t sem conduct or. com

8.2 Creating a Clone

Before cloning can occur, the master controller must be readied. Once thisis done, any number of
clones may be created from the same master.

8.2.1 Steps to Enable and Set Up Cloning

The step-by-step instructions to enable and set up cloning on the master are in Technical Note 207.
In brief, the steps break down to: attaching the programming cable, running Dynamic C, making
any desired changes to the cloning macros, and then compiling the BIOS and user program to the
master.

The only cloning macro that must be changed is ENABLE _CLONI NG since the default condition
iscloning is disabled.

8.2.2 Steps to Perform Cloning

Once cloning is enabled and set up on the master controller, detach the programming cable and
attach the cloning board to the master and the clone. Make sure the master end of the cloning
board is connected to the master controller (the cloning board is not reversible) and that pin 1 lines
up correctly on both ends. Once thisis done, reset the master by hitting Reset on the cloning
board. The cloning process will begin.

44 Rabbit 2000 Microprocessor

http://www.zworld.com/support/technotes_whitepapers.html
http://www.rabbitsemiconductor.com/documentation/app_tech_notes.shtml

8.2.3 LED Patterns
The following table describes the LED patterns that may occur on the Cloning Board.

Table 5. LED Patterns on Cloning Board

Dynamic C Cloning Status

Version

Cloning is active || Cloning successfully completed Error occurred

LED will blink quickly ina

LED blinks several | distinctive pattern of four flashes,
times per second. then pause, then four more
flashes...

Up thru 7.06 LED stops blinking.

7.05 thru 7.10
in fast LED isoff. LED ison. LED starts blinking.
cloning mode

Starti ith LED toggles on and
ar 7'n290W' off about once per | LED stays on. LED starts blinking.
' second.

8.3 Cloning Questions
The following sections answer questions about different aspects of cloning.

8.3.1 MAC Address

Some Ethernet-enabl ed boards do not have the EEPROM with the MAC address, namely the
RCM 2100, the RCM 2200 and the BL2000. These boards can still be used as a clone because the
MAC addressisin the system ID block and this structure is shipped on the board and is not over-
written by cloning unless CLONE_ WHOLE FLASHand CL_| NCLUDE | D_BLOCKS are both set
to one. (Prior to Dynamic C 7.20, the option to overwrite the systemID block did not exist.)

If, however, you have a custom-designed board that does not have the EEPROM or the system ID
block, you may download a program at:

http://ww. zwor | d. conf support/feature_downl oads. ht m
to write the system ID block (which contains the MAC address) to your board.

8.3.2 Different Flash Sizes

Since the BIOS supports a variety of flash types, the flash EPROM on the two controllers do not
have to be identical. Cloning works between master and clone controllersthat have different-sized
flash chips because the master copiesits own universal flash driver to the clone. The flash driver
determines the particulars of the flash chip that it isdriving.

The master controller’s BIOS must allocate a memory buffer sufficiently large to work on the tar-
get. Prior to Dynamic C version 7.02, the cloning software used root memory for this buffer, which
reduces the root memory available to the application program. The size of the buffer is given by
the macro MAX_FLASH_ SECTORSI ZE. This macro is defined near the top of the

\ LI B\ Bl OSLI B\ FLASHWR. LI Bfile. The default value is 1024 (4096 in older versions). The

Designer’s Handbook 45

http://www.zworld.com/support/feature_downloads.html

user can reduce this buffer size to the maximum of the master and target’s sector sizesif root data
spaceisaproblem, or increase it to 4096 if needed.

Starting with Dynamic C version 7.02, the cloning implementation uses x memfor the buffer, so
root data space will not be a problem; and no changes should be made to FLASHWR. LI B.

8.3.3 Design Restrictions
Digita 1/0 line PB1 should not be used in the design if cloning isto be be used.

46 Rabbit 2000 Microprocessor

9. Low-Power Design and Support

To get the most computation for a given power level, the operating voltage should be approxi-
mately 3.3 V. At agiven operating voltage, the clock speed should be reduced as much as possible
to obtain the minimum power consumption that is acceptable.

Some applications, such as a control loop, may require a continuous amount of computational
power. Other applications, such as slow datalogging or a portabl e test instrument, may spend
long periods with low computational requirements interspersed with short periods of high compu-
tational load.

The current (and thus power) consumption of a microprocessor-based system generally consists of
apart that isindependent of frequency and a part that depends on frequency. The part that isinde-
pendent of frequency consists of leakage or current or current drawn by special circuits such as
pullup resistors or circuits that continuously draw power. Ordinary CMOS logic uses power when
it is switching from one state to another, and thisis the power that is dependent on frequency. The
power drawn while switching is used to charge capacitance or is used when both N and P FETs are
simultaneously on for a brief period during a transition.

Floating inputs or inputs that are not solidly either high or low can also draw current because both
N and P FETs are turned on at the same time. To avoid excessive power consumption, floating
inputs should not be included in a design (except that some inputs may float briefly during power-
on sequencing). Most unused inputs on the Rabbit can be made into outputs by proper software
initialization to remove the floating property. Pullup resistors will be needed on afew inputs that
cannot be programmed as outputs. An alternative to a pullup resistor is to tie an unused output to
the unused inputs. If pullup (or pulldown) resistors are required, they should be made aslarge as
possibleif the circuit in question has a substantia part of its duty cycle with current flowing
through the resistor.

Rabbit 2000 for f/L‘ ext pin
~__ disable f/2 LK
| |
1| Main Clock f/8
CPU
—:In—— Oscillator Doubler
_ 32 kHz ;
Periphera
Y= | oxillator ¢ Devlioces
To watchdog timer and
time/date clock

Note: Peripherals cannot be clocked slower than the CPU.

Figure 13. Rabbit Clock Distribution

Designer’s Handbook 47

For extreme low-power operation it should be taken into account that some memory chips draw
substantial current at zero frequency. For example, a Samsung static RAM (part number
KM684000BPL-7L) wasfound to draw 1 mA at 5V when chip select and output enable were held
enabled and all the other signals were held at fixed levels (along read). When the microprocessor
is operating at the slowest frequency (32 kHz clock), the memory cycle is about 64 ps and the
memory chip spends most of its time with the chip enable and output enable on. The current draw
during along read cycleis not specified in most memory data sheets. The Samsung chip, accord-
ing the data sheet, typically draws about 4 mA per megahertz when it is operating. However, it
appears that current consumption curve flattens out at about 250 kHz because of the constant 1
mA draw during along read.

In order to take full advantage of the Rabbit’s ultra low sleepy execution modes, a memory that
does not consume power during a static read is required. Advanced Micro Devices has aline of 3
V flash memories (AM29LV 010, AM29LV 040) that power down automatically whenever the
address (and control) lines do not change for a period of time slightly longer than the access time.
These memories will consume on the order of 30 WA when operated at a data rate of 1/64 MHz.

Prior to version 7.10, Dynamic C did not allow debugging with flash chips having sector sizes
greater than 4096 bytes, nor did the flash drivers provided in the Dynamic C libraries support such
flash chips. To use alarge sector flash in your product design if you are using aversion of
Dynamic C prior to 7.10, you can debug your application in RAM by using the “Compile to
RAM” compiler option, or use aboard with small sector flash for development only.

The Rabbit low-power sleepy mode of operation is achieved by switching the main clock to the
32.768 kHz clock and then disabling the main oscillator. In this mode, the Rabbit executes about 3
instructions every millisecond. Adding memory wait states can further slow the processor to about
500 instructions per second or one every 2 ms. At these speeds the power consumed by the micro-
processor, exclusive of the 32.768 kHz oscillator, is very low, in the area of 50 HA to 100 pA. The
Rabbit will generally test for some external event and leave sleepy mode when that event is
detected. The 32.768 kHz oscillator is a major consumer of power, requiring approximately 80 HA
at 3.3 V. Thisdropsdramatically to about 18 pA at 2.2 V. For the lowest standby power it may be
desirable to use an external oscillator to generate the 32.768 kHz clock. The Intersil (formerly
Harris) part HA7210 can be used to construct a 32.768 kHz oscillator that consumes approxi-
mately 5 pA at 3.3 V.

For the very lowest power consumption the processor can execute along string of mul instruc-
tions with the de and bc registers set to zero. Few if any internal registers change during the exe-
cution of astring of mul zero by zero, and a memory cycle takes place only once in every 12
clocks. By combining all these techniques it may be possible to get the sleepy current under 50
HA.

48 Rabbit 2000 Microprocessor

9.1 Software Support for Low-Power Sleepy Modes

In dleepy mode the microprocessor executes instructions too slowly to support most interrupts.
The seria ports can function but cannot generate standard baud rates since the system clock is at
32.768 kHz. The 48-bit battery backable clock continues to operate without interruption.

Usually the programmer will want to reduce power consumption to a minimum, either for afixed
time period or until some external event takes place. On entering sleepy mode by calling use
32kHzGsc() , the periodic interrupt is completely disabled, the system clock is switched to
32.768 kHz, and the main oscillator is powered down. On exiting sleepy mode by calling use

Mai nGsc() , the main oscillator is powered up, atime delay isinserted to be sure that it has
resumed regular oscillation, and then the system clock is switched back to the main oscillator. At
this point the periodic interrupt is reenabled. Data will probably be lost if interrupt-driven commu-
nication is attempted while in sleepy mode.

While in dleepy mode the user has available aroutine, updat eTi ner s() , that can be called
periodically to keep Dynamic C time variables updated. These time variables keep track of sec-
onds and milliseconds and are normally used by Dynamic C routines to measure time intervals or
to wait for a certain time or date. This routine reads the real-time clock and then computes new
values for the Dynamic C time variables. The norma method of updating these variablesisthe
periodic interrupt that takes place 2048 times per second.

9.2 Baud Rates in Sleepy Mode

The available baud rates in deepy mode are 1024, 1024/2, 1024/3, 1024/4, etc. (The baud rate
113.77 is available as 1024/9 and may be useful for communicating with other systems operating
at 110 bps - a 3.4% mismatch. In addition the standard PC compatible UART 16450 with a baud
rate divider of 113 generates a baud rate of 1019 bps, a 0.5% mismatch with 1024 bps. Baud rate
mismatches of up to 5% may be tolerated.) If thereis alarge baud rate mismatch, the serial port
can usually detect that a character has been sent to it, but can not read the exact character.

Designer’s Handbook 49

50

Rabbit 2000 Microprocessor

10. Memory Planning

The following requirements should be considered when planning memory configuration for a Rab-
bit system.

* Thesize of the code anticipated. Usually code size up to 512K is handled by one flash memory
chip. Static data tables can be conveniently placed in the same space using the xdat a and
xst ri ng declarations supported by Dynamic C, so the amount of space needed for static data
can be added to the amount of space needed for code. If you are writing aprogram from scratch,
remember that 512K of code is equivalent to 25,000 to 50,000 C statements, and such alarge
program can take years to write.

e C programs vary in how much RAM will be required. Many programs can subsist on 32K of
RAM. Having more RAM on the system is convenient for debugging since debugging and pro-
gram testing generally operates more powerfully and faster when sufficient RAM isavailableto
hold the program and data. For this reason, most Z-World controllers based on the Rabbit use a
dual footprint for RAM that can accommodate either a 32K x 8, whichisin a28-pin package, or
a 128K x 8 or 512K x 8, which isin a32-pin package. The base RAM isinterfaced to /CS1 and
/WEL1, and /OE1.

RAM isrequired for the following items:

Root variables—maximum of 48K.

Stack pages—rarely more than 20K.

RAM for debugging convenience on prototype units—512K is usually enough to
accommodate programs.

RAM for extended memory—such as data logging applications or communications
applications. The amount needed depends on application.

10.1 Making a RAM-only board.

Some Rabbit customers are designing boards that have only a single RAM chip and no flash mem-
ory. Although thisis not generally recommended, it may be safe to use only a RAM chip as long
as the board has a continuous power supply and is set up to be field-programmable via the Rabbit
bootstrap mode.

For example, a Rabbit board in a noncritical system such as alawn sprinkler system may be moni-
tored from aremote location via the Internet or Ethernet, where the remote monitor has the ability
to reload the application program to the board. One way to achieve field programmability iswith
the RabbitLink Network Gateway.

There are certain hardware and software changes that are required to make this work which are
discussed here. Dynamic C starting with version 6.57 has the software files discussed here which
are necessary to make a RAM only board work.

Designer’s Handbook 51

10.1.1 Hardware Changes

Ordinarily, CSO/OEO/WEDO of the Rabbit processor are connected to a flash chip, and
CS1/OE1L/WEL1 are connected to RAM. However, if only RAM isto be used, CSO/OEQ/WEO must
be connected the RAM. Thisis because on power up or reset, the Rabbit will begin fetching
instructions from whatever is hooked up to CS0/OEO/WEDO.

10.1.2 Software Changes

In order to program aRAM only board from Dynamic C or the Rabbit Field Utility (RFU), severa
changes are needed. When Dynamic C or the RFU first start, they put the Rabbit based target
board in bootstrap mode where it awaits data sent via “triplets.” These programs then send triplets
that map the lowest quadrant of physical memory to CSIYOEL/WEL in order to load a primary
loader to RAM. Thefirst set of tripletsloaded to the target is contained in afile called cold-
load.bin. A different coldload.bin isrequired in order to map the lowest memory quadrant to
CSO/OEO/WEQ. Theimagefile for this programis\ Bl OS\ RAMONLYCOLDLOAD. BI N. To useit,
rename Bl OS\ COLDLOAD. BI Nto Bl OS\ COLDLOAD. BAK, and rename\ Bl OS\ RAMONL Y-
COLDLQAD. BI Nto\ Bl OS\ COLDLQAD. BI N. (Later versions of Dynamic C may have a GUI
method of choosing the cold loader.)

The primary loader loads a secondary |oader, which doesn’t affect the memory mapping. The sec-
ondary loader loads the Rabbit BIOSto RAM (from the application program imagefile in the case
of the RFU, by compiling the BIOS straight to the target in the case of Dynamic C.) One of the
first things the BIOS does in program maode is copy itself to flash, and then transfer execution to
the flash copy. When the board powers up later without the programming cable attached, it will
start running the BIOS in flash.

The specia BIOSfile\ Bl OS\ RAMONLYBI GS. C eliminates the self copy step and initializes the
MIU/MMU correctly to match the hardware configuration. This BIOS can be selected as the user-
defined BIOS by using the Options | Compiler dialog box.

52 Rabbit 2000 Microprocessor

11. Flash Memories

The flash memorieslisted in the table below have been qualified for use with the Rabbit 2000
microprocessor. Starting with Dynamic C version 7.20 large sector flash devices (sectors greater
than 4096 bytes) are supported. To incorporate a large-sectored flash into an end product, the best

strategy is have a small-sectored development board.

IMPORTANT: Therapidly changing market for flash devices may affect availability. The inclu-
sion of aflash device in the following table does not speak to its availability.

Table 6. 32-Pin Flash Memories Supported by the Rabbit 2000, Small Sector

: Device | Sector | Number . Best Operating ;
Vendor Device Size | Size of Write | ACCESS | 11006 Package | Dynamic
e (bytes) | (bytes) | Sectors [z 'I;L]n;;a V) Types® | C Version
Atmel AT29C1024 64K | 128 512 | sector |70 4555 |56 7.02°
Atmel AT29LV1024 64K |128 512 | sector | 150 3.0-36 |56 7.02°
Atmel AT29C010 128K | 128 1024 | sector |70 4555 [1,2,4 All
Atmel AT29LV010 128K | 128 1024 | sector | 150 3.0-36 (2,4 All
Atmel AT29BV010 128K |128 1024 | sector | 200 27-36 |24 7.02°
Atmel AT29C020 256K | 256 1024 | sector |70 4555 [1,2,4 6.50
Atmel AT29LV020 256K | 256 1024 | sector | 200 3.0-36 (2,4 6.50
Atmel AT29BV020 256K | 256 1024 | sector | 250 27-36 (2,4 7.02°
Atmel AT29C040 512K | 256 2048 | sector | 120 4555 (1,4 6.57°
Atmel AT29LV040 512K | 256 2048 | sector | 200 3.0-36 |4 6.57°
Atmel AT29BV 040 512K | 256 2048 | sector | 200 27-36 |4 6.57°
Mosel/Vitdic | V29C51001 128K | 512 256 byte |45 4555 [1,2,4 6.50
Mosel/Vitdic | V29LC51001 128K | 512 256 byte |90 4555 (1,2 7.02°
Mosel/Vitdic | V29C51002 256K | 512 512 byte |55 4555 [1,2,4 6.50
Mosel/Vitdic | V29LC51002 256K | 512 512 byte |90 4555 [1,2 7.02°
Mosel/Vitdic | V29C51004 512K | 1024 512 byte |70 4555 (2,4 6.57°
Mosel/Vitdic | V29C31004 512K | 1024 512 byte |90 3.0-36 (2,4 7.02°
SST SST29EES512 64K |128 512 | sector |70 4555 |1,2,3,4 6.50°
SST SST29LE512 64K | 128 512 | sector | 150 3.0-36 |1,23,4 6.50°
SST SST29VES512 64K |128 512 | sector |150 27-36 (1,2,3,4 7.20
SST SST29EE010 128K |128 1024 | sector |90 4555 |1,2,3,4 All
Designer’s Handbook 53

Table 6. 32-Pin Flash Memories Supported by the Rabbit 2000, Small Sector

Best

| S| S| S’ R e e | e o
(bytes) | (bytes) | Sectors @) (V)

SST SST29LE010 128K | 128 1024 | sector | 150 3036 (1,234 All
SST SST29VE010 | 128K |128 1024 | sector | 150 27-36 [1,2,3,4| 7.20°
SST SST29EE020 256K | 128 2048 | sector |120 4555 [1,2,3,4| 7.02°
SST SST29LE020 256K | 128 2048 | sector |200 3036 (1,234 7.02°
SST SST29VEO20 | 256K |128 2048 | sector |200 27-36 [1,2,3,4| 7.20°
SST SST29SF512 64K | 128 512 | byte |55 4555 1,23 7.20°
SST SST29VF512 64K | 128 512 | byte |55 2736 [1,2,3 7.20P
SST SST29SF010 128K | 128 1024 | byte |55 4555 |1,23 7.20°
SST SST29VF010 | 128K |128 1024 | byte |55 27-36 |1,2,3 7.20°
SST SST29SF020 256K |128 2048 | byte |55 4555 |1,2,3 7.20°
SST SST29VF020 | 256K |128 2048 | byte |55 2736 [1,2,3 7.20P
SST SST29SF040 512K |128 4096 | byte |55 4555 |1,23 7.20P
SST SST29VF040 | 512K | 128 4096 | byte |55 27-36 [1,2,3 7.20°
SST SST39SF512 64K | 4096 16 | byte [45 4555 |1,2,3 7.20°
SST SST39LF512 64K | 4096 16 | byte |45 3.036 [1,23 7.20P
SST SST39VF512 64K | 4096 16 | byte |70 2736 [1,2,3 7.20P
SST SST39SF010 | 128K | 4096 32 | byte |45 4555 |1,2,3 7.02°
SST SST39LF010 | 128K | 4096 32 | byte |45 3.0-36 |1,2,3 7.20°
SST SST39VF010 | 128K | 4096 32 | byte |70 27-36 |1,2,3 7.20°
SST SST39SF020 | 256K | 4096 64 | byte |45 4555 (1,23 6.50
SST SST39LF020 | 256K | 4096 64 | byte |45 3.036 [1,23 7.20P
SST SST39VF020 | 256K | 4096 64 | byte |70 2736 [1,2,3 7.20P
SST SST39SF040 | 512K | 4096 128 | byte |45 4555 |1,2,3 7.02°
SST SST39LF040 | 512K | 4096 128 | byte |45 3.0-36 [1,2,3 7.20°
SST SST39VF040 | 512K | 4096 128 | byte |70 2736 [1,2,3 7.20P
Winbond W29CEEO11 128K | 128 1024 | sector |90 4555 (1,24 7.02
Winbond W29C020CT 256K |128 2048 | sector |70 4555 |1,24 All¢
Winbond W29C040 512K | 256 2048 | sector |90 4555 (2,4 7.02°

54 Rabbit 2000 Microprocessor

Table 7. 32-Pin Flash Memories Supported by the Rabbit 2000, Large Sector

vondor | 22¥iee | °G5e° | e | ar | Wrte potess | Charas e | Yo
(bytes) | (bytes) | Sectors @) V)

AMD AM?29LV001 128K | varies 10 byte |45 4555 (2,4 7.20°
AMD AM20LVOOIT | 128K |varies 5 byte |45 4555 (2,4 7.20
Atmel AT49F002 256K | varies 5 byte |55 4555 |1,2,3,4 7.20°
Atmel AT49F002T 256K | varies 5 byte |55 4555 [1,2,3,4 7.20P
Fujitsu MBM29F002T | 256K | varies 7 byte |55 4555 (2,4 7.20°
Fujitsu MBM29F002B | 256K |varies 7 byte |55 4555 |2,4 7.20°
Hyundai HY 29F002T 256K | varies 7 byte |45 4555 [1,2,4 7.20
Hyundai HY 29F002B 256K | varies 7 byte |45 4555 [1,2,4 7.20°

a. Package Types:

1. 32-pin PDIP 2. 32-pinPLCC

3. 32-pin TSOP (8 mm x 14 mm)

5. 44-pin PLCC

b. These flash devices are supported as of the Dynamic C version listed, but have not all been tested with
those versions. 512K B flash in particular may not work with versions prior to 7.04, but a software patch
isavailable from Z-World tech support for 512K B flash support under versions 6.57 and 7.03.

c. Dynamic C Versions 6.04-6.1x:
The FLASH_SI ZE parameter in the JRABBI OS. Cfile needs to be changed to reflect the correct
number of 4K pages for the selected device. By default, the FLASH_SI ZE parameter contains a 0x20
that corresponds to a 128K x 8 device with thirty-two 4K pages of flash. Dynamic C versions 6.5x and
greater determine the flash size automatically and no code change is required.

4. 32-pin TSOP (8 mm x 20 mm)
6. 48-pin TSOP (8 mm x 14 mm)

Designer’s Handbook

55

11.1 Supporting Other Flash Devices

If auser wishesto use aflash memory not listed in the above tables, but still uses the same stan-
dard JEDEC write sequences as one of the supported flash devices, the existing Dynamic C flash
libraries may be able to support it simply by modifying afew values in the BIOS. Specifically,
three modifications need to be made:

1. Theflash device needs to be added to the list of known flash types. This table can be found by
searching for the label FI ashDat a inthefileLI B\ Bl OSLI B\ FLASHWR. LI B. The format
isdescribed in the file and consists of the flash ID code, the sector size in bytes, the total num-
ber of sectors, and whether the flash is written one byte at atime or one entire sector at atime.

2. Near thetop of the main BIOSfile (Bl OS\ RABBI TBI OS. Cfor most users), in theline
#define FLASH SI ZE FLASH S| ZE change FLASH Sl ZE to afixed value for
your flash (the total size of the flash in 4096-byte pages).

3. If aversion of Dynamic C prior to 7.02 isbeing used, the macro _ SECTOR_SI ZE_ near the
top of LI B\ Bl OSLI B\ FLASHWR. LI B needsto be hard-coded in a manner similar to step 2
above. Intheline
#defi ne MAX_FLASH SECTORSI ZE _SECTOR SI ZE_

_SECTOR _SI ZE__ should be replaced with the sector size of your flash in bytes.

Note that prior to Dynamic C 7.20, the BIOS only supported flash devices with equally-sized sec-
tors of either 128, 256, 512, 1024, or 4096 bytes (i.e. small sector flash) If you are using an older
version of Dynamic C (prior to version 7.20) and your flash device does not fall into that category,
it may be possible to support it by rewriting the BIOS flash functions; see Section 11.2 for more
information.

Starting with Dynamic C 7.20, large sector flash devices are supported by the BIOS. Typically
large sector flash devices have avariety of sector sizes on asingle chip.

11.2 Writing Your Own Flash Driver

If auser wishestoinstall aflash memory that cannot be supported by following the stepsin the
above section (for example, if it uses acompletely different unlock/write sequence), two functions
need to be rewritten for the new flash. This section explains the requirements of these two func-
tions: I nitFl ashDriver and_W it eFl ash. They will need to replaced in the library that
implements the Z-World flash driver, FLASHWR. LI B.

Below isthe C st r uct used by the flash driver to hold the required information about the flash
memory installed. The I nit Fl ashDri ver functioniscalled early in the BIOSto fill this
st ruct before any accesses to the flash.

struct ({

char fl ashXPC; /1 XPC required to access flash viaXMEM
i nt sectorSize; /1 byte size of one flash memory sector

i nt nunBect ors; /1 number of sectors on flash

char writeMbde; /1 write method used by the flash

voi d *eraseChi pPtr; [/ pointerto erasechip functionin RAM
/1 (eraseChi pPtr iscurrently unused)
void *witePtr; /'l ptr to write flash sector function (RAM)
} _Fl ashlnfo;

56 Rabbit 2000 Microprocessor

Thefield f | ashXPC contains the X PC required to access thefirst flash physical memory location
viaXMEM address EOOOh. The pointer wr i t ePt r should point to afunctionin RAM to avoid
accessing the flash memory while working with it. You will probably be required to copy the func-
tion from flash to a RAM buffer in the flash initialization sequence.

Thefieldwr i t eMbde specifies the method that a particular flash device uses to write data. Cur-
rently, only two common modes are defined: “ sector-writing” mode, as used by the SST SST29
and Atmel AT29 series (w i t eMbde=1); and “byte-writing” mode, as used by the Mosel/Vitelic
V29 series (W i t eMbde=2). All other values of wr i t eMbde are currently undefined, although
they may be defined by Z-World as new flash devices are used.

_InitFlashDriver

Thisfunction is called from the BIOS. A bitmap of quadrants mapped to flash (0x01, 0x02, 0x04,
0x08 correspond to the 1st-4th quadrants, OXxOC = the topmost two quadrants) is passed to it in HL.

This function needs to perform the following actions:

1. Load _Fl ashl nf o. f I ashXPC with the proper XPC value to access flash memory address
00000h viaXMEM address EO00h. The quadrant number for the start of flash memory is
passed to the function in HL and can be used to determine the X PC value, if desired. For exam-
ple, if your flash islocated in the third memory quadrant, the physical address of the first flash
memory location is80000h. 80000h - EO000h = 72000h, so the value placed into
_Fl ashl nf o. XPC should be 72h.

2. Load _Fl ashl nf 0. sect or Si ze with the flash sector sizein bytes.
3. Load _Fl ashl nf 0. nunBect or s with the number of sectors on the flash.
4. Fl ashlnfo.witePtr shouldbeloaded with the memory location in RAM of the func-

tion that will perform that action. The function will need to be copied from flash to RAM at this
time aswell.

5. This function should return zero if successful, or -1 if an error occurs.

_WriteFlash

This function writes exactly one sector of datafrom abuffer in RAM to the flash memory, aligned
along aflash sector boundary. _WriteFlash is called from the BIOS (the user will normally call
higher-level flash writing functions) as well as several libraries, and should be written to conform
to the following requirements:

* For versions of Dynamic C prior to 7.02, it should assume that the source dataislocated at the
logical RAM address passed in BC. In all later versions of Dynamic C, afixed 4096-byte block
of XMEM isused for the flash buffer, which can be accessed via macros located at the top of
FLASHWR. LI B. These macrosinclude FLASH BUF_PHYS, the unsigned long physical
address of the buffer; FLASH _BUF_XPC and FLASH_BUF_ADDR, the logical address of the
buffer viathe XMEM window; and FLASH BUF_ 0015 and FLASH BUF_1619, the physi-
cal address of the buffer broken down to be used with the LDP opcodes.

* |t should assume that the flash addressto be written to is passed asan XMEM addressin A: DE.
The destination must be aligned with a flash memory sector boundary.

* It should check to see whether the sector being written contains the ID or user blocks. If so, it
should exit with an error code (see below). Otherwise, it should perform the actual write opera-
tion required by the particular flash used.

Designer’s Handbook 57

* Interrupts should be turned off (set the interrupt level to 3) whenever writes are occurring to the
flash. Interrupts should not be turned back on until the write is complete -- an interrupt may
attempt to access a function in flash while the write is occurring and fail.

* It should not return until the write operation is finished on the chip.

* [t should return azeroin HL if the operation was successful, a-3 if atimeout occurred during
the wait, or a-4 if an attempt was made to write over the ID block.

58 Rabbit 2000 Microprocessor

12. Troubleshooting Tips for New
Rabbit-Based Systems

When a user designs a new microprocessor system around the Rabbit and carefully follows the
Rabbit design conventions, it is possible that the system will not boot up when Dynamic C is con-
nected to the programming connector. This can happen because of a design error or even because
of arandom hardware defect in the new system. A hardware procedure is available to makeit eas-
ier to debug systematically in such a situation.

A series of steps may be performed in order to diagnosis a problem that keeps Dynamic C from
booting.

12.1 Initial Checks
Perform the following checks with the /RESET (pin 37) line tied to ground.

* With avoltmeter check for the +5V or other operating voltage on pins 3,28,53,78,92 and 42.
Check for ground on pins 2, 27, 39, 52, 77 and 89.

* With an oscilloscope check the 32.768 kHz oscillator on XTALAZ2 (pin 41). Make surethat it is
oscillating and that the frequency is correct.

* With an oscilloscope check the main system oscillator by observing the signal CLK (pin 1).
With the reset held high this signal should have a frequency one eighth of the main crystal or
oscillator frequency.

12.2 Diagnostic Test #2
This test goes through a series of steps repeatedly. The steps are:
1. Apply thereset for approximately 1/4 second and then release the reset.

2. In cold boot send the following sequence of triplet charactersto serial port A viathe program-
ming connector.

80 OE 20 // sets status pin |ow
80 OE 30 // sets status pin high
80 OE 20 // sets status pin | ow again

3. Wait for approximately 1/4 second and then repeat starting at step #1.

While the test is running, an oscilloscope can be used to observe the results. The scope can betrig-
gered by the reset line going high. It should be possible to observe the data characters being trans-
mitted on the RXA pin of the processor or the programming connector. The status pin can also be
observed at the processor or programming connector. Each byte transmitted has 8 data bits pre-
ceded by a start bit which islow and followed by astop bit which is high (viewed at the processor
or programming connector). The data bits are high for 1 and low for 0.

Designer’s Handbook 59

The cold boot mode and the triplets sent are described in Section 4.1 on page 20. Each triplet con-
sists of a 2-byte address and a 1-byte data value. The data value is stored in the address specified.
The uppermost bit of the 16-bit addressis set to one to specify an internal 1/0 write. The remain-
ing 15 bits specify the address. If the write is to memory then the uppermost bit must be zero and
the write must be to the first 32k of the memory space. The user should see the 9 bytes transmitted
at 2400 bps or 416 ps per bit. The status bit will initially toggle fairly rapidly during the transmis-
sion of thefirst triplet because the default setting of the status bit isto go low on the first byte of
an opcode fetch. While the triplets are being read instructions are being executed from the small
cold boot program within the microprocessor. The status line will go low after the first triplet has
been read. It will go high after the second triplet isfinished. It will return to low again after the 3rd
triplet is transmitted. and stay that way until the sequence starts again.

If this test fails to function it may be that the programming connector is connected improperly or
the proper pull-up resistors are not installed on the SMODE lines. Other possibilities are that one
of the oscillatorsis not working or is operating at the wrong frequency. The reset could be failing.

12.3 Diagnostic Test #3

Thistest checks the functioning of the RAM connected to /CSI/OEL/WEL. The test appliesthe
reset, then sends a series of tripletsto set up the necessary control registers. Then it writes several
instructions to RAM. Finally it begins executing instructionsin RAM. These instructions disable
the watchdog timer.

80 14 05 //set MBOCRto 1 to select RAM
80 09 51 /I ready wat chdog for disable
80 09 54 /1 di sabl e wat chdog ti ner

[/ sequence of triplets to wite program below to nenory
/1 starting at address zero.

00 01 21
00 02 01
00 03 00
00 04 06
00 05 10
00 06 7e
00 07 29
00 08 10
00 09 FC
00 OA C3
00 OB 00

60 Rabbit 2000 Microprocessor

80 24 80 //term nate bootstrap, start at address zero

;test program
ld hl,1
ld b, 16
| oop:
Id a, (hl)
add hl,hl ; shift left
dinz loop ; 16 steps
ip O ; continue test

If thistest runsit will toggle the first 16 address lines. In addition, all of the data lines must be
functioning or the program would not execute correctly.

Designer’s Handbook

62

Rabbit 2000 Microprocessor

Appendix A. Supported Rabbit 2000
Baud Rates

This table contains divisors to put into TATXR registers. All frequencies that allow 57600 baud up
to 30MHz are shown (as well as afew higher frequencies):

Crystal Example Boards 2400 9600 19200 57600 115200
Freq. (MHz) baud baud baud baud baud
1.8432 23 5 2 0 -
3. 6864 BL 1800 divided by 8 47 11 5 1 0
5. 5296 71 17 8 2 -
7.3728 BL 1810, not doubled 95 23 11 3 1
9. 2160 RCM 2020, not doubled 119 29 14 4 -
11. 0592 RCM 2100, not doubled 143 35 17 5 2
12. 9024 RCM2000. not doubled 167 41 20 6 -
14. 7456 BL 1820, doubled 191 47 23 7 3
16. 5888 215 53 26 8 -
18. 4320 TCP/IP Dev. Kit 239 59 29 9 4
20. 2752 * 65 32 10 -
22.1184 RCM 2100, doubled * 71 35 11 5
23. 9616 * 77 38 12 -
25. 8048 RCM 2010, doubled * 83 41 13 6
27. 6480 * 89 44 14 -
29. 4912 BL 1800 (can’t double) * 95 47 15 7
36. 8640 * 119 59 19 9
44,2368 * 143 71 23 11
Designer’s Handbook 63

Thisinformation is calculated with the following equation:

divisor = (crystal frequency in Hz) / (32 * baud rate) - 1
If the divisor isnot an integer value, that baud rate is not available for that frequency (identified by
a“-" inthetable).

If the divisor is above 255, that baud rate is not avail able without further BIOS modification (iden-
tified by a“*” in the table). To allow that baud rate, you need to clock the serial port desired via
timer A (by default they run off the CPU clock / 2), then scale down timer A to make the seria
port divisor fall below 256.

64 Rabbit 2000 Microprocessor

Appendix B. Wait State Bug

B.1 Overview of the Bug

A bug associated with the use of memory wait states was discovered in the Rabbit 2000 processor
approximately 13 months after the product was introduced. This bug was not discovered previ-
ously because the use of wait statesin situations that evoke the problem is unusual. A number of
modificationsto Dynamic C starting with version 7.05 have been made to make it easy, or in some
cases automatic, to avoid problems created by the bug. The bug manifests when memory wait
states are used during certain instruction fetches or during certain read operations. The data read
instructions are the simpler case and we will describe them first.

Wait states for 1/0 devices work normally and are not associated with this problem.

B.2 Wait States In Data Memory

The two instructions LDDR and LDI R are repeating instructions that move a block of datain mem-
ory. If wait states are enabled, then one wait state less than specified is used on every data read
except the first one in the block. This can be corrected in either of two ways.

An additional wait state can be specified, which will cause there to till be sufficient wait states
when oneislost, or adirective can be issued to the Dynamic C compiler to automatically substi-
tute different instructions for LDDR or LDI R which accomplish the same operation.

Thedirectiveis:

#pragma DATAWAI TSUSED on
#pragma DATAWAI TSUSED of f

Thiswill cause Dynamic C to substitute code as follows:
[dir
becomes
call Idir_func
and
| ddr
becomes
call Iddr_func

This change causes the block move to proceed at 11 clock cycles per byte (on average) rather than
7 clock cycles per byte.

For small memory blocks (<45 bytes), it is more efficient to write the following code:

start _Idi: Idi
jp nov, start_Idi

start_ldr: |dr
jp nov, start_ldr

Designer’s Handbook 65

B.3 Wait States in Code Memory

There are two manifestations of the wait state bug in code memory. If wait states are enabled, there
are certain instructions that will execute incorrectly and there are certain other instructions whose
use will reduce the length of the output enable signal.

B.3.1 Instructions Affected by the Wait State Bug
If wait states in code memory are enabled, the 20 instructions in the table below execute incor-
rectly and should not be used:

Table 1. Rabbit 2000 Instructions

set b, (ix+d) set b, (iy+d)
resb, (ix+d) resb, (iy+d)
bit b, (ix+d) bit b, (iy+d)
rl (ix+d) rl (iy+d)

rlc (ix+d ric (iy+d)

rr (ix+d) rr (iy+d)

rrc (ix+d) rrc (iy+d)
dla (ix+d) da(iy+d)
sra (ix+d) sra(iy+d)
srl (ix+d) sl (iy+d)

Theseinstructions work correctly if there are zero wait states. If wait states are desired, equivalent
instructions work without any problem. For example:

SRA (| X+8) ; 13 cl ocks
can be replaced by:

LD B, (I X+8) ; 9 cl ocks

SRA B ; 4 clocks

LD(1l X+8), B : 10 cl ocks

Any of theregisters A, H, L, D, E, B, C can be used to hold the intermediate value, so you should
be able to find afree register.

For:
BIT 3,(IX+4) ; 10 cl ocks
use:

LD B, (I X+4) ;9 clocks
BIT 3,B : 4 clocks

66 Rabbit 2000 Microprocessor

If the atomic nature of the operation isimportant then the operation can be shifted to the hl index
register. For example:

SET 3, (1 X+4)
Useinstead:

PUSH HL
PUSH DE
LD HL, I X
LD DE, 4
ADD HL, DE
SET 3, (HL)
POP DE
POP HL

B.3.1.1 Dynamic C version 7.05
Starting with version 7.05, Dynamic C does not generate any of the instructionsin Table 1, and
they are not used in the library routines. If any of these instructions are used in an application pro-
gram, awarning will be generated by the compiler.

B.3.1.2 Prior versions of Dynamic C

In versions of Dynamic C prior to 7.05, thelibrary, SLI CE. LI B, contains one of these instruc-
tions. bit b, (iy+d). Do not usewait states with slice statements in these earlier versions of
Dynamic C. If any of the instructions in the table above are used in an application program, no
warning is generated and you are on your own.

B.3.2 Output Enable Signal and Conditional Jumps

If wait states are enabled for code memory, the memory output enable signal is shortened by one
clack cyclefor thefirst byte read after any conditional jump instruction that does not jump. Thisis
not the same aslosing await state, and in some cases the shortened output enable signal will not
cause a problem. The conditional jump instructions are:

jp cc, m cc (condition code) is one of the following:
NZ, Zero flag not set;
Z, Zeroflag s¢t;
NC, Carry flag not set;
C, Carry flag set;
LZ, Logica/Overflow flag is not set;
LO, Logica/Overflow flag is s<t;
P, Sign flag not s=t;
M Sign flag set

jr cc, e cc (condition code) is one of the following:
NZ, Zero flag not set;
Z, Zero flag set;
NC, Carry flag not set;
C, Carry flag set;

djnz e

Designer’s Handbook 67

B.3.2.1 Workaround for Wait State Bug with Conditional Jumps
One way to compensate for the shortened output enable signal is to add one more wait state than
would otherwise be needed. An example of the memory access with the shortened output enable
signal is shown in the figure below.

R T chip select
X X address
output enable

L - — —

lost part of output enable
signa

Wait State Bug Memory Read, 1 Wait State

B.3.3 Output Enable Signal and Mul Instruction

If wait states are enabled for code memory, the length of the output enable signal isreduced to a
single clock cycle for the first instruction byte fetch after amultiply (mul) instruction. Thisisthe
length the output enable signal would be if there were zero wait states. The read of thisbyteis
aways along read cycle (the same as 10 wait states) since it is shared with the execution of

mul .This effectively precludes the use of mul with wait states unless the following condition is
met: the length of time from the start of the output enable signal to when the data becomes ready
to sampleislessthan 1 clock cycle - 9 nanoseconds.

If the clock doubler is used alternate clocks may have slightly different lengths and a slightly
gtricter standard may need to be applied.

B.3.4 Alternatives to Wait States in Code Memory

If the code memory is slow and requires wait states at a certain clock speed, the simplest alterna-
tiveisto lower the clock speed so that no wait states will be required. Lowering the clock speed to
2/3 of its previous value has the same effect as adding one wait state. Lowering the clock speed to
1/2 isthe same as 2 wait states. Lowering the clock speed to 1/3 isthe same as 4 wait states. The
clock speed can be cut in half by turning of the clock doubler. The clock speed can be divided by 8
by enabling the clock divider.

Another way to avoid wait statesis to run normally with the clock doubler enabled, and when you
need to execute code from the sower memory turn off the clock doubler. This doubles the length
of the memory cycle, which is equivalent to adding 2 wait states.

68 Rabbit 2000 Microprocessor

B.4 Enabling Wait States

Memory wait states can be specified independently for each of 4 different addressing zones in the
memory space. The 4 memory bank control registers (MBx CR) control the wait states inserted for
memory accesses in each zone. The number of wait states can be programmed as 0, 1, 2 or 4. The
principle reasons for enabling memory wait states are:

1. During startup of the Rabbit 2000, wait states are automatically set to 4 wait states. Unlessiit
has been modified, the BIOS promptly sets the processor to zero wait states.

2. Enabling wait states can be used as a strategy for reducing power consumption. This can still be
doneif the restrictions and work-arounds detailed in this chapter are adhered to. For example,
you don’t use the 20 instructions that execute incorrectly.

3. A slow flash memory used for data storage may be interfaced to the processor as a memory
deviceand it may require wait states. Thiswill still work aslong as only data accesses are made
to the memory. If instructions are to be executed from the memory, then the restrictions and
work-arounds detailed in this chapter must be adhered to.

B.5 Summary

In atypical design implementation, wait states are not used for access to the main instruction
memory. Normally the processor clock speed is selected so that with zero wait states the processor
memory cycle is matched with the instruction memory access time. Hence, the wait state bug will
not be encountered by most users.

If the memory used is fast enough to run at zero wait states and the 20 failing instructions are not
used, then inserting wait states will not cause problems. Thus, when the Rabbit starts up after a
reset and maximum wait states are enabled there will not be a problem. Nor will there be a prob-
lem if wait states are inserted to conserve power. Controller boards produced by Z-World or Rab-
bit Semiconductor will not experience the wait state bug unless the default setup in the BIOS is
overridden.

Z-World flash write routines may move code into RAM memory and execute it there in order to
perform awrite on the flash code memory. These routines automatically avoid any wait state bug
problems.

Wait states in memory used for data are not a problem because of the compiler directive that can
be used to avoid the bug. There is no reason to avoid wait states for data memory.

Designer’s Handbook 69

70

Rabbit 2000 Microprocessor

L egal Notice

Rabbit Semiconductor products are not authorized for use as critical componentsin life-
support devices or systems unless a specific written agreement regarding such intended
use is entered into between the customer and Rabbit Semiconductor prior to use. Life-sup-
port devices or systems are devices or systems intended for surgical implantation into the
body or to sustain life, and whose failure to perform, when properly used in accordance
with instructions for use provided in the labeling and user’s manual, can be reasonably ex-
pected to result in significant injury.

No complex software or hardware system is perfect. Bugs are always present in a system
of any size. In order to prevent danger to life or property, it is the responsibility of the sys-
tem designer to incorporate redundant protective mechanisms appropriate to the risk in-
volved.

Designer’s Handbook 71

	Table of Contents
	�1. Introduction
	1.1� Summary of Design Conventions

	�2. Rabbit Hardware Design Overview
	2.1� Design Conventions
	2.1.1� Rabbit Programming Connector
	2.1.2� Memory Chips
	2.1.3� Oscillator Crystals

	2.2� Operating Voltages
	2.3� Power Consumption
	2.4� Through-hole Technology

	�3. Core Design and Components
	3.1� Clocks
	3.1.1� Low-Power Design
	3.1.2� Conformal Coating of 32.768 kHz Oscillator Circuit

	3.2� Basic Memory Design
	3.2.1� Memory Access Time
	3.2.2� Precautions for Unprogrammed Flash Memory

	3.3� PC Board Layout and Memory Line Permutation
	3.4� PC Board Layout and Electromagnetic Interference
	3.4.1� EMI Regulations
	3.4.1.1 EMI Measuring Devices
	3.4.1.2 Classes For EMI Testing

	3.4.2� Layout and Decoupling for Low EMI
	3.4.2.1 EMI Sources
	3.4.2.2 Clock Signal Pin 1
	3.4.2.3 High Frequency Oscillator Circuit
	3.4.2.4 Processor Decoupling
	3.4.2.5 Elimination of Power Plane

	�4. How Dynamic C Cold Boots the Target System
	4.1� How the Cold Boot Mode Works In Detail
	4.2� Program Loading Process Overview
	4.2.1� Program Loading Process Details

	�5. Rabbit Memory Organization
	5.1� Physical Memory
	5.1.1� Flash Memory
	5.1.2� SRAM
	5.1.3� Basic Memory Configuration

	5.2� Memory Segments
	5.2.1� Definitions
	5.2.2� The Root Memory Segment
	5.2.2.1 Types of Code Best-Suited for the Root Memory Segment

	5.2.3� The Data Segment
	5.2.4� The Stack Segment
	5.2.5� The Extended Memory Segment

	5.3� How The Compiler Compiles to Memory
	5.3.1� Placement of Code in Memory
	5.3.2� Paged Access in Extended Memory

	�6. The Rabbit BIOS
	6.1� Startup Conditions Set Up By the BIOS
	6.2� BIOS Flowchart
	6.3� Internally Defined Macros
	6.4� Modifying the BIOS
	6.5� Origin Statements to the Compiler
	6.5.1� Origin Statement Syntax
	6.5.2� Origin Statement Semantics
	6.5.3� Origin Statement Examples
	6.5.4� Origin Directives in Program Code

	�7. The System ID Block
	7.1� Definition of SysIDBlock
	7.2� Access
	7.2.1� Reading the SystemID Block
	7.2.2� Writing the SystemID Block

	7.3� Determining the Existence of the SystemID Block

	�8. BIOS Support for Program Cloning
	8.1� Overview of Cloning
	8.1.1� Evolution of Cloning Support

	8.2� Creating a Clone
	8.2.1� Steps to Enable and Set Up Cloning
	8.2.2� Steps to Perform Cloning
	8.2.3� LED Patterns

	8.3� Cloning Questions
	8.3.1� MAC Address
	8.3.2� Different Flash Sizes
	8.3.3� Design Restrictions

	�9. Low-Power Design and Support
	9.1� Software Support for Low-Power Sleepy Modes
	9.2� Baud Rates in Sleepy Mode

	�10. Memory Planning
	10.1� Making a RAM-only board.
	10.1.1� Hardware Changes
	10.1.2� Software Changes

	�11. Flash Memories
	11.1� Supporting Other Flash Devices
	11.2� Writing Your Own Flash Driver

	�12. Troubleshooting Tips for New Rabbit-Based Systems
	12.1� Initial Checks
	12.2� Diagnostic Test #2
	12.3� Diagnostic Test #3

	Appendix A. � Supported Rabbit 2000 Baud Rates
	Appendix B. � Wait State Bug
	B.1� Overview of the Bug
	B.2� Wait States In Data Memory
	B.3� Wait States in Code Memory
	B.3.1� Instructions Affected by the Wait State Bug
	B.3.1.1 Dynamic C version 7.05
	B.3.1.2 Prior versions of Dynamic C

	B.3.2� Output Enable Signal and Conditional Jumps
	B.3.2.1 Workaround for Wait State Bug with Conditional Jumps

	B.3.3� Output Enable Signal and Mul Instruction
	B.3.4� Alternatives to Wait States in Code Memory

	B.4� Enabling Wait States
	B.5� Summary

	Legal Notice

