Nano WiReach[™]

Nano WiReach[™]

Data Sheet

Ver. 1.26

International: Connect One Ltd. 20 Atir Yeda Street Kfar Saba 44643, Israel Phone: +972-9-766-0456

Fax: +972-9-766-0461
Email: sales@connectone.com
www.connectone.com

USA: 560 S. Winchester Blvd. Suite 500 San Jose, CA 95128 Tel: (408) 572-5675 Fax: (408) 572-5601 Information provided by Connect One Ltd. is believed to be accurate and reliable. However, Connect One assumes no responsibility for its use, nor any infringement of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent rights of Connect One other than for circuitry embodied in Connect One's products. Connect One reserves the right to change circuitry at any time without notice. This document is subject to change without notice.

The software described in this document is furnished under a license agreement and may be used or copied only in accordance with the terms of such a license agreement. It is forbidden by law to copy the software on any medium except as specifically allowed in the license agreement. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including but not limited to photocopying, recording, transmitting via fax and/or modem devices, scanning, and/or information storage and retrieval systems for any purpose without the express written consent of Connect One.

WARNING: THE Nano WiReach IS AN RF MODULE INTENDED FOR EMBEDDING IN A HOST DEVICE. LOCAL RELEVANT RF REGULATIONS SUCH AS ALLOWED FREQUENCIES AND USAGE IN COMMERCIAL FLIGHTS MUST BE OBSERVED. SAFETY INSTRUCTIONS MUST BE INCLUDED IN THE MANUALS OF THE HOST DEVICE. CONNECT ONE ASSUMES NO LIABILITY FOR CUSTOMER FAILURE TO COMPLY WITH THESE PRECAUTIONS.

iChip, Nano WiReach, IP Communication Controller, SerialNET, AT+i and Connect One are trademarks of Connect One Ltd.

Copyright © 2008, 2009 Connect One Ltd. All rights reserved.

Connect One Revision History

Revision History 11-4100-08

Version	Date	Description	
1.00	October 2008	Initial preliminary version	
1.10	November 2008	Corrections to Mechanical Schematics, Pin descriptions and addition of Interface Schematics	
1.11	November 2008	Added Nano WiReach image.	
1.12	November 2008	Updated Mechanical Dimensions	
1.13	November 2008	Updated Mechanical Dimensions	
1.20	January 2009	Fixed signal directions in J6 serial interface	
1.25	February 2009	Updated RMII_REFCLK signal direction	
1.26	February 2009	Miscellaneous	

Nano WiReach Data Sheet Preliminary iii

Contents

1		Introduction	1-1
	1.1	General Description	1-1
	1.2	Hardware Description	1-1
	1.3	Performance Specifications	1-1
2		Features	2-1
	2.1	Security	2-1
	2.2	Protocols	2-1
	2.3	Additional Features	2-1
3		Typical Applications	3-1
4		Connector Pin Description	4-1
	4.1	Pin Numbers	4-1
	4.2	Pin Functional Description	4-2
5		Interfaces	5-1
	5.1	Serial Interface	5-1
	5.2	SPI Interface	5-1
	5.3	USB Interface	5-1
	5.4	RMII Interface	5-2
6		Electrical Specifications	6-1
	6.1	Absolute Maximum Ratings	6-1
	6.2	DC Operating Characteristics	6-1
	6.3	AC Operating Characteristics	6-2
	6.4	Tx Specifications	6-2
	6.5	Rx Specifications	6-2
7		Mechanical Dimensions	7-1
8		Evaluation Board	8-1
9		Ordering Information	9-1
10)	Internet Protocol Compliance	10-1

i٧

Connect One Figures

Figures

Figure 3-4-1: Pin-out for Nano WiReach	. 4-1
Figure 6-1: SPI Interface Waveforms	.6-2
Figure 5-7-1: Mechanical Dimensions	.7-1

Connect One Tables

Tables

Table 3-1: Connector Signal Description	4-2
Table 4-1: Absolute Maximum Ratings	6-1
Table 4-2: DC Operating Characteristics	6-1
Table 4-3: Tx Specifications	6-2
Table 4-4: Rx Specifications	6-2
Table 8-1: Internet Protocol Compliance	10-

Connect One Introduction

1 Introduction

1.1 General Description

Nano WiReach[™] is a secure serial-to-Wireless LAN device server module that also acts as a bridge to connect serial devices to 802.11b/g Wireless LANs. It includes the iChip[™] CO2144 IP Communication Controller[™] chip and Marvell 88W8686 WiFi chipset. It is packaged in RoHS-compliant ultra-slim form factor and uses an industry standard pin-out.

Nano WiReach offers much more than many other device servers on the market. It acts as a security gap between the application and the network; supports up to 10 simultaneous TCP/UDP sockets; two listening sockets; a web server with two websites; SMTP and POP3 clients; MIME attachments; FTP and TELNET clients, and SerialNET[™] mode for serial-to-IP bridging.

Nano WiReach supports the SSL3/TLS1 protocol for secure sockets, HTTPS and FTPS, WEP, WPA and WPA2 WiFi encryption.

Nano WiReach minimizes the need to redesign the host device hardware. It easily inserts into headers on the host PCB and connects to an external antenna. Minimal or no software configuration is needed for Nano WiReach to access the Wireless LAN.

Connect One's high-level AT+i[™] API eliminates the need to add WiFi drivers, security and networking protocols and tasks to the host application. The AT+i SerialNET operating mode offers a true plug-and-play mode that eliminates any changes to the host application.

Nano WiReach firmware – the IP stack and Internet configuration parameters – are stored in an external flash memory. The module is power-efficient: the core operates at 1.2V, while I/Os operate at 3.3V. Power Save mode further reduces power consumption.

The II-EVB-363NW evaluation board provides an easy environment for testing the Nano WiReach prior to designing it into your product.

1.2 Hardware Description

- Size: 33.76 x 18.0 x 5.5 mm
- Core CPU: 32-bit RISC ARM7TDMI, lowleakage, 0.13 micron, running at 48MHz
- Operating Voltage: +3.3V+/-10%
- Operating Humidity: 90% maximum (non-condensing)
- Operating Temperature Range:
 -20° to 75°C (-4° to 167°F)
- Power Consumption:
 Transmit 250mA @16dbm
 235mA @12dbm (typical)
 Receive 190mA (typical)
 Power Save mode 8mA
- RF Connector: U.Fl. of Hirose
- Connector: Low profile 30 pin
- Host Interface: TTL Serial, SPI and USB device.
- RMII Interface
- RoHS-compliant; lead-free

1.3 Performance Specifications

- Host Data Rate: up to 3Mbps in serial mode
- Serial Data Format (AT+i mode):
 Asynchronous character; binary; 8 data bits; no parity; 1 stop bit
- SerialNET mode: Asynchronous character; binary; 7 or 8 data bits; odd, even, or no parity; 1 stop bit
- Flow Control: Hardware (-RTS, -CTS) and software flow control.

Connect One Introduction

Internet Protocols

ARP, ICMP, IP, UDP, TCP, DHCP, DNS, NTP, SMTP, POP3, MIME, HTTP, FTP and TELNET

Security Protocols

SSL3/TLS1, HTTPS, FTPS, RSA, AES-128/256, 3DES, RC-4, SHA-1, MD-5, WEP, WPA and WPA2

Protocols Accelerated in HW

AES, 3DES and SHA

Application Program Interface

Connect One's AT+i protocol SerialNET mode for transparent serial datato-Internet bridging

Wireless Specifications

Standards Supported: IEEE 802.11b, IEEE 802.11g

Frequency:

Europe – 2.412-2.472GHz USA – 2.412-2.462GHz

Channels:

Europe – 13 channels USA – 11 channels

Recommended Antenna

iW-ANT2-BL Antenna: 2.4GHz, 2.0dBi, 50Ω, omni-directional, 1/4 wavelength dipole configuration, VSWR≤2.0, height - 82.5mm, weight - 6.3 grams

Warranty

One year

Certifications

FCC and CE pending

Installation Requirements

The Nano WiReach must be installed within a full-enclosure device that is safety certified.

Nano WiReach Data Sheet Preliminary 1-2

Connect One Features

2 Features

2.1 Security

- Acts as a security gap between the host application and the network
- One secure SSL3/TLS1 socket
- Provides WEP, WPA and WPA2 Wireless LAN security
- Supports multiple Certificate Authorities and both client-side and server-side authentication
- Secure FTP and HTTP clients (over SSL3)
- Includes a true hardware random number generator
- AES, 3DES and SHA accelerated in hardware

2.2 Protocols

- Up to 10 simultaneous TCP/UDP sockets and two listening sockets
- HTTP client
- HTTP web server with two on-chip websites: configuration site and application site
- FTP and TELNET clients
- DHCP client and server
- Sending and receiving textual email and binary email with MIME attachments

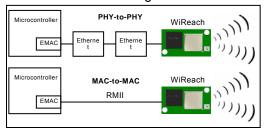
2.3 Additional Features

- Non-volatile, on-chip operational parameter database
- Supports infrasturcture and ad-hoc Wireless LAN networks
- SerialNET mode for serial-to-IP bridging (port server mode)
- Local firmware update
- Remote configuration and firmware update over the Internet
- Retrieval of time data from a Network Time Server

Note: For a detailed description of all available features, see the *AT+i Programmer's Manual*.

Nano WiReach Data Sheet Preliminary 2-1

3 Typical Applications


Adding IP communications over WiFi to serial embedded devices.

Replacing a LAN cable with a WiFi connection.

Adding SSL security to M2M solutions.

Nano WiReach supports several operational modes:

• LAN to WiFi Bridge - allowing transparent bridging of LAN over WiFi, using direct RMII connection to existing MAC hardware or direct PHY-to-PHY connection.

- SerialNet[™] Serial to WiFi Bridge allowing transparent bridging of Serial over WiFi, using a 3Mbps fast UART. This is a true plug-and-play mode that eliminates any changes to the host application.
- <u>PPP modem emulation</u> allowing existing (i.e. modem) designs currently using PPP to connect transparently over WiFi.
- <u>Full Internet Controller mode</u> allowing simple MCU to use the Nano WiReach's rich protocol and application capabilities to perform complex Internet operations such as E-mail, FTP, SSL, embedded Web server and others. It also acts as a firewall, providing a security gap between the application and the network.

Nano WiReach Data Sheet Preliminary 3-1

Connect One Pin Descriptions

4 Connector Pin Description

The Nano WiReach module includes the iChip CO2144 IP Communication Controller and the Marvell 88W8686 802.11b/g WiFi chipset mounted on a socket form-factor module.

4.1 Pin Numbers



Figure 3-4-1: Pin-out for Nano WiReach

Connector: Molex 53748-0308

Mate with: Molex 52991-0308

Nano WiReach Data Sheet Preliminary 4-1

Connect One Pin Descriptions

4.2 Pin Functional Description

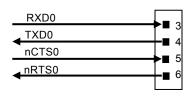
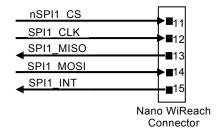
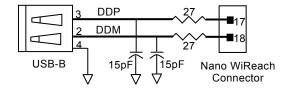

Pin	Signal	type	Description	
1	V_{DD}	Power		
2	GND	power		
3	RXD0	Input	UART 0 receive	
4	TXD0	Output	UART 0 transmit	
5	nCTS0	Input	UART 0 clear to send	
6	nRTS0	Output	UART 0 request to send	
7	DATA_RDY	Output	Data ready	
8	MSEL	Input	Mode select	
9	nRESET	Input	Reset Module.	
10	nRF_LED	Output	RF LED indicator	
11	nSPI1_CS	Input	SPI 1 chip select for host	
12	SPI1_CLK	Input	SPI 1 clock for host (Max 12MHz)	
13	SPI1_MISO	Output	SPI 1 slave out for host master in	
14	SPI1_MOSI	Input	SPI 1 slave in for host master out	
15	SPI1_INT	Output	SPI 1 have data on his buffer	
16	Readyness	Output	iChip Ready	
17	DDP	Analog	USB device positive	
18	DDM	Analog	USB device negative	
19	VDD	Power		
20	GND	Power		
21	ETX_EN	Output	RMII Transmit Enable	
22	RMII_REFCLK	Input	RMII Reference Clock	
23	CRSDV	Input	RMII Carrier sense and Data Valid	
24	ERXER	Input	RMII Receive Error	
25	EMDIO	I/O	Management data I/O	
26	EMDC	Output	Management data Clock	
27	ETX1	Output	RMII transmit Data 1	
28	ERX1	Input	RMII Receive Data 1	
29	ETX0	Output	RMII transmit Data 0	
30	ERX0	Input	RMII Receive Data 0	

Table 3-1: Connector Signal Description

Connect One Interfaces

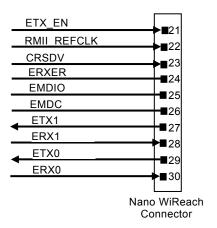

5 Interfaces

5.1 Serial Interface



Nano WiReach Connector

5.2 SPI Interface



5.3 USB Interface

Connect One Interfaces

5.4 RMII Interface

6 Electrical Specifications

6.1 Absolute Maximum Ratings

Parameter	Rating
Voltage at any pin with respect to ground	-0.3V to +3.6V
Operating temperature	-20°C to 75°C (-4°F to 1675°F)
Storage temperature	-65°C to 125°C (-85°F to 257°F)

Table 4-1: Absolute Maximum Ratings

6.2 DC Operating Characteristics

Parameter	Min	Typical	Max	Units
VDD	3.0	3.3	3.6	Volts
High-level Input	2.0		VDD I/O+0.3	Volts
Low-level Input	-0.3		0.8	Volts
High-level Output @2mA	VDD I/O-0.4			Volts
High-level Output @0mA	VDD I/O-0.2			Volts
Low-level Output @2mA			0.4	Volts
Low-level Output @0mA			0.2	Volts
Input leakage current			10	μA
Power supply current from VDD (Transmit Mode)		260	280	mA
Power supply current from VDD (Receive Mode)		190	210	mA
Power supply current from VDD (Power Save Mode)		8*		mA
Input Capacitance			5.3	pF
Radio Frequency Range (subject to local regulation)	2.412		2.484	GHz

Table 4-2: DC Operating Characteristics

(*) Note: Power supply current as measured in firmware version i2128d722B05.

6.3 AC Operating Characteristics

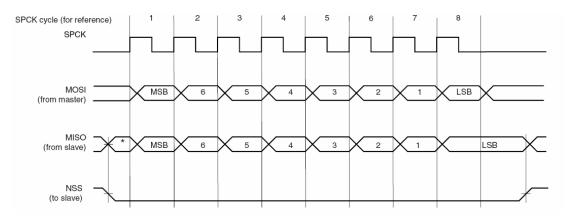


Figure 6-1: SPI Interface Waveforms

6.4 Tx Specifications

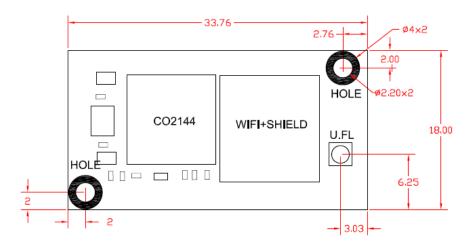
Item	Condition		Min	Тур	Max	Unit
Transmit Power Levels	11b			15		dBm
	11g			15		dBm
Transmit Spectrum Mask	11b	Fc+/-11MHz		40		dBc
		Fc+/-22MHz		60		dBc
	11g	Fc+/-11MHz		30		dBc
		Fc+/-20MHz		40		dBc
		Fc+/-30MHz		50		dBc
Transmit Center Frequency Tolerance	Tempe	erature=25°C		±10		ppm

Table 4-3: Tx Specifications

6.5 Rx Specifications

Item	Condition	Min	Тур	Max	Unit
Receiver Minimum Input Level Sensitivity	802.11b Data Rate=11Mbps, PER<8%		-88		dBm
	802.11g Data Rate=54Mbps, PER<10%		-74		dBm
Adjacent Channel Rejection Desired channel is 3dB above	802.11b Data Rate=11Mbps, PER<8%		48		dBc
sensitivity	802.11g Data Rate=54Mbps, PER<10%		15		dBc

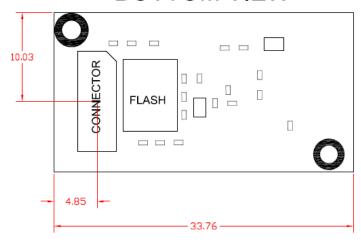
Table 4-4: Rx Specifications


PER(%)=(Number of all packets – Number of received packets)/(Number of all packetsX100)

Nano WiReach Data Sheet Preliminary 6-2

Connect One Mechanical Dimensions

7 Mechanical Dimensions


UPPER VIEW

SIDE VIEW

BOTTOM VIEW

Note: All measures are in millimeters

Figure 5-7-1: Mechanical Dimensions

Connect One Evaluation Board

8 Evaluation Board

The II-EVB-363-NW evaluation board enables you to evaluate the Nano WiReach without changing anything in your current development environment. Using a simple Windows-based application on a PC, you can issue AT+i commands to the iChip CO2144 and get responses.

Note: The evaluation board supports serial host data rates of up to 1Mbps.

AT+i commands are used to configure parameter values into iChip's flash memory and activate Internet tasks such as email send, sockets, FTP sessions, configuration, and more.

A full description of AT+i commands can be found in the *AT+i Programmer's Manual* on Connect One's website at: http://www.connectone.com/support.asp?did=35

To help you evaluate the Nano WiReach, Connect One supplies the iChip Config Utility. This is a Windows-based application that contains intuitive dialog boxes to fully configure iChip CO2144. It doesn't require any knowledge of AT+i commands. It also contains local firmware update functionality. The iChip Config Utility allows you to perform specific Internet communication tasks such as sending and receiving emails, activating iChip's websites, entering SerialNET mode, and more. The latest iChip Config Utility version and user manual can be found on Connect One's website under the Support section.

On board connectors allow a choice of Host interfaces:

- RS232 COM port
- SPI
- USB

Nano WiReach Data Sheet Preliminary 8-1

9 Ordering Information

Ordering Information				
Part Number	Description			
iW- SM2144N1-US-0	Nano WiReach module, for USA, External Antenna			
iW- SM2144N1-EU-0	Nano WiReach module, for Europe, External Antenna			
II-EVB-363NW-US-0-110	Evaluation board for Nano WiReach module for USA, with 110V power supply adaptor, External Antenna			
II-EVB-363NW-EU-0-220	Evaluation board for Nano WiReach module for Europe, with 220V power supply adaptor, External Antenna			
iW-CAB-150	Miniature coaxial w/ pigtail cable. UFL-SMA connectors. 150mm length.			
iW-ANT2-BL	2.4GHz WiFi antenna, 2.0dBi, 50Ω , omni-directional, 1/4 wavelength dipole configuration			

10 Internet Protocol Compliance

Nano WiReach complies with the Internet standards listed in the following table.

RFC 768	User datagram protocol (UDP)
RFC 791	Internet protocol (IP)
RFC 792	ICMP – Internet control message protocol
RFC 793	Transmission control protocol (TCP)
RFC 821	Simple mail transfer protocol (SMTP)
RFC 822	Standard for the format of ARPA Internet text messages
RFC 826	Ethernet address resolution protocol (ARP)
RFC 959	File transfer protocol (FTP)
RFC 854	TELNET protocol specification
RFC 857	Telnet ECHO option
RFC 858	Telnet suppress go-ahead option
RFC 1034	Domain names (DNS) - concepts and facilities
RFC 1035	Domain names (DNS) - implementation and specification
RFC 1073	Telnet window size option
RFC 1091	Telnet terminal type option
RFC 1321	MD5 message digest algorithm
RFC 1939	Post office protocol - version 3 (POP3)
RFC 1957	Some observations on the implementations of the post office protocol (POP3)
RFC 2030	Simple network time protocol (SNTP)
RFC 2045	Multipurpose Internet mail extensions (MIME) part one: internet message body format
RFC 2046	MIME part two: media types
RFC 2047	MIME part three: message header extensions for non-ASCII text
RFC 2048	MIME part four: registration procedures
RFC 2049	MIME part five: conformance criteria and examples
RFC 2068	Hypertext transfer protocol HTTP/1.1
RFC 2131	Dynamic host configuration protocol (DHCP)
RFC 2132	DHCP options (only relevant parts)
RFC 2228	FTP security extensions
RFC 2246	The TLS protocol version 1.0

Table 10-1: Internet Protocol Compliance